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SYMBOLIC DYNAMICS FOR NON-UNIFORMLY
HYPERBOLIC SURFACE MAPS
WITH DISCONTINUITIES

BY YUuUri LIMA AnND CArRLOS MATHEUS

ABSTRACT. — This work constructs symbolic dynamics for non-uniformly hyperbolic surface maps
with a set of discontinuities 2. We allow the derivative of points nearby £ to be unbounded, of the or-
der of a negative power of the distance to 2. Under natural geometrical assumptions on the underlying
space M, we code a set of non-uniformly hyperbolic orbits that do not converge exponentially fast to 2.
The results apply to non-uniformly hyperbolic planar billiards, e.g., Bunimovich billiards.

REsuME. — Nous construisons une dynamique symbolique pour les applications non uniformé-
ment hyperboliques d’une surface ayant un ensemble de discontinuités &. La dérivée de I'application
peut ne pas étre bornée, de I'ordre d’une puissance négative de la distance a 2. Sous certaines condi-
tions géométriques naturelles sur I’espace des phases M, nous codifions un ensemble d’orbites non uni-
formément hyperboliques qui ne s’approchent pas exponentiellement vite de &. Notre résultat s’ap-
plique aux billards planaires non uniformément hyperboliques tels que les billards de Bunimovich.

1. Introduction

Given a compact domain 7 C R? with piecewise smooth boundary, consider the straight
line motion of a particle inside 7', with specular reflections in 7. Let f : M — M be
the billiard map, where M = 0T x [—7, 7] with the convention that (r, 0) € M represents
r = collision position at d7 and 8 = angle of collision. The map f has a natural invariant
Liouville measure du = cos8drdf. Sinai proved that dispersing billiards are uniformly
hyperbolic systems with discontinuities [24], hence the Liouville measure is ergodic.

For a while uniform hyperbolicity was the only mechanism to generate chaotic billiards,
until Bunimovich constructed examples of ergodic nowhere dispersing billiards [10, 11, 7].
These billiards, known as Bunimovich billiards, are non-uniformly hyperbolic: p-almost every
point has one positive Lyapunov exponent and one negative Lyapunov exponent, see [14,
Chapter 8]. In this paper we construct symbolic models for non-uniformly hyperbolic billiard
maps such as Bunimovich billiards. Assume that the billiard table T satisfies the conditions
of [17, Part V], and let /& be the Kolmogorov-Sinai entropy of u.

0012-9593/01/© 2018 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2350
ANNALES SCIENTIFIQUES DE ’ECOLE NORMALE SUPERIEURE



2 Y. LIMA AND C. MATHEUS

THEOREM 1.1. — If p is ergodic and h > 0 then there exists a topological Markov shift
(X, 0) and a Holder continuous map w : ¥ — M s.t..

(1) Ttoo = fom.
(2) 7 is surjective and finite-to-one on a set of full u-measure.

Other examples of non-uniformly hyperbolic billiard maps are [25, 9]. See Section 1.3 for
the definition of topological Markov shifts.

COROLLARY 1.2. — Under the above assumptions, 3C > 0 and p > 1 s.t. f has at least
Ce"™P periodic points of period np for alln > 1.

Corollary 1.2 is consequence of Theorem 1.1 and the work of Gurevi¢ [15, 16], as in [21,
Thm. 1.1]. It is related to an estimate of Chernov [13]. The integer p is the period of (X, 0),
hence p = 1iff (¥, 0) is topologically mixing. Since p is mixing, we expect that the symbolic
coding of Theorem 1.1 can be improved to give a topologically mixing (X, o). Theorem 1.1
is consequence of the main result of this paper, Theorem 1.3, and of an argument of Katok
and Strelcyn [17, Section 1.3]. The statement of Theorem 1.3 is technical, so we first introduce
some notation.

Let M be a smooth Riemannian surface with finite diameter, possibly with boundary. We
assume that the diameter of M is smaller than one (. Let 27, 2~ be closed subsets of M . Fix
f 1 M\2" — M adiffeomorphism onto its image, s.t.  hasaninverse f ' : M\Z2~ — M
that is a diffeomorphism onto its image.

Set of discontinuities 9. — The set of discontinuities of f is 9 := 9T U 9~.

Ifx & U,ez f(2) then f"(x) is well-defined for all n € Z, and for every y = f"(x)
there is a neighborhood U 3 y s.t. f [y, f~! |v are diffeomorphisms onto their images. We
require some regularity conditions on M, f. The first four assumptions are on the geometry
of M. Given x € M\ 2, let inj(x) denote the injectivity radius of M at x, and let exp, be
the exponential map at x, wherever it can be defined. Given r > 0, let By[r] C Tx M be the
ball with center 0 and radius r. The Riemannian metric on M induces a Riemannian metric
on TM, called the Sasaki metric, see e.g., [12, §2]. Denote the Sasaki metric by dsas(-, -).
Similarly, we denote the Sasaki metric on 7B, [r] by the same notation, and the context will
be clear in which space we are. For nearby small vectors, the Sasaki metric is almost a product
metric in the following sense. Given a geodesic y joining y to x, let P, : Ty, M — Ty M be the
parallel transport along y. If v € TxM, w € T, M then dsas(v, w) < d(x,y) + [[v— Pyw|
as dsas(v, w) — 0, see e.g., [12, Appendix A]. The rate of convergence depends on the
curvature tensor of the metric on M. Here are the first two assumptions on M.

Regularity of exp,. — Ja > 1 st forallx € M\Z there is d(x, 2)* < t(x) < 1s.t.

for Dy := B(x,2t(x)) the following holds:

(Al) If y € Dy then inj(y) > 2t(x), exp;1 : Dy — T, M is a diffeomorphism onto its
image, and 1(d(x, y) + | = Pyw]) < dsas(v.w) < 2(d(x,y) + [[v — Py zwl) for
ally e Dyandv e TyM,w € T, M s.t. ||v|, ||w| < 2¢v(x), where Py x := P, for the
radial geodesic y joining y to x.

M Just multiply the metric by a sufficiently small constant.
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SYMBOLIC DYNAMICS FOR SURFACE MAPS WITH DISCONTINUITIES 3

(A2) If y1,y2 € Dy then d(expy, v1,exp,,v2) =< 2dsas(vi,v2) for |lur], [Jv2f| = 2v(x),
and dSaS(exp;llzl,exp;zlzz) < 2[d(y1,y2) + d(z1,22)] for z1,z, € Dy whenever
the expression makes sense. In particular ||d(exp,)y|| < 2 for |[v]| < 2t(x), and

ld(expzt)yll < 2fory € Dy.

The next two assumptions are on the regularity of dexp,. For x,x’ € M\2, let
Ly ={A: TxM — Ty M : Aislinear} and &y := %, x. Then the parallel transport
Pyx considered in (Al)isin %, x. Given y € Dx,z € Dy and 4 € %, ;, let A e Lrxs
A= = P, 0Ao Py > By definition, A depends on x, x” but different base points define a
map that differs from A by pre and post composition with isometries. In particular, || A || does
not depend on the choice of x, x’. Similarly, if 4; € %), ;; then ||ZI — 4, || does not depend
on the choice of x, x". Define the map t = 7y : Dy x Dy — % by ©(y,2) = d(exp;!):,
where we use the identification T, (Ty M) = T, M forallv € Ty M.

Regularity of dexp,. — The following holds:

(A3) If y1,y2 € Dy then | d(expy,)v, — d(expy,)v, | = d(x,2) “dsas(v1,v2) for all
vl [lu2ll = 2¢(x), and [[T(y1,21) — ©(y2, 22)|| < d(x, 2)"[d(y1, y2) + d(z1,22)]
forall zq,z, € Dy.

(A4) If y1,y, € Dy then the map t(y1,-) — t(¥2,-) : Dx — % has Lipschitz constant

<d(x.2)""d(y1.y2).

Conditions (A1)-(A2) guarantee that the exponential maps and their inverses are well-
defined and have uniformly bounded Lipschitz constants in balls of radii d(x, 2)%. Condi-
tion (A3) controls the Lipschitz constants of the derivatives of these maps, and condition
(A4) controls the Lipschitz constants of their second derivatives. Here are some cases when
(A1)—(A4) are satisfied, in increasing order of generality:

— The curvature tensor R of M is globally bounded, e.g., when M is the phase space of a
billiard map.

— R,VR,V2R, V3R grow at most polynomially fast with respect to the distance to 2, e.g.,
when M is a moduli space of curves equipped with the Weil-Petersson metric [12].

Now we discuss the assumptions on f.

Regularity of f. — There are constants 0 < § < 1 < b s.t. forall x € M\ Z:

(AS) If y € Dy then [[df;!|| < d(x. 7).
(A6) If y1,y2 € Dy and f(y1), f(y2) € Dy then ||dfy1 dfy2|| < Rd(y1.y2)P, and if
¥1,¥2 € Dy and f7'(y1), f 7' (y2) € Dy~ then ||d yll dfy21|| < Rd(y1.y2)P.

Although technical, conditions (A5)-(A6) hold in most cases of interest, e.g., if |df '],
|42 f*!| grow at most polynomially fast with respect to the distance to 2. We finally define
the measures we code. Fix y > 0.

x-hyperbolic measure. — An f-invariant probability measure on M is called y-hyperbolic if
u-a.e. x € M has one Lyapunov exponent > y and another < —y.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



4 Y. LIMA AND C. MATHEUS

f-adapted measure. — An f-invariant measure on M is called f-adapted if

/ logd(x, Z2)du(x) > —oo.
M
A fortiori u(2) = 0.

THEOREM 1.3. — Let M, f satisfy conditions (A1)—~(A6). For all y > 0, there exists a
topological Markov shift (£, 0) and a Holder continuous map 7w : ¥ — M s.t.:
(1) moo = fom.
(2) w[2#] has full p-measure for every f-adapted y-hyperbolic measure .
(3) Forallx € n[E%], #{v € =% 1 7(v) = x} < 0.

Above, % is the recurrent set of ¥, see Section 1.3. Every o-invariant measure 1 is carried
by ©#, hence its projection 4 = [ o 7! has the same entropy as [ (this follows from
the Abramov-Rokhlin formula [1]). In particular, the topological entropy of (X,0) is at
most that of (M, f). On the other direction, every f-adapted y-hyperbolic measure u has a
lift &z with the same entropy. If we know that y-hyperbolic measures are f-adapted then the
topological entropies of (X, o) and (M, f) coincide, and their measures of maximal entropy
are related. In this case, Corollary 1.2 has a potentially stronger statement: for every ¢ > 0,
3C > 0and p > 1 s.t. f has at least Ce®# "7 periodic points of period np for alln > 1,
where H is the topological entropy of X. At the moment, we are not aware of general results
assuring that y-hyperbolic measures are f-adapted, except when the measure is Liouville
[17, Section 1.3].

We now discuss the applicability of Theorem 1.3. Let us restrict ourselves to billiard tables
with finitely many boundary components, otherwise many degeneracies can occur (see €.g.,
[17, Part V]). Assumptions (A1)—(A6) are satisfied if all boundary components are C3. The
precise conditions that guarantee non-uniform hyperbolicity are unknown, so we mention
two classes of billiard tables 7' whose billiard maps are non-uniformly hyperbolic:

— Sinai billiard: every component of 07 is dispersing. In this case, the billiard map exhibits
uniform hyperbolicity.

— Bunimovich billiard: 07 is the union of finitely many segments and arcs of circles s.t.
each of these arcs belongs to a disk contained in 7. When this happens, non-uniform
hyperbolicity is ensured via a focusing-defocusing mechanism, see [14, Chapter 8]. See
Figure 1 for some examples.

(a) (b) ©

FIGURE 1. Examples of Bunimovich billiards: (a) pool table with pockets,
(b) stadium, (c) flower.
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SYMBOLIC DYNAMICS FOR SURFACE MAPS WITH DISCONTINUITIES 5

1.1. Related literature

The construction of Markov partitions and symbolic dynamics for uniformly hyperbolic
diffeomorphisms and flows in compact manifolds laid its foundation during the late sixties
and early seventies through the works of Adler & Weiss [2, 3], Sinai [22, 23], Bowen [4, 5],
and Ratner [19, 20]. Below we discuss other contexts.

Billiards. — These are the main examples of maps with discontinuities. Katok and Strelcyn
constructed invariant manifolds for non-uniformly hyperbolic billiard maps which include
Bunimovich billiards [17]. Bunimovich, Chernov and Sinai constructed countable Markov
partitions for two-dimensional dispersing billiard maps [8]. All these results are for Liouville
measures. Up to our knowledge, our result is the first symbolic coding of uniformly and non-
uniformly hyperbolic billiard maps for general measures.

Tower extensions of billiard maps. — Young constructed tower extensions for certain two-
dimensional dispersing billiard maps [26]. Contrary to our case, Young’s tower extensions
provide codings which are usually infinite-to-one, hence it is unclear that y-hyperbolic
measures can be lifted to the symbolic space without increasing its entropy. Neverthe-
less, such tower extensions guarantee exponential decay of correlations for certain two-
dimensional dispersing billiard maps.

Non-uniformly hyperbolic three-dimensional flows. — The first author and Sarig constructed
symbolic models for non-uniformly hyperbolic three-dimensional flows with positive speed
[18]. The idea is to take a Poincaré section and analyze the Poincaré return map f. The
Poincaré map f has discontinuities, but its derivative is uniformly bounded inside the set
of continuities. Hence the methods of [21] apply more easily.

Weil-Petersson flow. — Moduli spaces of curves possess natural negatively curved incomplete
Kahler metrics, called Weil-Petersson metrics. The geodesic flow of one such metric is called
the Weil-Petersson flow, and it preserves a canonical Liouville measure. The properties of the
Weil-Petersson metric are intimately related to the hyperbolic geometry of surfaces, and this
partly explains the recent interest in the dynamics of the Weil-Petersson flow. Burns, Masur
and Wilkinson proved that the Liouville measure is hyperbolic [12]. For that, they combined
results of Wolpert and McMullen to show that the Weil-Petersson metric explodes at most
polynomially fast while approaching the boundary of the Deligne-Mumford compactifica-
tion of the moduli space of curves, hence the Weil-Petersson flow satisfies the assumptions
of Katok and Strelcyn [17]. The construction of symbolic dynamics for the Weil-Petersson
flow is still open.

As pointed out by Sarig [21, pp. 346], our main result (Theorem 1.3) can be regarded as a
step towards the construction of Markov partitions capturing measures of maximal entropy
for surface maps with discontinuities with positive topological entropy, such as Bunimovich
billiards. Motivated by this, we ask the following question.

Question. — Let f be a billiard map with topological entropy H > 0. Does f have a measure
of maximal entropy? If it does, is it f-adapted? Is it Bernoulli?

A positive answer to this question would imply that 3C > 0 s.t. f has at least Cef'”
periodic points of period n, for alln > 1.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



6 Y. LIMA AND C. MATHEUS

In [12, pp. 858] it was suggested that one of the assumptions (in their notation, the
compactness of N) can be relaxed to the assumption that N has finite diameter. The main
reason not to claim this is that they use [17], whose framework assumes N to be compact.
We only assume finite diameter, hence our work is a step towards the relaxation of the
assumptions of [17] to the context mentioned in [12].

1.2. Methodology
The proof of Theorem 1.3 is based on [21] and [18], and it follows the steps below:

(1) If w is f-adapted and x-hyperbolic, then u-a.e. x € M has a Pesin chart W,
[—0:(x), Qs(x)]z — M s.t. lim, 0 ,lIIOg O:(f"(x)) =0.

(2) Define e-double charts W? R4 u, the two-sided versions of Pesin charts that control sepa-
rately the local forward and local backward hyperbolicity at x.

(3) Construct a countable collection <7 of e-double charts that are dense in the space of all
e-double charts. The notion of denseness is defined in terms of finitely many parameters
of x.

(4) Define the transition between e-double charts s.t. p®, p* are as maximal as possible. This
is important to establish the inverse theorem (Theorem 6.1).

(5) Apply a Bowen-Sinai refinement (following [6]). The resulting partition defines a topo-
logical Markov shift (X, 0) and a map 7 : ¥ — M satisfying Theorem 1.3.

Contrary to [21, 18], we do not require M to be compact (not even to have bounded
curvature) neither f to have uniformly bounded C'*# norm. As a consequence, we have
to control the parameters appearing in the construction more carefully. In the methodology
of proof above, this is reflected in steps (1), (3), (4). Steps (2) and (5) work almost verbatim
asin [21].

1.3. Preliminaries

Let ¥ = (V, E) be an oriented graph, where V' = vertex set and £ = edge set. We denote
edges by v — w, and we assume that V' is countable.

Topological Markov shift (TMS). — A topological Markov shift (TMS) is a pair (X, o) where
3 := {Z-indexed paths on ¥ } = {g ={vptnez € VL v, > vpq1.Vn € Z}
and o : ¥ — X is the left shift, [0 (v)], = vy+1. The recurrent set of X is

" v, = v for infinitely many n > 0
YPi=qveX:dv,welVst. .
v, = w for infinitely many n < 0

We endow X with the distance d(v, w) := exp[—min{|n| € Z : v, # wy }].

Write ¢ = e*¢h when ¢—¢ < % < ef,and a = +b when —|b| < a < |b|. Given an
openset U C R" and h : U — R™, let ||hllp := supyey ||7(x)| denote the C° norm of .
For 0 < B < 1, let Holg(h) := sup W where the supremum ranges over distinct
elements x, y € U. If h is differentiable, let |||y := ||h|lo + ||dhl|lo denote its C! norm, and
Ihll14p := l|hllc1 +Holg(dh) its C'*# norm. Given x € M, remember that By[r] C Ty M is
the ball with center 0 € Ty M and radius r. Also define R[r] := [-r,r]?> C R?.

4¢ SERIE - TOME 51 —2018 —N° 1



SYMBOLIC DYNAMICS FOR SURFACE MAPS WITH DISCONTINUITIES 7

The diameter of M is less than one, hence we can assume that a = b: just change a, b
to max{a, b}. For symmetry and simplification purposes, we will sometimes use (A3)—(AS5)
in the weaker forms below. Define p(x) := d({ f~1(x), x, f(x)}. 2), then (A3)~(A5) imply
that for all x € M\ 2:

(A3) If y1.y2 € Dy then [d(expy,)v, — d(expy,)u, |l < p(x) *dsas(vy. v2) for all vy,
[[vz2]l < 2e(x), and [[z(y1,21) — T(¥2, 22)|| < d(x, 2)"*[d(y1, y2) + d(z1, z2)] for all
Z1,22 € Dy.

(A4) If y1,y2 € Dy then the map t(y1,-) — 1(y2,) : Dy — % has Lipschitz constant
< p(x)"*d(y1, y2).

(A5) If y € Dy then ||df, =] < p(x)™.

Here is a consequence of (A5) and the inverse theorem, written in symmetric form:

(A7) |dfE = m(dfEY = plx)®.

Above, m(A) := |A7!|| 7. For the ease of reference, we collect (A1)~(A7) in Appendix A in

the format we will use in the text.

We note that u is f-adapted iff [log p(x)dp > —oo. If p is f-adapted then by p-invari-
ance the functions —logd(f~'(x), 2), —logd(x, 2), —logd(f(x), ?) are in L'(u), hence
is also their maximum — log p(x). The reverse implication is proved similarly.

2. Linear Pesin theory

In this section we construct changes of coordinates that make df a hyperbolic matrix.
Since we are dealing with the action of the derivative only, the closeness of x to Z is irrelevant.

Fix y > 0, and let NUH,, be the set of x € M\ |,z f"(2Z) for which there are vectors
{es,,(x) Ynez, {e”,,(x) tnez s.t. forevery y = f"(x), n € Z, it holds:
() & eTyM, e = 1.
) span(dfy’”e;/") = span(esf:,‘(y)) for allm € Z.
(3) Tty soo - log e | < — and limy soo 2 log A€l ]| > 1.

(4) limy— 400 % log|sina(f™(y))| = 0, where a( f™(y)) = A(esm(y), e}m(y)).
2.1. Oseledets-Pesin reduction
We represent dfy as a hyperbolic matrix.

Parameters s(x),u(x). — For x e NUH,, define
1/2 1/2
s(x) = V2| Y e Hdfres|? | andu(x) := V2| Y e |df el

n>0 n>0

These numbers are well-defined because x € NUH,,, and s(x), u(x) > V2.
Lete; = (1,0), e, = (0, 1) be the canonical basis of R2.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



8 Y. LIMA AND C. MATHEUS

Linear map Cy(x). — For x € NUH,, let Cy(x) : R? — Ty M be the linear map s.t.

S u
Cy(x):ep = —2, Cy(x) :ep > —=—-
A e S Gl e
Given a linear transformation, let || - || denote its sup norm and | - ||gwop its Frobenius
norm @, The Frobenius norm is equivalent to the usual sup norm, with || - || < || - |lFrop <

V2| -

LEMMA 2.1. — For all x € NUH,, the following holds:

2 2
(D) 1€ < IC () rob < 1 and [C(x) ™ o = LEIA1%,

(2) Cy(f(x)) LodfyoCy(x) is a diagonal matrix with diagonal entries A, B € Rs.1. |A| < e™*
and |B| > eX.

Proof. — (a) In the basis {e1, e2} of R? and the basis {e, (e$)} of Tu M, C,(x) takes
1 cosa(x)

the form [@ u(x) ], hence [|Cy(X)1F,0p = ﬁ + # < 1. The inverse of Cy(x) is

sin a(x)
u(x)
s(x) _s(x)cosalx) 5 5
[€3) -1 _ A/s(x)?Hu(x)
|: 0 s;‘z;:)’)‘ , therefore [[Cy (X) ™ | Frob = Tz
s o(x

(b) It is clear that eq, e are eigenvectors of Cy(f(x)) ! odfy o Cy(x). We calculate the eigen-
value of e; (the calculation of the eigenvalue of e, is similar). Since dfyej = *|dfxe; ||e}(x),

s d o ; _ _
[dfx o Cx(0)](er) = dfs [s‘i;)] = £ 1l ps | hence [Cy(f(x)) ™! 0 dfy 0 Cyl)](er) =

+[dfres |25 ey Thus A := | dfes || 45D is the cigenvalue of e;. Note that

2 _ 2 2ny n_sn2 _ s(x)%2—2 s(x)?
(S0 = rgrap 2NN = Farar < @ndner
n>1

therefore |A| < e™X. O

2.2. The set NUH;

We need to control the exponential rate decay of the distance of trajectories to the set of
discontinuities Z.

Regular set. — We define the regular set of f by

Reg:={x e M\Z: Llogp(f"(x)) =0} .

lim ]
n—too "

@ The Frobenius norm of a 2 x 2 matrix A = [¢ 2] is | AllFrob = Va2 + b2 + c2 +d?2.
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SYMBOLIC DYNAMICS FOR SURFACE MAPS WITH DISCONTINUITIES 9

The set NUH;. — Itis the set of x € NUH, with the following properties:

(1) x € Reg.

(2) There exist sequences ng, my — 00 s.t. Cy (f" (x)), C,(f 7 (x)) = Cy(x).
(3) limy—zo0 7 log [Cy (" (x))]| = 0.

(@) limy o0 1y log [|C, (£ (x) 7] = 0.

The next lemma shows that relevant measures are carried by NUH;.
LeEmMA 2.2. — If wis f-adapted and y-hyperbolic, then ,u[NUH;] =1

Proof. — By (AS5) and the f-adaptedness of wu, flogJr ldf*'|dn < oo hence the
Oseledets theorem applies to the cocycle df” and measure u. Since w is y-hyperbolic,
w[NUH,] = 1. By f-adaptedness and the Birkhoff ergodic theorem ¥, u(Reg) = 1. By the
Poincaré recurrence theorem, (2) holds p-a.e. It remains to check (3)—(4).

For x € NUH,, let Dy(x) := Cy(f(x))™! o dfy o Cy(x). This defines a cocycle D,((")
on NUH,. We first show that we can apply the Oseledets theorem for D)((") and p. By
A(x)

0 B(x)
2 MU e have || D, (x)]| = |B(x)| and | Dy(x)"!| = |A(x)|"", therefore we wish to

u(f(x))2-2"
show that

Lemma 2.1 and its proof, D, (x) = |: :| where A(x)? = e_zx% and B(x)? =

/log|A(x)|d,u(x) > —oo and flog|B(x)|du(x) < 00.
We prove the first inequality (the second inequality is proved similarly). By (A6), s(x)? >
2(1 + e2X||dfres||*) > 2(1 + e®Xp(x)?%) hence

2 _ ,2xs(x)?=2 _ —2x(q_ _2 p(x)24 p(x)%4
A(x) =e s(x)2 € (1 s(x)2> = 1+e2X p(x)24a = 1+e2x

Therefore
/ log |A(x)|du(x) > a / log p(x)dpu(x) — 1 log(1 + €*¥) > —oo.

By a similar reasoning, [ log|B(x)|du(x) < oo. Therefore we can apply the Oseledets
theorem for D)((") and u: there is an f-invariant set X C NUH, with u(X) = 1 s.t. every
x € X satisfies (2) and lim, o + log ||D)((”)(x)|| exists. We claim that (3)—(4) hold in X.

n

We first show that the Lyapunov exponents of D)((") and df" coincidein X. Fixx € X, and
take ni. — 00s.t. Cy (£ (x)) = Cy(x). Since | DY ()| < [|C, (£ )M A2 IIC ()] <
IC(f N~ AL

im 1 (n) — 1 1 (nx)
Jim 5 log [ D37 ()| hlrclsolipnk log [| DY (x) ||

: 1 -1 : 1 . 1
< limsup ;- log [|C, (/"% (x))™" || + limsup = log [|df* || = lim Zlog|ldf"|.
k—o00 k—o00 n—oo
() Here we are using thatif ¢ : M — Rsatisfies | |¢|du < oo then liminf,, _, 4 %(p(f” (x)) = 0 u-a.e. Indeed,
by the Birkhoff theorem ¢(x) = lim;—oco % Zf’;& o(f1(x)) exists p-a.e., hence limy,— oo %(p(f” x) =

limy — oo [% Z,r;o o(fi(x)) — % Z?;& o(f! (x))] = 0 pu-a.e. The same argument works for n — —oo.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



10 Y. LIMA AND C. MATHEUS

Similarly, [|df | < ICx(f"CDIIDY NN Cr ()M < DY ()| C(x) 71, thus
lim L log |1/} || = lim sup Lloglldfr| < lim sup Llog | D ()|
T 1 (n)
= lim 2 log D" (x)].

1

Hence lim;,—, o 5, log ||D)((") )| = limy 00 % log ||df}||. Applying the same argument along
the sequence my — oo for which C, (f ™% (x)) — Cy(x), we obtain

@1 im grlog [DYP ()]l = Tim g log [ldf .

Since |[Cy ()]l < 1, limsup, .4 ﬁlog 1C,(f*(x))]l < 0. Reversely, the inequality
£l < 1C (£ NP G ICx ()7 | implies

lim inf 7 log [|C (/" ()| = oy log ldfill =

lim
oo Il n—zoo 1l

lim i log [ DY ()| = 0.

This proves (3). A similar argument to the proof of (3) does not give (4). For that, we intro-
duce some normalizing matrices. Let A;(x), A»(x) be the Lyapunov exponents of df" at x.

Ai(x) 0 }
, We

By (2.1), D,((") has the same Lyapunov exponents at x. Taking A, (x) := |: 0 Ay(x)
2(X

have limy 400 15 log [[(DF” (x) A (x) ™)1 || = 0.

Similarly, we can define A(x) : TxM — TxM by A(x)e; = Ai(x)el and A(x)ey =
Az(x)e¥ and observe that lim,,_&ooﬁlog ||(dfx”A(x)_”)i1|| = 0. Since Ay(x) =
Cy (x)7TA(x)Cy(x), it follows that

Cr(f" ()™ = DWW (x)Cy(x) )™
= [D () A () [ 4 (x)" Co(x) T A () IS 2 A ()]
= [DP () A £ (x)™"1Cy(x) M [dfEAx) ]!

and hence
lim sup WI‘ log |C, (™ (x) Ml
n—+oo

< lim prlog || DY () A, (x) ™ + lim hlogl(df!A)™) 7 =0,

Since lim inf,— 400 ﬁ log |y (f™(x))~|| > 0, property (4) holds. Hence X satisfies (2)—(4)
and u[X] = 1. Therefore X N Reg C NUH], has full u-measure. O

3. Non-linear Pesin theory

We now define charts that make f itself look like a hyperbolic matrix.
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SYMBOLIC DYNAMICS FOR SURFACE MAPS WITH DISCONTINUITIES 11

Pesin chart W,. — For x € NUH,, let Uy : R[e(x)] > M, W, :=exp, o Cy(x). Wy is called
the Pesin chart at x.

Given x € M\, let 1, : TyM — R? be an isometry. If y € D, and 4 : R? — TyMisa
linear map, we can define A : R> — R?, 4 := 1, o P, x o A. Again, A depends on x but || A||
does not.

LeEMMA 3.1. — The Pesin chart Vy is a diffeomorphism onto its image. Moreover:

(1) Wy is 2-Lipschitz and W' is 2||Cy (x) 71 ||-Lipschitz.
() 1d(¥x)v, —d(¥x)v, |l = d(x, 2)7*|lv1 = va2|| for all vi, v2 € R[e(x)].

Proof. — Since Cy(x) is a contraction, C,(x)R[t(x)] C By[2t(x)] and so ¥, is well-
defined with inverse Cy (x)~! o expy!. It is a diffeomorphism because Cy(x) and exp, are.

(1) By (A2), W, is 2-Lipschitz and W ! is 2||Cy (x)~!|-Lipschitz.
(2) Since Cy(x)v; € Bx[2t(x)], (A3) implies that
ld(Wx)v; —d(Wx)v, | = ld(€Xpy)cy v, © Cx(X) — d(€Xpy)cy (v, © Cx ()|
=d(x, 2)Cy(x)v1 = Cy ()2 = d(x, Z) |1 —v2ll. [

Givene > 0, let I, := {e_%e” :n >0},
Parameter Q¢(x). — For x € NUH,, let Q¢(x) :=max{q € [, : g < Qs(x)}, where

0:(x) = & min {1C,(0) gt 1Cx(f ) )24/ |

The term £3/# will allow to absorb multiplicative constants. The choice of Q(x) guaran-
tees that the composition \Ilf(lx) o f o W, is well-defined in R[10Q.(x)] and it is close to a
linear hyperbolic map (Theorem 3.3), and it allows to compare nearby Pesin charts (Propo-
sition 3.4). We have the following bounds:

Q.(x) < e¥P, IC, ()M Qe (x)P/?* < &8,

IC(fCN) T Qe(x)P/1? < 612, P(x) ™ Qe (x)P/72 < /24,

LeEMMA 3.2 (Temperedness lemma). — If x € NUH?Z, then

Llog Q.(f"(x)) = 0.

lim
n—=+o0
Proof. — Clearly limsup,,_, 4+ ﬁ log Q.(f"(x)) < 0. Reversely, x € Reg implies that
limy; - 4 00 ﬁ logp(f™"(x)) =0. By property (4) in the definition of NUH;,

iy 00 7 108 |C (/" (x)) | = 0 hence lim infy— +o0 1y l0g Q= (f"(x)) = 0. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



12 Y. LIMA AND C. MATHEUS

3.1. The map f in Pesin charts

THEOREM 3.3. — The following holds for all ¢ > 0 small enough: If x € NUH, then
fr= \I'j:(lx) o f oW, is well-defined on R[10Q.(x)] and satisfies:

(1) d(fx)o = Cx(f(x) 7! o dfy 0 Cy(x).

(2) fx(v1,v2) = (Av1 + h1(v1,v2), Bvz + ha(v1, v2)) for (vi,v2) € R[10Q.(x)] where:
(a) |A| < e X and |B| > eX, ¢f. Lemma 2.1.
(b) h1(0,0) = h2(0,0) = 0 and Vh1(0,0) = Vh,(0,0) = 0.
© Nhilli+p/2 < eand ||h2|14p/2 <&

2x
(3) ldfello < 24E2.

The norms above are taken in R[10Q.(x)]. A similar statement holds for f;71 := W' o
7o W),

Proof. — The first step is to show that fy : R[10Q.(x)] — R? is well-defined. Using
that Cy (x) is a contraction, Cy (x) R[10Q,(x)] C Bx[20Q(x)]. Since Cy(f(x))~! is globally
defined, it is enough to show that

(f 0exp,)(Bx[200:(X)]) C expy(y) (Brx)[2e(f (X))]).

For small ¢ > 0 we have:

—20Q.(x) < 2t(x) = exp, is well-defined on B,[20Q.(x)]. By (A2), exp, maps
B[200.(x)] diffeomorphically into B(x,40Q.(x)).

—40Q.(x) < 2t(x) = B(x,400.(x)) C B(x,2t(x)). By (AS), f maps B(x,400.(x))
diffeomorphically into B( f(x), 40p(x)™* Q.(x)).

~ 40p(0)74Qu(x) < D = B(f(x),400(0) 7 Qs(x)) C B (f(x), L), By (A2),
expj?(lx) maps B ( f(x), @) diffeomorphically into Byy)[t(f(x))].

Therefore f, : R[10Q.(x)] — R? is a diffeomorphism onto its image.
We check (1)—(2). Property (1) is clear since d(Wx)o = Cy(x) and d(Wr(x))o = Cx(f(x)).

A0
By Lemma 2.1, d(fy)o = |:0 Bi| with |A| < e % and |B| > eX. Define hy, hy

R[10Q:(x)] — R by fx(v1,v2) = (Avi + h1(v1,v2), Bva + ha(vi, v2)). Then (a)~(b) are
automatically satisfied. It remains to prove (c).
Claim. — ||d(fx)w, —d(f)w, | < £llwy — w2 ||#/2 for all wy, wy € R[10Q4(x)].

Before proving the claim, let us show how to conclude (¢). Let & = (hy,h,). If ¢ > O'is
small enough then R[100Q.(x)] C By[1]. Applying the claim with w, = 0, we get ||dhy || <
§||w||ﬁ/2 < . By the mean value inequality, [|2(w)|| < 5llw| < 3, hence ||A]l145/2 < &.

Proof of the claim. — Fori = 1,2, define

Ai = d(expry)(foexp )+ Bi = Afexp )+ Ci = d(€Xpy)uw-
We first estimate || A1 B;Cy — A, B2C5||.
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— By (A2), [|4;]| < 2. By (A2), (A3), (AS):
141 = Aol < d(f(x). 2)"d((f © expy)(w1). (f © expy)(w2))
<2d(x, 2)"d(f(x). 2)*Ilwi — w2l < 2p(x) 72 [|wy — wa .
~ By (A3), || Bi|| < p(x)7“. By (A2) and (A6):
| By — Bzl < Rd(expy (1), expy(w2))? < 28[wy — o’
~ By (A2), ||C;|| < 2. By (A3):
IC1 = Cal < d(x, 2)*lwi — w2 ]| < p(x)™[lwy — wal.

By a crude approximation, we get || A; BiC1 — A2 B, Co|| < 24Rp(x) 3¢ ||w; —w» ||#. Now we
estimate ||d(fx)w, — d(fx)w,|I:

Id(f)wr — A ws || < NCx ()T A1 BiCr — A2 B2 Col[[|Co (x) |
< 2480(x) 72| Co (f (X)) lwy — w2 |8
Since ||w; — wa|| < 40Q.(x), if € > 0 is small enough then
248p(x) [ Co (f () llwy — wa||A7?
< 2008p(x)7>*&> 2| Cy (f(x) 77 p(x)** < 2008677 < e.

This completes the proof of the claim. O
(3) In the proof of Lemma 2.2 we showed that ||d( fx)o| = |B(x)| < Vpl(;e;x < %. By
. 2 2 .
part (2) above, if w € R[100.(x)] then ||d(fo)w]| < el|lw|f/? + lptf)f < 2(;:511)()» since
elwl#/? < 1 < LHX for small e > 0. O

3.2. The overlap condition

We now want to change coordinates from W, to W, when x, y are “sufficiently close”.
Even when x and y are very close, the behavior of C,(x) and C,(y) might differ, so we need
to compare them. We will eventually consider Pesin charts with different domains.

Pesin chart WY, — It is the restriction of W, to R[n], where 0 < 1 < Q(x).

g-overlap. — Two Pesin charts W}, W33 are said to e-overlap if I = e** andif thereis x € M
st.x1,x2 € Dy and d(x1,x2) + [ Cy(x1) = Cy(x2)|| < (mi72)*.

We write W)/! < U2 We claim that if ¢ > 0 is small enough, then ;! < w2
implies that W, (R[100,(x;)]) C Dx, N Dy, (and hence we can apply (A1)-(A3) without
mentioning x). We prove the inclusion for i = 1. Start noting that, since d(xy,x3) <
ed(x2,9), d(x1,2) = d(x2,9) £ d(x1,x2) = (1 £ ¢)d(x3,2). By Lemma 3.1(1),
Wy, (R[10Q(x1)]) C B(x1,40Q(x1)). This ball is contained in Dy, since 400,(x;) <
4063/ p(x1)? < v(x1). We have

Wy (R[10Q(x1)]) C B(x1,4004(x1)) C B(x2,400,(x1) + d(x1, x2)).

Since 400, (x1) +d(x1, x2) < 4038 (14+6)%d(x2, D2)* +d(x2, Z)* < 2t(x;) for small e > 0,
it follows that Wy, (R[10Q.(x1)]) C Dx,. The next proposition shows that e-overlap is strong
enough to guarantee that the Pesin charts are close.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



14 Y. LIMA AND C. MATHEUS

PROPOSITION 3.4. — The following holds for ¢ > 0 small enough. If V3! N W32 then:

(1) CONTROL OF s, u: S(x‘; exmm)* gpg % = etmm)?,

s(xo
(2) CONTROL OF «: % = eEmmn2)?,
(3) OVERLAP: Wy, (R[e™2%1;]) C Wy, (R[n;]) fori,j =1,2.
(4) CHANGE OF COORDINATES: For i,j = 1,2, the map \If;il o Wy, is well-defined

in Rld(x;, 2)%], and ||\Il;i1 o Wy, — Idlli4+p2 < e(n1n2)? where the norm is taken
in R[d(x;, 2)*7].

Proof. — Assume x1,x, € Dy, and let C; = Cy(x;).
By assumption, d(x1,x2) + [|C1 — C2|| < (n172)*. Note that W,, = exp,. o Py, o G;.

(1) We prove the estimate for s (the calculation for u is similar). Since ¢ > 0 is small, it is

enough to prove that ‘jg‘l) 1‘ < &3/B(n1n2)3. We have s(x;)~! = |Cy(x)er]| = [|Gren .
hence [s(x1)~! — s(x2)7!| = |||C1€1|| - ||C2€1||| < |C1 — G|l < (mn2)*. Also s(x1) =

[Cy(xer] ™! < [Cr(x)7H < therefore

2.6 <

S 1| = senlsr) ™ = s0) 7! < e ).

(2) We use the general inequality for an invertible linear transformation L:

1 - | sin Z(Lv, Lw)|
ILINL=H [ sin Z(v, w)]

Apply thisto L = C;C; ', v = Caeq, w = Cye, to get that

(3.1) <L

1 sina(xp)
1 —1y = =
[C1C ICET ] ™ sina(xz)

We have [|C,C5 ! ~1d] < €1~ Co[C5 || < £¥/8 (172)?, and by symmetry [|C2C! ~1d]| <
&3/8 (n1n2)*, therefore [|C1C5 Y |[C2CTH| < [1+ &/ (ina)’]? < €25 Pmm)” < olmm)?,
The left hand side estimate is proved similarly.

(3) We prove that Wy, (Rle™2¢m1]) C Wy, (R[n2]). If v € R[e™¢n;] then [|Cy(x1)v]|
V2e=2ep, < 2¢(x), hence by (A1)

<l GHIeer.

dsas(Cy (x1)v, Cy(x2)v) < 2(d(x1,X2) + [|C1v — Cav|)) < 2(nin2)*.

By (A2), d(Wy, (v), Wy, (1)) < 4(11712)* = Wy, () € B(Wy, (v), 4(51712)*). By Lemma 3.1(1),
B(¥y,(v),4(mn2)*) C Wy, (B) where B C R? is the ball with center v and radius
81C5 M I(n1m2)*, hence it is enough that B C R[nz]. If w € B then [[w]oee < [[V]loo +
811C [(nin2)* < (e + 8&%/B)ny < 1y for & > 0 small enough.

(4) The proof that \11;21 oW, is well-defined in R[d(x1, Z)?] is similar to the proof of (3). The
only difference is in the last estimate: if ¢ > 0 is small enough then for w € B it holds

lwl < ol + 81C5 M I(mn2)* < V2d(x1. 2)* + 8(mn2)?
< [V2(1 + &)* + 86¥P1d (x2, 2)° < 2t(xy).
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Now:

Wl oW, —Id = C; ' oexpy) oexp,, o Cy —Id
= [C2_1 o sz,x] ° [exp;zl o expxl - PX],xz] o [Px,x1 o Cl] + CZ_I(CI - CZ)
=[C;" o Py, x] o [expy, — Py;.xy 0expy,] 0 Wy + C; ' (C1 — Cy).

We calculate the C'+A/2 norm of [exp;! — Py, x, 0exp; ' ]o Wy, in the domain R[d(x1, 2)].
By Lemma 3.1(1), ||d Wy, [lo <2 and

Holg /> (d Wy,) < d(x1, 2)"%4d(x1, 2)**1 P2 = 4d(x,, 2)*1~P) < 4.

Call © := exp;) — Py, x, o expy, . For & > 0 small enough, inside Dy, we have:

— By (A2), [O@)| = dsas(expy) (v).expy! (v)) < 2d(x1.x2) < 2e%P(ninp)® thus
1© 0 Wy, llo < e¥B(n11m2)3.

~ By (A3), [|[dOy ]| = [[t(x2.v) — T(x1,0)|| < d(x1,2)7%d(x1,x2) < &3/B(n1n2)>. Hence
1d®llo < &3/B(n112)® and [|d(© o Wy)llo < 263B (n1n2)3 < €28 (n1n2)3.

- By (A4),

1d©, —dOy || = [I[t(x2.v) — T(x1, )] — [t (2, w) — T(x1, )]
<d(x1,2)%d(x1,x2)||lv — w||

hence Lip(d®) < d(x1, Z) %d(x1, x2).
— Using that

Holg»(d(®; 0 ©,)) < [|dO;[oHolg/2(dO2) + Lip(d©))||d©,||24d (x1, 2)2¢1=A/2)
for ®, with domain R[d(x1, 2)¢], we get that

Holg2[d(© o ¥y,)] < [ dO|oHolg/2(d Wy, ) + Lip(d®)||d Wy, |24d(x;, 2)?*1 A/
< 43P (nin2)® + d(x1, 2)7d(x1, x2)16d (x1, 2)*417F/2)
< 4838 (n112)% + 16e%P (nim2)® < 2B (mima).

This implies that [|© o Wy, ||154/2 < 3628 (1112)3, hence
1C5" 0 Pyx 0 ® 0 Wy, 14872 < 1G5 13622 (112)* < 362/ (311m2)2.

Thus |V} o Wy, — Idlligpe < 3e2P(mm2)? + 1G5 Imm2)* < 3e*P(mn2)? +

3B (in2)? < 46¥/P (n1n2)? < e(mn2)?. O

3.3. The map f,,

Let x,y € NUH,, and assume that \I/jﬁ(x) N ‘-IJ;/. We want to change Wy () by ¥, in f
and obtain a result similar to Theorem 3.3.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



16 Y. LIMA AND C. MATHEUS
& ’
The maps f.y and f; ). — If lIJ]'Z(x) ~ W], define the map fr, = W,' o f o W, If
&€ / _ _ _
vl ‘If;_l(y), define 1 :=W;lo fTloW,.
Any meaningful estimate of the regularity of fx , in the C 1+8/2 norm cannot be better
than that of Theorem 3.3. In order to keep estimates of size &, we consider the C'*#/3 norm.

THEOREM 3.5. — The following holds for all ¢ > 0 small enough: If x,y € NUH, and
\IJ}Z(X) X \IJ;'/, then fy , is well-defined in R[100.(x)] and can be written as fx ,(vi,v2) =
(Avy + hi(v1,v2), Buy + ha(v1, v2)) where:

(a) |A] < e X, |B| > eX, ¢f. Lemma 2.1.
(®) |k (0) < en, |VRi(0)]| < enP/3, and Holg/3(Vh;) < & where the norm is taken
in R[10Q:(x)].

Il < xp;z’

~1(y) then a similar statement holds for fx_’yl,

Proof. — We write fx,y = (¥}, Lo Ws(y)) o fx =: go fr and see it as a small perturbation
of f%. By Theorem 3.3(2-3),
2
£e(0) =0, [[d(fo)llo < 2EE [ld(fo)y — d(fowll < ellv —w]B/?
forv,w € R[10Q,(x)], where the C° norm is taken in R[10Q,(x)], and by Proposition 3.4(4)
we have
lg = 1d]| < (). lld(g =1d)lo < (). lldgw — dgwll < e(pn)? v —w]|P/?
for v, w € R[d(f(x), 2)**], where the C° norm is taken in this same domain.
We first prove that fy , is well-defined in R[100,(x)]. We have
Sx(R[10Q6(x)]) C B(0,40(1 + €*¥)p(x) ™ Qe (x)) C R[d(f(x), 2)*]
since 40(1 + e2X)p(x) "2 Q. (x) < 40(1 4+ e2X)3/Bd(f(x), 2)%@ < d(f(x), D)** fore > 0
small enough. By Proposition 3.4(4), fx,, is well-defined.
Now we prove (b). Let & := (h1,h2) = g o fx —d(fx)o. Then [[h(0)]| = [lg(0)]| < e(nn)* < en
and for ¢ > 0 small enough:
IVRO)|| < [ldgo o d(fx)o — d(fx)oll = [ld(g —Id)olllld(fx)oll
< e(n)?2(1 + 2)p(x)™* < enn'26¥/B (1 4 X)) < enP/3.

Finally, since fx(R[10Q:(x)]) C R[d(f(x),2)?*],if & > 0 is small enough then for all
v, w € R[100.(x)] it holds:

ldhy — dhy || = ldgs, @) © d(fo)v = dgr.w) © d(fo)w
< ldgsw) — dgre Aol + g s 1A (fo)v — d(fo)wll
< eIl fx ) = fr)IIP2ld(fo)llo + elldgllollv — w]/?
< )P ld(fo)llg TP + 40e|dgllo Qe (x)P/®) v — w] P/
< @7 (14 e2)2p(x) 72 4 800, (x)P/O)e[lv — w]|?/?
< (4e%B(1 + €20)? + 80e'/?)e||v — w||B/? < &|lv — w|B/3. O
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4. Double charts and the graph transform method

We now define e-double charts. For ¢ > 0 small, define 6, := e~ *" € I, where n is the
unique positive integer s.t. e ¢ < & < ¢~¢®~1 In particular, §, < e.

e-double chart. — An e-double chart is a pair of Pesin charts W2 7" = (W2’ WP") where
ps, p¥ € I, with 0 < pS, p* < §,0.(x).

The parameters p*/p* control the local forward/backward hyperbolicity at x. They are
a way of separating the future and past dynamics. This will be better explained below, when
we introduce the parameters g., g5, g .

€ . S u S u
Edgev — w. — Given e-double chartsv = W% ¥ andw = ¥ 7, we draw an edge from v

to w if the following conditions are satisfied:
u 8

q° NG q° A" DPSAD pSApY
(GPO1) \Ilf( y & \Ily d\IJf_,(y) ~ Wy .

(GPO2) p* =min{e®q",8:Qs(x)} and ¢* = min{e®p*,8: 0c(y)}.

(GPO1) allows to pass from an e-double chart at x to an e-double chart at y and vice-
versa. (GPO2) is a greedy recursion that implies that the local hyperbolicity parameters are
the largest as possible. It implies that 2 Yﬁ”u = e** (GPO2) will be crucial in the proof of
the inverse theorem (Theorem 6.1).

e-generalized pseudo-orbit (e-gpo). — An e-generalized pseudo-orbit (e-gpo) is a sequence
v = {vy }nez of e-double charts s.t. v, 5 vy+1 foralln € Z.

4.1. The parameters g.(x), gl (x), g¥(x)

A transition between Pesin charts only makes sense if their sizes 1, n’ satisfy % = e**

Qs(f(x)) +e

(see Theorem 3.5). Since the ratio , we introduce the

parameter ¢.(x) below.

might be different from e

Parameter qe(x). — For x € NUH}, let g¢(x) := & min{e®™ Q. (f"(x)) :n € Z}.
The above minimum is the greedy way of defining values in /., smaller than £ Q. with the
required regularity property.

LEMMA 4.1. — Forall x e NUH}, 0 < g:(x) < £Q¢(x) and ng(f(;);)) =e*

Proof. — By Lemma 3.2, inf{e" Q,(f"(x)) : n € Z} > 0. Since zero is the only accu-
mulation point of I, ¢g.(x) is well-defined and positive. It is clear that g.(x) < §:Q.(x) <
£Q¢(x). Since

min{e®™ Q. ("1 (x)) 1 n € Z} < e min{e? T Q. (f" T (x)) :n € Z},
we have ¢.(f(x)) < e®q.(x). Reversely,

et min{e*" QO (f" ! (x)) 11 € Z} < min{e?" Q (£ (x)) 11 € Z},
therefore e 6¢q.(x) < q.(f(x)). O

We want to separate the dependence of g.(x) on the future from its dependence on the
past, hence we define the one-sided versions of g.(x).
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Parameters q3(x),q"(x). — For x € NUH}, define
g5 (x) := 8 min{e" Qo (f" (x)) 1 n = 0}
g (x) := 8 min{e*" Q. (f" (x)) : n < 0}.
LEmMMA 4.2. — For all x € NUH), the following holds:
(1) GooD DEFINITION: 0 < g3 (x), g¥(x) < €Q4(x) and g} (x) A qZ(x) = qo(x).
(2) GREEDY ALGORITHM: For alln € Z it holds
q; (f"(x)) = min{e®q; ("1 (x)), §: Q& (f" (x))}
q¢ (f"(x)) = min{e’q; (f"71(x)), 8 Qe(f" (x))}.
Proof. — As in the proof of Lemma 4.1, ¢5(x) and ¢g¥(x) are well-defined and positive,

and by definition ¢J(x) A ¢¥ (x) = g.(x). This proves (1). We prove the first equality in (2):
for a fixed n € Z we have

@S (f"(x)) = 8 min{e®™ QO (f™(f™(x))) : m = 0}
= min{8, min{e?™ Q,(f™ " (x)) :m > 1},8,0:(f"(x))}
= min{e®S; min{ e Qc (f (f"F (x))) 1 m = 0},8:Q(f"(x))}
= min{e®qs (f"T1(x)), 8: Qe (f"(x))}.

The second equality is proved similarly. O

The set NUH%. — Itis the set of x € NUH; st.
limsup ¢.(f*(x)) > 0 and limsup g.(f"(x)) > 0.

n—-+o0 n—>—00

4.2. The graph transform method
Let v = W2 " be an e-double chart.

Admissible manifolds. — We define an s-admissible manifold at v as a set of the form
W {(t, F(t)) : |t] < p*} where F : [-p*, p’] - Risa C'*#/3 function s.t.:
(AM1) [F(0)] < 1073(p* A p*).
(AM2) |F'(0)| < 3(p* A p*)P/3.
(AM3) |[F'|lo + Holg3(F’) < 1 where the norms are taken in [-p®, p*].
Similarly, a u-admissible manifold at v is a set of the form W, {(G(¢),t) : |[t| < p"} where
G : [-p* p*] — Risa C'*A/3 function satisfying (AM1)-(AM3), where the norms are
taken in [—p¥, p¥].

The functions F, G are called the representing functions. We let .#°(v) (resp. #*(v))
denote the set of all s-admissible (resp. u-admissible) manifolds at v.

LeEmMA 4.3. — The following holds for ¢ > 0 small enough. If v = \Ilfs’pu is an e-double
chart, then for every V* € #°(v) and V¥ € 4" (v) it holds:
(1) VS and V¥ intersect at a single point P = W, (w), and |w|eo < 1072(p* A p¥).
(2) LWV = o E AP and | cos Z(V0, VM) — cosa(x)| < 2(p* A p)PI4, where
Z(V*S, V") = angle of intersection of the tangents to V* and V* at P.
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When M is compact and f is a C'*# diffeomorphism, this is [21, Prop. 4.11]. The same
proof works almost verbatim, see the appendix for the necessary adaptations.

Letv = WPy = ‘-I-';’s’qu be e-double charts with v — w. We now define the graph

transforms: these are two maps that work in different directions of the edge v 5 w, one
of them sends u-admissible manifolds at v to u-admissible manifolds at w, the other sends
s-admissible manifolds at w to s-admissible manifolds at v.
Graph transforms 7, , and 7 ,. — The graph transform F; ,, : M*(w) — #*(v) is the
map that sends an s-admissible manifold at w with representing function F : [—¢®,¢°] - R
to the unique s-admissible manifold at v with representing function G : [-p*, p°] — R
st. {(t,G(@)) : |t]| < p*} C fxfyl{(t, F(t)) : |t|] < ¢°}. Similarly, the graph transform
Tt A (V) — A¥(w) is the map sending a u-admissible manifold at v with representing
function F : [—p¥, p*] — R to the unique u-admissible manifold at w with representing
function G : [—g¥*,q%] = Rs.t. {(G(¢).1) : |t| < g%} C fa y{(F(t), 1) : |t| < p*}.

In other words, the representing functions of s, u-admissible manifolds change by the
application of fx‘,;, [x,y respectively. For Vi, V, € .#*(v) with representing functions Fi, F>
and for i > 0, define dqi (V1,V2) = ||F1 — F2|; where the norm is taken in [-p*, p®]. A
similar definition holds in .Z™* (v).

ProPOSITION 4.4. — The following holds for ¢ > 0 small enough. If v 5w then Fywand
F » are well-defined. Furthermore, if V1, Va € ™ (v) then:
(1) deo(FE, (V1) FL,(V2) < e 2dco (V1L Va).
() dei(FE, (), FL,(V2) < e 2(dei (Vi, Va) + deo(Vi, Va)P3).
(3) f(V;) intersects every element of . °(w) at exactly one point.

An analogous statement holds for 7 .

When M is compact and f is a C'*# diffeomorphism, this is [21, Prop. 4.12 and 4.14].
The proof in our case requires some minor changes, see Appendix B.

4.3. Stable and unstable manifolds of e-gpo’s

+

Call a sequence v™ = {v, }n>0 @ positive e-gpo if v, 5 Up41 for alln > 0. Similarly, a

negative e-gpo is a sequence v~ = {Vp }n<o S-t. Up—1 5 v, foralln < 0.
Stable/unstable manifold of positive/negative e-gpo. — The stable manifold of a positive e-gpo
E+ = {Un }n>0 is

Vs w+] = nlirrolo(ylfo,vl ©r-0 Lg.gn—zﬂ)n—l ° g.sn—lsvn)(vn)
for some (any) choice of (V)0 With V,, € .#°(v,). The unstable manifold of a negative
e-gpo v~ = {VUp fn<o I8

Vu[g_] = nErPoo(g[g—lsvo o-nr 0 tg\;ln-ﬂsvn+2 © <gflwfnsvn-f-l)(vn)

for some (any) choice of (V,)n<o With V,, € .#™(vy,).
For an e-gpo v = {vp }nez, let VE[v] := VS [{v, }uso] and V¥[v] := V¥[{vn }n<o].

ProrosITION 4.5. — The following holds for all ¢ > 0 small enough.
(1) ApwmissiBILITY: V3 [vt], V¥[v™] are well-defined admissible manifolds at vy.
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(2) INVARIANCE:
SV [{ntnz0]) €V [{vnluz1] and £ (V¥ [{vn}nzo]) C V¥ [{Vn }nz—1].
(3) SHADOWING: If vt = {\Il,ff”p% bnso0 then
V™l = {x € Wxo(R[pg)) : [ (x) € W, (R[10Q¢(xn)]), V1 > 0}.
An analogous statement holds for V¥[v~].
(4) HyperBoLICITY: If x,y € VE[vt] then d(f"(x), f*(»)) — 0,if x,y € V¥[v™] then
d(f"(x), f*(»)) — 0, and the rates are exponential.

(5) HOLDER PROPERTY: The map vt w V*[v'1] is Hélder continuous, i.e., there exists K > 0
and O < 1s.t. forall N > 0, if v™, w™ are positive e-gpo’s with v, = wy, forn =0,...,N
then dci (VE[u™], VE[w ™)) < KON. The same holds for the map v~ + V*[v7].

When M is compact and f is a C'*# diffeomorphism, this is [21, Prop. 4.15]. The same
proof works in our case: it uses the hyperbolicity of f , (Theorem 3.5), and the contracting
properties of the graph transforms (Proposition 4.4). Proposition 4.5 ensures that every e-gpo
is associated to a unique point.

Shadowing. — We say that an e-gpo {\Ifﬁf’p i tnez shadows a point x € M when f"(x) €
Wy, (R[pS A p¥]) foralln € Z.

LEMMA 4.6. — Every e-gpo shadows a unique point.

Proof. — The proof is identical to the proof of [18, Theorem 4.2], so we just mention the

s u
main steps. Let v = {v,}nez = {¥27"P"}, <7 be an e-gpo.

— By Proposition 4.5(3), any point shadowed by v must lie in V¥ [{v, }n>0] N V*[{vn <ol

— The definition of shadowing is equivalent to the following weaker definition: v shadows
x € M when f"(x) € Wy, (R[10Q.(x,)]) for all n € Z. The definitions are equivalent
because of the hyperbolicity of the maps ij,i,x,, " (see Thm. 3.5).

— The weaker definition and Proposition 4.5(2) imply that v shadows V*[{v,}s>0] N
V¥ [{vninzol: O

5. Coarse graining

We now pass to a countable set of e-double charts that define a topological Markov shift
that shadows all relevant orbits.

THEOREM 5.1. — For all ¢ > 0 sufficiently small, there exists a countable family <
of e-double charts with the following properties:
(1) DISCRETENESS. For allt > 0, the set {\Ilfs’pu e o 1 pS, p* >t} is finite.
(2) SufrrICIENCY: If x € NUH; then there is a sequence v € /" that shadows x.
(3) RELEVANCE: For all v € < there is an e-gpo v € </ with vy = v that shadows a point

in NUH;,.

Parts (1) and (3) will be crucial to prove the inverse theorem (Theorem 6.1). Part (2)
says that the e-gpo’s in &7 shadow a.e. point with respect to every f-adapted y-hyperbolic
measure, see Lemma 2.2.
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REMARK 5.2. — In part (2) we only assume that x € NUH?, while [18, 21] require the
stronger assumption x € NUH’;. The reason of the improvement is that here g, (x) is defined
as a minimum instead of a sum, and hence Lemma 4.2(1) holds.

Proof. — When M is compact and f is a diffeomorphism, the above statement is conse-
quence of Propositions 3.5, 4.5 and Lemmas 4.6, 4.7 of [21]. When M is compact (with
boundary) and f is a local diffeomorphism with bounded derivatives, this is Proposition 4.3
of [18]. We follow the same strategy, adapted to our context.

Fort > 0,let M; = {x € M : d(x,2) > t}. Since M has finite diameter (remember we
are even assuming it is smaller than one), each M, is precompact ®. Let Ny = N U {0}. Fix
a countable open cover & = {D; };en, of M\ Z s.t.:

— D; := D;;, = B(z;,2¢(z;)) for some z; € M.
— Foreveryt > 0,{D € & : DN M; # 0} is finite.

Let X := M? x GL(2,R)? x (0,1]. For x € NUH}, let '(x) = (x,C, Q) € X with

x= (710 x, f(0), €= (Cx(fTH(X), Cy(x), Cx(f (X)), @ = Qe(x).
LetY ={I'(x):x € NUH; }. We want to construct a countable dense subset of Y. Since the
maps x = C,(x), Qg(x) are usually just measurable, we apply a precompactness argument.
For each triple of vectors k = (k—1,ko,k1), £ = ({—1,%0,41),a = (a—1,a9,a;1) € NS and
m € Ny, define
ekl <d(fi(x),2)<e i, —1<i<1
el < IC,(ffe) I < bt —1<i <1

fi(x) € Dy, -1<i<l1

e < Qp(x) < e

Yietam: =11T(x)eY:

Claiml. - Y = U&l-QGNS Yk ¢.a,m, and each Y ¢ 4 m is precompact in X .

meN(

Proof of claim 1. — The first statement is clear. We focus on the second. Fix k,£,a € N,
m € Ny. Take I'(x) € Y ¢,4,m- Then

Xe€M, k-1 XM, —kg—1t X M,—x,-1,

a precompact subset of M3. For |i| < 1, C, (f%(x)) is an element of GL(2, R) with norm
< 1 and inverse norm < e‘*! hence it belongs to a compact subset of GL(2,R). This
guarantees that C belongs to a compact subset of GL(2,R)3. Also, 0 € [e™™ !,1], a
compact subinterval of (0, 1]. Since the product of precompact sets is prgompact, the claim
is proved. O

Let j > 0. By claim 1, there exists a finite set Yg g am(j) C Ygram st. for every
I'(x) € Yk g,a,m there exists I'(y) € Yg g.am(j) s.t.:

@ A1), £1 ) + [Co (1)) = Co(fT ()] < e =80+ for —1 < i < 1.
(b) Sel) = e*el3,

) M; might not be compact, since M might have boundaries.
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The alphabet . — Let <f be the countable family of W2 " s.t.:
(CG1) T(x) € Ykp.am(j) for some (k,€,a,m,j) € N3 x N3 x N3 x Ny x Np.
(CG2) 0 < p*, p* < 6:Q¢(x) and p*, p* € I,.
(CG3) e /2 < p*Ap* <e /12,
Proof of discreteness. — We will use the following fact, whose proof is in the appendix:
(5.1) IC(STHENTH < 2p(x) 722 (1 + X p(x) ™) [[C ()7l
Fixt > 0, and let U2"?" ¢ o with pS, p* > t. Note that p(x) > p(x)2% > Q4(x) >
pS.p¥ > 1. If T (x) € Y p.a.m(j) then:
— Finiteness of k: for |i| < 1, e7% > d(f(x),2) > p(x) > t, hence k; < |logt]|.
— Finiteness of £: fori = 0,1, e% < [|C,(f (x))7'| < Qe(x)™! < ¢!, hence ¢; < |logt].
By inequality (5.1) above,
T <G (TN T < 267N e < deXi T3,
hence {_; < log4 + y + 3|logt| =: Ty, which is bigger than |log¢|.
Finiteness of a: f#(x) € Dy, N M, hence Dy, belongstotheset {D € & : DN M; # @}.
— Finiteness of m: e™ > Q.(x) > ¢, hence m < |log¢|.
— Finiteness of j: ¢t < p* A p* < e /%2 hence j < |logt| + 2.
— Finiteness of (p*, p*): t < p*, p*, hence #{(p*, p*) : p*.p* > t} < #(I. N (t,1])? is
finite.

The first five items above give that, fora € NS andt > 0,

[log?|1+2 [|logtl Ty

Z Yo > #etam())

m=0 -—l=<i<l
ki £;=0

WP e of st pS, pt >t
I'(x): )
and f*(x) € Dg;,|i| =1

is the finite sum of finite terms, hence finite. Together with the last item above, we conclude
that
[logt[1+2 [|logt|1 Ty

#{\yfﬂp”e%;ps,p”>t}§ Z S0 #pam()

m=0 -—1<i<l

¢t =0

x(#{DeP:DNM #0})° x #(UI: N (1 1])*
is finite. This proves the discreteness of .o7. 0
Proof of sufficiency. — Let x € NUH}. Take (ki)iez. (bi)iez. (mi)iez. (ai)iez. (Ji)iez st.:
d(f'(x).2) € e T C(fT )T € e e,
Qc(fi(x)) €[e™i ™ e™™i), fi(x) € Da;, qe(f7(x)) € [e7i71, 7 Ii T,
For n € Z, define
K™ = (kn_y. kn. kni1) €7 = (ly_1. by bny1). @™ = (an—1.an.ans1).

Then I'(f"(x)) € Yk(n),ﬁ(") . Take T'(x,) € Yk("),ﬁ(n),g("),mn (Jn) st

,a™ my

(@n) d(f (S (X)), [ (xn)) + ||Cx(f/i(\ﬁ(x))) - men))ll < e 8Unt2) for |i| < 1.
(by) Qs(f x) _ — ote/3

xn)
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Define p$ = 8, min{e?*1 Q. (x %) : k > 0} and p* = 8, min{e®* Q¢ (x,4%) : k < 0}. We
claim that {\sz”p" Ynez is an e-gpo in 277 that shadows x.

Claim 2. — WEmPhi ¢ of foralln € Z.

(CG1) By definition, I'(x,) € Yion g g gy, (n)-

(CG2) By (by), inf{e®® 0 (x,4x) : k > 0} = e/ 3inf{ef*IQ, (f"H*(x)) : k > 0}is
positive. Since the only accumulation point of I, is zero, it follows that p3 ., p» are well-defined
and positive. The other conditions are clear from the definition.

(CG3) Again by (b,), we have
min{e®*1Q, (x,1x) 1 k = 0} = e**/3 min{e* Q. (f"T*(x)) : k > 0}

= ¢**/3. By Lemma 4.2(1), p A p¥ =

__Pn_ _ ,%e/3 _ Pn
hence T = € , and analogously PR ELIE)

e=3s(f"(x)) € [ 2, eI t2),

Claim 3. — WPnPh & gPntvPitt goail e 7
aim 3. — Wy o oralln € Z.

(GPO1) We have f(xn),Xn+1 € Dag,,,,and by (a,) withi = 1 and (a,+1) withi = 0, we
have

(S on)s Xnt1) + 1€ (fin)) = CyGongn)|
< d(f"), L) + 1CH(F7 X)) = Co(f )]

+ A" ), Xng1) + | Co(f () = Cplonsn) |
< e B0 4 e TBUF < 078 (g (f7(0)® + e (f (1))

!

< e 81+ %) e (/" (x)® < e BT 8 (ps g A PEL)®
n

< (Ppt1 A PZ+1)87

! " .
where in < we used Lemma 4.1 and in < we used that e 8+3¢/3(1 4 ¢8¢) < 1 when ¢ > 0 is
s u s u
sufficiently small. This proves that \IJ;E’;‘)AP"“ X IIIQ’LIAP"“
paAPy B\ PaP
fﬁl(xn-H) ~ \Ijxn
(GPO2) The very definitions of p;, p, guarantee that p, = min{e®p; ,;,8:Q:(x,)} and

PZH = min{espz 80 (Xny1) )

. Similarly, we prove that

Claim 4. - {\Ilf,f"p% tnez shadows x.
By (a,) with i = 0, we have \Iljfjsfal)’% 2 Wfﬁw " , hence by Proposition 3.4(3) we have
F7(x) = Upn (0) € Wy, (R[pj A p1). thus { U207}, 5 shadows x.

This concludes the proof of sufficiency. O

Proof of relevance. — The alphabet &/ might not a priori satisfy the relevance condition,
but we can easily reduce it to a sub-alphabet &’ satisfying (1)—~(3). Call v € & relevant if
there is v € &% with vy = v s.t. v shadows a point in NUH;. Since NUH;‘C is f-invariant,
every v; is relevant. Then &7/ = {v € & : v isrelevant} is discrete because &/’ C &, it is
sufficient and relevant by definition. O
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Let X be the TMS associated to the graph with vertex set <7 given by Theorem 5.1 and
edges v % w. An element of ¥ is an e-gpo, hence we define 7 : ¥ — M by

{7[{vn}nezl} := V[{vn Jnzol 0 V¥ [{vn }n<o]-

Here are the main properties of the triple (X, o, 7).

PROPOSITION 5.3. — The following holds for all ¢ > 0 small enough.

(1) Each v € < has finite ingoing and outgoing degree, hence X is locally compact.
(2) 7w : X — M is Holder continuous.

(3) moo = foum.

@4 n[Z] > NUH;.

Part (1) follows from (GPO?2), part (2) follows from Proposition 4.4, part (3) is obvious,
and part (4) follows from Theorem 5.1(2). It is important noting that (X, 0, ) does not
satisfy Theorem 1.3, since 7 might be (and usually is) infinite-to-one. We use 7 to induce
a locally finite cover of NUH¥, which will then be refined to a cover of NUH? by pairwise
disjoint sets that will lead to the proof of Theorem 1.3.

6. The inverse problem

Our goal is to analyze when 7 loses injectivity. More specifically, given that 7 (v) = 7 (w)
we want to compare v, and w,, and show that they are uniquely defined “up to bounded
error”. We do this under the additional assumption that v, w € £#. Remind that ¥ is the
recurrent set of X:

" v, = v for infinitely many n > 0
YTi=qveX:dv,we Vst ] ) .
v, = w for infinitely many n < 0

The main result is the following.

THEOREM 6.1 (Inverse theorem). — The following holds for e > 0 small enough. If

S u A u ") u S u
(PP o AW, 0 € X% satisfy w[{ Ve Ven] = n[{ VI V) then:

(1) d(xn, yn) <25~ " max{p; A Py gy A gy }-
(2) Snelen) — oEVE gpd | cosa(xy) — cosa(yn)| < Ve

sina(yn) —
sS(xn) _ ,+4 ulxn) _ ,+4
(3)%)—6 */;andwz)—e Ve,
Qelxn) _ ,+3/e
@ Grom = V5

®) @ :ei%and”—g :ei%.
qn qn

©) (\IJ;”1 oW, W) = (—1)"v + 6, + Ay (v) for v € R[100,(x,)], where o, € {0,1}, 6, isa
vector with ||8,|| < 1071(g5 Aq¥) and Ay, is avector field s.t. Ap(0) = Oand ||d Ayllo < ¥/¢

on R[10Q.(xy)].

The difference from Theorem 6.1 to [21, Thm 5.2]is that the estimate on our part (6) holds
only in the smaller rectangle R[10Q.(x,)]. Part (1) is proved as in [21, Prop. 5.3]. Here is one
of its consequences. We have d (x,, yn) < 25~ 1 (pSApY+qingY) < e[d(xn, 2)° +d(yn, 2)%),
hence

d(xn. 2) = d(yn. 7) £ d(xn. yn) = d(yn. 2) £ e[d(xpn, Z)* + d(yn. 2)°].
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These estimates have two consequences. The first is that
1—¢ - d(xy, D) - 1+e¢

6.1
1) l4+e = dyn,2) ~ 1—¢
and so, for ¢ > 0 is sufficiently small, it holds % < Zg:ggz < 2. The second consequence is

that x, € D), and y, € Dy,, since
d(xn, yn) < &ld(xn, 2)* + d(yn, 2)°] < 3emin{d (xn, 2)*,d(yn. 2)*} < min{r(x),v(yn)}.
Therefore we can take parallel transport with respect to either x,, or y,.

The proofs of parts (2)—(6) use, as in [21], some auxiliary facts about admissible manifolds.
Letvt = {v, }n>0 be a positive e-gpo with v, = \Iff,f”p%. By Proposition 4.5, V*[v "] has the
following property: f"(VS[v*t]) C V¥[{vk k=n] C Wy, (R[10Q(x,)]). This motivates the
definition of staying in windows as in [21]: given an e-double chart, say that V° € .#° (v) stays
in windows if there exists a positive e-gpo v+ with vy = v and s-admissible manifolds W
M (vy) st f1(VS) C W, foralln > 0. In particular, every V*[v*] stays in windows, and
the reverse statement is also true. An analogous definition holds for #-admissible manifolds.
Given V* € #°[v]and x € V?, let e; € T, M denote the positively oriented vector tangent
to V* at x.

PROPOSITION 6.2. — The following holds for all ¢ > 0 small enough.
(1) If VS € 5|92 P"| stays in windows then for all y,z € VS andn > 0:
@ d(f"(y). f"(2)) < 6p*e” 2",
(0) lldfyesll < 6| Cy(x) ™ [le=2m.
(© |loglldfyes|| —logldffesll| < Qe(x)P/*.
Q) IfVS € (V2P US € s [WL 9" stay in windows then either VS C US or US C V.

Analogous statements hold for u-admissible manifolds that stay in windows.

When M is compact and f isa C'*# diffeomorphism, this is [21, Prop. 6.3 and 6.4]. The
only adaptation we need to make is in part (1)(c), see Appendix B. Because of part (1)(c), if
v,z € VS then % = eiQf(x)ﬁM, therefore we can define s(V?*) := s(¥, (0, F(0))), where
F is the representing function of V*. Note that s(V*) might be infinite, in which case s(y) is
infinite for all y € V*. A similar definition holds for u-admissible manifolds that stay in
windows.

The proof of part (2) of Theorem 6.1 is analogous to [21, Prop. 6.5]. In the sequel we adapt
the methods of [21] to prove parts (3)—(6).

6.1. Control of s(x,) and u(x,)

As in [21], the hyperbolicity of f induces an improvement for s and u. Because of
symmetry, we only state the result for s.

LEMMA 6.3 (Improvement lemma). — The following holds for all ¢ > 0 small enough.
Letv < w withv = W2 P = \Dg‘v’qu, and assume V* € 4 °[w) stays in windows.
(1) If s(V?) < oo then s[7; ,,(V*)] < oo.

(2) For & > /s, if s(V®) < o0 and % = ™ then % = eE-2:(0PY)

Note that the ratio improves.
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Proof. — When M is compact and f is a C'*# diffeomorphism, this is [21, Lemma 7.2],
and the proof of part (1) is identical. Part (2) requires some finer estimates.

Let F, G be the representing functions of V¥, .77  (V¥), and let ¢ := Wy,(0, F(0)), p :=

S(FwVI) _ s(p) _ __s(p) s(f7@) | s o) .
Wz (0.G(0). Then ==5657—= = {45 = 7=1iqp " s7Ton 5@ - We have:
- p.f g € Zy w(V?), hence Proposition 6.2(1)(c) implies % = QWP

~ Since (p*Ap*)*(¢°Aq*)® < Qe(x)P/4, Proposition 3.4(1) implies L O = o0,

Thus it is enough to show that % = ¢TE-32:"" We show one side of the

inequality (the other is similar). Note that this is the term that gives the improvement. As
in [21, pp. 375], we have

—1(,7)2 2+e26F2Xs(y)?|ldfes_y, |17
TG < ( e T & ) exp (21 logldfe} 1| ~log ldfe51, ).
JTH

1 =1I

We estimate I as in [21, pp. 376]: 1 < e%-72:(0%* Therefore it suffices to show that I <
B/4 _ _ _ _
QW7 Since ||dfes Il = ldf T'ei| 7N 1L = exp(2|log|df ey | — loglldf e}l

hence by the claim in the proof of Proposition 6.2 (Appendix B):
(6.2) log(ID) < 28p(»)**[d(¢. )’ + llej — Pyq4e5 Il

Since g = ¥,(0,G(0)) and y = W, (0,0), Lemma 3.1(1) implies that d(g, y) < 2|G(0)| <
50071 (g° A g*) < 5007 1e?(p* A pY), therefore d(q,y) < Qg(x), Qs(y). Hence for small
e>0:

28p(y)d(q.y)P < 28p(3) 2 Qe ()PP Q)P < 28p(1) 7 Qe (1)P 20 Qe ()P

< 286" 0.(x0)P* < 3 0.(0)P%.

To bound the second term of (6.2), we first estimate sin Z(ey, Py g€3). Since e} is the unitary
vector in the direction of d (W, )o [(1)] = d(expy)ooCy(y) [(1)} and e, is the unitary vector in the

. . 1 1
direction of d(¥y)(0,G(0)) [Gl(o)] = d(exp,) c, (y)[G(()O)] o Cy(y) [G/(O)} the angles they define

are the same. In other words, if
A = d(expy) & o). B = dexBy)g, i n 10 o001 = [o] 02 = [ o)
then sin Z(ej, Py 4e3) = sin Z(Avy, Bvy). Using 3.1) with L = 4, v = v;, w = A7 Bu,,
we get
| sin Z(Avy, Bva)| < [A[IIA7 || sin Z(v1, A7' Buy)|
< ICx ()Ml sin Z(vy. v2)| 4 | sin Z(va, A~ Buy)|l.

Be
We have | sin Z(v1,v2)| < |G'(0)] < 2(¢* A g*)P/3 < - (p* A p*)P/3, therefore for small

e > 0t holds | sin Z(v1, v2)| < Qe(x)P/3, Q:(»)?/3.
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In particular | sin Z(vy, v2)| < Q.(¥)/12Q,(x)B/*. Also, by (A3):

1478 —1d|l < A7 [[I4 = B < IC,(») 7

‘d(eXpy)o - d(expy)

CX(y)[G(()O)]
< 1C.(v)1 -a1G(0)| < 1C. ()1 —a 1-8 B/4
=GO OGO = [[C () o)™ Qe(y) ™ * Qe(x)

_1g
< Q.07 Qe()P* < 10100t < 1.
This implies that v,, A~! Bv, are almost unitary vectors, therefore
|sin Z(va, AT By)| < 2|lva — A7 Bua|| < 4[| A7'B —1d|| < Q:(»)P/120,(x)P/*,

thus | sin Z(e5, Py.ge$)| < 21C, ()M Qe(»)P/12 0, (x)P/4. Since lle3 ]| = || Py gesll = 1 and
the angle between them is small,

le — Pygeyll < 2|sin Z(eS, Py ge)| < 41C, ()M 1Qe (3?12 Qe (x)P7*.
The conclusion is that for small ¢ > 0:

28p(y) 2% |e5 — Pygesll < BRIC, () lp(3) 2 Qe(»)P/12 0 (x)P*
< 8RIC, () *0(») 72 Qe(»)P/20 Qe (x)P/*
<8R Q. (x)P1* < §0.(0)P/*.

Hence (6.2) implies that IT < ¢2e@®*"*, 0
We are now ready to prove part (3) of Theorem 6.1.

PROPOSITION 6.4. — The following holds for allvs > 0 small enough. If {‘Ilf,f”p% Ynez,
(U9 ep € S satisfy a[{ VP }iez] = w[{ WS ) ez] then for all n € Z:

s(xn) _ ,+4/e ulxp) _ +4./¢
som) — € and 3y = € :

When M is compact and f isa C'+# diffeomorphism, this is [21, Prop. 7.3], and the proof
is identical. Let v = {lllfc’;"p "Yez and w = {lI!J‘fZ “n tnez. We sketch the proof for the first
estimate:

— If m(v) = x then s(x) < oo: this follows from the relevance of .« (Thm. 5.1(3)).

— Apply Lemma 6.3 along v and the orbit of x: if v, = v for infinitely many n > 0, then the
s(VS{vk bk=nl) — eiﬁ and

ratio improves at each of these indices. The conclusion is that S0

analogously —S(Vs[izvyiikz”]) = e*VE

— Since f"(x) € V[{vktesn]l N V[{wk }k>n], Proposition 6.2(1)(c) implies that
s U han) _ e g SO M0dien) _ ke

TS S ()
sGn) _ s(xn) s Hvedhk=nl) | s(UPM@) S Hwkk=a)) _  taE
Hence 555 = somtuciimnD S (X)) SV T{wi Jk=nD sOm) = :
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6.2. Control of Q. (xy)
Remind that Q. (x) ;== max{qg € I, : q < Qs(x)} where
0c(x) = &/ min {1 C () It 1 (f ) P ()22

”C)((xn)_lllFrob — eﬂ:sﬁ
1Cx )~ lErob ’
S ADY S ApY .. . .
\IJ;&B Pt 2 f:j_rl‘ Pnt1 " Proposition  3.4(1)-(2) implies that

-1
= ¢*V%, and similarly 1SS0 leob 28 Henge
"CX(J’n-‘rl) ”Frob

so we first control QS (xn). By parts (2)—(3),

Using that
I1Cx (f Gen) ™ Frob
"CX (xn+1 )71 [lErob

ICx (f )~ llErob — ICx(fn) " lIErob . I1Cx Cent 1) HlErob | I1Cx Wnt1) " lErob — oE7VE
1Cx (f )~ HlEron ICx nt D) Frob  1Cx(n+1) " iFror  1Cx (f(¥n)) ™ HErob ’

We now estimate the ratio ’;g"g . For that we obtain estimates similar to (6.1) for £ *!(x,),

fE1(yn). By symmetry, we only need to get the inequalities for f(x,), f(y,). Start by noting
that d(f(x,), Xxp4+1) < (Pf,+1 N PZ+1)8 <ed(Xp41,9), hence d(f(x), Z) = d(xpt1,92) £
d(f(xn), Xn+1) = (1 * &)d(xn+1, %) and thus d(f(xn), xp+1) < 2ed(f(xn), 7). Simi-
larly d(f(yn). yn+1) < 2ed(f(yn).Z). Using part (1), d(xp+1. ynt1) < €[d(xXp41.2) +
d(Yn+1, D)) < 2e[d(f (xn), Z) + d(f(yn). Z)], therefore

d(f(xn), f(yn)) = d(f(xn), Xnt1) + d(Xn41, Ynt1) + d(Ynt1. f(vn))
< 4eld(f (xn). 2) + d(f(yn). D).

This implies that d(f(xx), Z) = d(f(rn), 2) £ 4e[d(f(xn), D) + d(f(yn), 2)] and so

}I_ﬁ < jg%;z;g; < ifij The same estimate holds for £ ~!. Together with (6.1), we get that

1—4¢ p(xn) 1+4¢ . -z 1—4g\72a 1+4¢\72a NG
1T4e = 565 = To4e- If e > Olis small enough then e™v* < (1335) " < (§g5) " <eY™,

hence Z E’;”;Z: = ¢EVE The conclusion is that ”g’% = exp[j:(l% +/¢)], which implies that

% = exp[*(3¢ + 132 V/e)]. Hence if & > 0 is small enough it holds % =t ¥,

6.3. Control of p; and p}
As in [21, Prop. 8.3], (GPO2) implies the lemma below.

LEMMA 6.5. — Ifv = {‘-Ilff"pz Ynez € ¥ then pS = 8:Qc(x,) for infinitely many n > 0
and py = 8, Q¢(xp) for infinitely many n < 0.

We now prove the first half of part (5) (the other half is analogous). By symmetry, it is
_3
enough to prove that p5 > e~ ¥%¢3$ for all n € Z.

— If p;; = 8:Qc(xy) then part (4) gives p;, = 6:Qc(xn) > €™ %85Qe(yn) >e %Cli
- Ifp) >e” %q,sl then (GPO?2) and part (4) give:

. _3 . _3
pi_y =min{ef p’ .80 (xn_1)} = €~ Ve min{e®qS. 8. 0c(yn_1)} = e~ ¥Voq_,.

By Lemma 6.5, it follows that p$ > e~ V¢S for all n € Z.
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6.4. Control of V)1 o W,

For z, = x,,, yn, the calculations in the proof of Lemma 2.1 give that

1 cosa(zy,)
Cy(zn) = R, |:S(Zn) u(zn) i|

sina(zy,)
u(zn)

where R;, is the rotation that takes e to ¢, €3 .

LEMMA 6.6. — Under the conditions of Theorem 6.1, for all n € Z it holds

€11 €
Ry Ry, = (=D71d+| P
€21 €22

where o, € {0, 1} and |eji| < (p5 A PPIS + (g3 A q)PI5 < e

When M is compact and f isa C'*# diffeomorphism, thisis [21, Prop. 6.7]. See Appendix
B for the proof in our context.

i - — : P3Py _ Pt ot
Now we establish part (6). It is enough to prove the case n = 0. Write W,)""° = Wy

\I!;fé’qg = \Ilgs’qu, p=p"Ap",q=q°Ag" 0 = 0p. Write Cy(x) = Ry Cy, C% = R,Cy.
Asin [21, §9], Lemma 6.6 gives ||Cy_1Cx — (=1)?1d|| < 144/¢ and hence for small ¢ > 0:

El

1Cx () = eIl < IR«Cx — (=1)° RyCy | + [RxCy — (~1)° Ry Gy |
< IGHNC Cx = (=D)7Id] + |Ry ' Rx — (=1)°1d|
<16Vl C M < 1G5
We use this to show that W} Low, is well-defined in R[10Q,(x)]. The argument is very similar

to the proof of Proposition 3.4(3). For v € R[100Q.(x)], (A2) and part (4) imply that for small
e>0:

d(W,(v). Wy (1)) < 2dsas(Cy(x)v, Cu(3)) < 4(d(x. y) + [[C4x) — CyMIIv])
<4(q + 1S vl < 1001C; Qe ()

hence W, (v) € B(Wy(v), 100[C; 1| Qc(y)) C Wy[B] where B C R? is the ball with center v
and radius 200(|C; ' [|?Q¢(y). If € > 0 is small then for w € B we have
lwll < llvll +200]1C; 7 Qe (y) < 2006 (y) + 200640, () ~#/12
<2038 d(y, 2)% +200eV*d(y, 2)° < d(y, D)* < 2t(y),
therefore \Ily_l o W, is well-defined in R[100.(x)].
It remains to estimate \I!;l oW, — (—=1)°Id. Write \I/y_l oW, = (—1)?Id + § + A, where

8 € R? is a constant vector and A : R[100,(x)] — R2. Let v € R[100Q,(x)]. Proceeding as
in [21, pp. 382] and applying (A4) we get for small ¢ > 0 that:

Id(A)y |l < 21C; d(y. 2) " d(x, y) + 14/ < 2/|C; M [d(y, 2) ™ Qe(¥) + 1446
<2VEllC M Qe (0)P 24 d(y, 2)7 Qe (n)P/7? + 144/e < 164/ < e

The estimate of ||§] is identical to [21, pp. 383]. This completes the proof of part (6), and
hence of Theorem 6.1.
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7. Symbolic dynamics

7.1. A countable Markov partition

Let (X, 0) be the TMS constructed in Theorem 5.1, and let 7 : ¥ — M as defined in
the end of Section 5. In the sequel we use Theorem 6.1 to construct a cover of NUH? that is
locally finite and satisfies a (symbolic) Markov property.

The Markov cover . — Let & := {Z(v) : v € &/}, where
ZW) :={n(@):veX*and vy = v}.

In other words, 2 is the family defined by the natural partition of £# into cylinder at the
zeroth position. Admissible manifolds allow us to define invariant fibers inside each Z € %
Let Z = Z(v).

s/u-fibersin Z. — Given x € Z,let W¥(x, Z) := V*[{v, }n>0] N Z be the s-fiber of x in Z
for some (any) v = {v, }nez € T¥ s.t. 7(v) = x and vy = v. Similarly, let W¥(x, Z) :=
V¥[{ vy }n<o] N Z be the u-fiber of x in Z.

By Proposition 6.2(2), the definitions above do not depend on the choice of v, and any two
s-fibers (u-fibers) either coincide or are disjoint. We also define V*(x, Z) := V*[{v, }»>0] and
V¥(x,Z) := V¥[{v, }n<o]- Below we collect the main properties of %

PROPOSITION 7.1. — The following are true.

(1) COVERING PROPERTY: % is a cover ofNUHz.

(2) LOCAL FINITENESS: Forevery Z € &, #{Z' € & :ZNZ # 0} < oo,

(3) PRODUCT STRUCTURE: For every Z € % and every x,y € Z, the intersection
WS(x,Z) N W¥(y, Z) consists of a single point of Z.

(4) SYMBOLIC MARKOV PROPERTY: If x = m(v) withv € X%, then

FV?(x, Z(9))) € WH(f(x), Z(v1)) and fHW"(f(x), Z(v1))) C W (x, Z(vo)).

Part (1) follows from Theorem 5.1(2), part (2) follows from Theorem 6.1(5), part (3)
follows from Lemma 4.3(1), and part (4) is proved as in [21, Prop. 10.9]. For x,y € Z,
let [x, y]z := intersection point of W*(x, Z) and W¥(y, Z), and call it the Smale bracket
of x,yin Z.

LemMA 7.2. — The following holds for all ¢ > 0 small enough.

(1) CompatiBILITY: If X,y € Z(vg) and f(x), f(y) € Z(vy) with vy 5 vy then
f([-x» y]Z(Uo)) = [f(X), f()’)]Z(vl) .. .

(2) OVERLAPPING CHARTS PROPERTIES: If Z = Z(VY 7"), 72 = Z(V} 1) € Z with
ZNZ' # @ then:
(a) Z C Wy(Rlg" A q").
(b) If x € ZNZ' then Ws*(x,Z) c Vs/*(x,Z").
(¢) Ifxe Z,y € Z' thenV*(x,Z) and V*(y, Z') intersect at a unique point.
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When M is compact and f is a diffeomorphism, part (1) is [21, Lemma 10.7] and part (2)
is [21, Lemmas 10.8 and 10.10]. The same proofs work in our case, since all calculations are
made in the rectangle R[10Q.(x)], and in this domain we have Theorem 6.1(6).

Now we apply a refinement method to destroy non-trivial intersections in 2. The result
is a cover of NUH? by pairwise disjoint sets with the (geometrical) Markov property. This
idea, originally developed by Sinai and Bowen for finite covers [22, 23, 6], works equally well
for countable covers with the local finiteness property [21]. Write & = {Z, Z,,...}.

The Markov partition #. — For every Z;, Z; € %, define a partition of Z; by:

Tl”]m ={xeZ :W'x,Z)nN Z; #40, WH¥(x,Z;) N Z; #0}

T ={xeZ W'x.Z)NZ; #0.W"(x.Z)) N Z; = 0}

T ={xeZ W (x,Z)NZi =0.W"(x,Zi) N Z; # 0}

T ={xeZ W (x.Z)NZ; =0.W"(x,Z) N Z; = 0}
Let T := {7}‘;'3 i, ] > 1o € {5,0},8 € {u,0}}, and let Z be the partition generated
by 7.

Since T * = Z;, % is a cover of NUHf{t by pairwise disjoint sets. Clearly, Z is a refinement
of Z. Theorem 6.1 implies two local finiteness properties for %:

— ForeveryZ e Z,#{Re #Z: R C Z} < o0.
— Forevery Re Z,#{Z € % : Z D R} < o0.

Now we show that & is a Markov partition in the sense of Sinai [23].
s/u-fibers in Z. — Given x € R € &%, we define the s-fiber and u-fiber of x by:

Wi Ry = () W Z)NT and W(x.R):= () W*(x.Z)NT.
T c o T o
1 j
Tg-ﬂDR Tg-ﬂDR

Any two s-fibers (u-fibers) either coincide or are disjoint.

ProrosITION 7.3. — The following are true.

(1) PRODUCT STRUCTURE: For every Re % and every x,y € R, the intersection
WS(x, R) N W¥(y, R) consists of a single point of R. Denote it by [x, y].

(2) HyperBoLICITY: If z,w € W?(x,R) then d(f"(z), f*(w)) —— 0, and if z,w €
WH"(x, R) then d(f"(z), f™(w)) — 0. The rates are exponezgcfz

(3) GEOMETRICAL MARKOV PROPERTY: Let Ry, Ry € Z. If x € Ry and f(x) € R, then

W2 (x, Ro)) C W*(f(x), R1) and f~H(W"(f(x), R1)) C W¥(x, Ro).

When M is compact and f is a diffeomorphism, this is [21, Prop. 11.5 and 11.7] and the
same proof works in our case.
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7.2. A finite-to-one Markov extension

We construct a new symbolic coding of f. Let G = ( V.E ) be the oriented graph with
vertex set ¥ = Z andedgeset E = {R — S : R,S € Zst. f(R)NS # B}, and let
(E o) be the TMS induced by 4. The i ingoing and outgoing degree of every vertex in T is
finite.

For{ € Zand apath R, — --- —> R, onfé\deﬁneg[Rm,...,Rn] = f‘e(Rm) n---N
f=m)(R,), the set of points whose itinerary from £ to £ + (n — m) visits the rectangles
Ry, ..., R,. The crucial property that gives the new coding is that y[R,,, ..., R,] # 9. This
follows by induction, using the Markov property of % (Proposition 7.3(3)).

The map 7 defines similar sets: for £ € Z and a path vy, 5.5 v, on X let
Zelvm, ... vn] = {7(w) : w € ¥ and wy = vy, . oo Wi (n—m) = Un }-

There is a relation between ¥ and ¥ in terms of these sets: if {Ry}nez € S then there
exists {v, tnez € X s.t. _y[R_y,....,Ry] C Z_p[v—y,...,vy] foralln > 0 (in particular
R, C Z(vy) for alln € Z). This fact is proved as in [21, Lemma 12.2]. By Proposition 7.3(2),
(\n>0 —n[R=n. . ... Ry]is the intersection of a descending chain of nonempty closed sets with
diameters converging to zero.

Themap® : S — M. — Given R = { Ry }nez, € &, 7(R) is defined by the identity
{5‘[\(3)} = m —n[R—nv cees Rn]-

n>0

The triple (2,3, %) is the one that satisfies Theorem 1.3.

THEOREM 7.4. — The following holds for all ¢ > 0 small enough.

(1) 7 : S — M is Holder continuous.

(2) ToG = foT.

3) f[,i‘#] > NUH?, hence n[i#] carries all f-adapted y-hyperbolic measures.
(4) Every point ofj’f[f#] has finitely many pre-images in =#,

When M is compact and f is a diffeomorphism, parts (1)—-(3) are[21, Thm. 12.5] and part
(4) is [18, Thm. 5.6(5)]. The same proofs work in our case, and the bound on the number
of pre-images is exactly the same: there is a function N : # — Ns.t. if x = 7(R) with
R, = R for infinitely many » > 0 and R, = S for infinitely many n < 0 then #{S € s#
7(8) =x} < N(R)N(S).

Appendix A: Underlying assumptions

Remember the definition of 4 € Ly forAd e £, ,andy € Dy,z € Dy. Remember

also the definitionof t = 1, : Dy x Dy —> L by t(y,z) =d (exp;l)z. Throughout the text,
we assume that there are constants K, a > 1s.t.forallx € M\ Z thereisd(x, 2)¢ < t(x) <1
s.t. for Dy := B(x,2t(x)) it holds:
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(Al) If y € Dy then inj(y) > 2t(x), expy_1 : Dy — T, M is a diffeomorphism onto its
image, and %(d(x»y) + [[v = Py xw|) < dsas(v,w) < 2(d(x,y) + [[v— Py w]) for
ally € Dyandv € TyM,w € T, M s.t. ||v], |lw|| < 2t(x), where P, , := P, for the
radial geodesic y joining y to x.

(A2) If y1, y2 € Dy then d(exp,, v1,€xp,,v2) < 2dsas(v1, v2) for [Jvr]], [[v2]| < 2¢(x), and
dsas(exp; ' 21, exp; ) z2) < 2[d(y1. y2) +d(z1. 22)] for z1, z, € D, where the expression
makes sense. In particular ||d(exp,)y|| < 2 for [[v]| < 2t(x), and [d(exp;!),|l < 2
for y € Dy.

(A3) If y1, y» € Dy then

lld(expy, )v, — d(€xpy, ), || = d(x, D)™ “dsas(v1, v2) = p(x) *dsas(v1. v2)
for all |||, [|v2]| < 2t(x) and

[t(y1,21) — t(y2, 22)[| < d(x, 2)*[d(y1. y2) + d(z1,22)]
< p(x)"d(y1,y2) + d(z1,22)]

forall zq,z, € Dy.

(A4) If y1,y, € Dy then the map t(y1,-) — t(¥2,-) : Dy — % has Lipschitz constant
=d(x.2)"d(y1.y2) = p(x)"*d(y1. y2).

(A5) If y € Dy then [|df;*!|| < d(x, 2)™* < p(x)™“.

(A6) If y1,y, € Dy and f(y1), f(y2) € Dy then ||@1/— @ < Rd(y1,y»)B, and if
y1.y2 € Deand [~ (). /7 (42) € Dy then [dfy1 — df 1) < Sd (. y2)P.

(A7) dfEY = mdfEY) = p(x)°.

Appendix B: Standard proofs and adaptations of [21]

In this appendix we prove some statements claimed throughout the text, most of them
consisting of adaptations of proofs in [21]. The main issue is the lack of higher regularity of
the exponential map. The results of [21] are technical but extremely well-written, so rewriting
them to our context would probably increase the technicalities and decrease the clarity.
Hence we decided to write this appendix as a tutorial: we follow the proofs of [21] as much
as possible, mentioning the necessary changes. The main changes are in the geometrical
estimates on M: some Lipschitz constants of [21] are substituted by terms of the form
d(x, 2)~%. We then show that our definition of Q.(x) is strong enough to cancel out these
terms. Since the proofs of [21] have freedom in the choice of exponents, we obtain the same
final results and therefore (almost always) the same statements of [21].

Proof of Lemma 4.3. — Part (1) is proved exactly as in [21, Prop. 4.11(1)—(2)]. We concen-
trate on part (2). Let n = p* A p*. The estimate of % in [21] is divided into the
analysis of four factors. The estimate of the first two factors is identical; the difference is in
the estimates of the remaining two factors.

By (A3),if x € M\ Z and |v|| < 2¢(x) then |det[d(exp,),] — 1| < 4d(x, 2)7¢|v|, 1.e., we
substitute K; in [21, pp. 407] by 4d(x, 2)~“.

With this notation, K17 < 4d(x, 2) Q. (x)B/72pl=BI72 ~ 4e1/24p1-B/72  ,2B/3
for ¢ > 0 small, then the third factor is e27*"7% To estimate the fourth factor, note that
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again by (A3) if x € M\Z and |[v]| < 2t(x) then [|d(expy )y — Id|| < d(x, 2)~¢|v], i.c., we
substitute K, in [21, pp. 407] by d(x, 2)~%. Noting as above that 3K,n < n?8/3, we get that

1
the fourth factor is ei§"3/4 as in [21, pp. 408].

The estimates of |cos Z(V*,V¥) — cosa(x)| work as in [21] after using again that
Kon < n?#/3 in which case K3 = 24. O

Proof of Proposition 4.4. — We follow the proofs of [21, Prop. 4.12 and 4.14], with the
modifications below.
— Pages 411-412: in claim 3, it is enough to have |G'(0)| < 3(g° A ¢*)P/3. Proceed as in [21]
to get that
G'(O)] < e+ [JAIF©)] + 3P3(p* A p")P2 + 6e(p° A p")P° ]
and then note that for ¢ > 0 small enough this is at most
e xte [%e‘x + 283 4 68] (p° A P53
< e—x+s+sﬂ/3 [%e—x + %Sﬁ/B + 68] (qs /\qS)ﬂ/3 < %(qs /\qu)ﬁ/B.
— Page 412: in claim 4, it is enough to have ||G|lo + Holg,3(G’) < 3. Proceed as in [21] to

get that ||G'|lo 4+ Holg/3(G’) < e™ %3¢ [1e7X 4 3¢]. Thisis < 1 when & > 0 is small.
— Pages 414-415: in the proof of part 2, proceed as in [21] to get that

IG1 = Gallo < (14] +36*)(1 + &% + 3¢°) || F1 — F2lo
and note that (|A| +3e2)(1 + 2 +3¢3) < (e ¥ +3e2)(1 + &2+ 3¢%) < e /2 whene > 01is
small enough. O
Proof of inequality (5.1). — We will use assumption (AY) as stated in Section 1:
(AS) |ldfx|l < d(x,2)"% and |df Y| < d(x, ?)¢ forall x € M\ Z.
We have:
SUTHN? =2 e df " egoi ) IP =2+ 26K ldf ey |2 Y e X ldf e |

n>0 n>0

= 24 e |dfe) 1 P = (14 e dfe) . P)s)
By (A3), %)‘;‘”2 < 1+4eXd(f~1(x), 2)72% < 1 + e p(x)~24. We also have that

w(f N2 =2 M df e o IP = 20ldf T e T2 Y e X df T Ve 2

n>0 n>0

= 2e K|l df e |72 Y M ldf eI = e ldf T e P (u(x)? ~2)

n>1

< lldf ~tex ] "2 u(x)?,

hence by (A5) we get that “0 602 < 3)=2a — | 1 ¢2Xp(x)~24. Finally, applying (3.1)

u(x)?
for L =df!,v =eS, w = e and using (A5), we have
i in Z(ex e¥ - -
Tt = waa g < 1T Md il < 007,
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Since || - | < || - lErob < ~/2| - ||, the above inequalities and Lemma 2.1 give that
IC(STHEN T < NC(F 1) ™ lErob < p(X) 724 V/1 4 €2Xp(x) 724 Co(x) ™ [[Erob
< 2p(x) 24 (1 4 e*p(x) ™) [[Cx(x) 7. -

Proof of Proposition 6.2. — The proof of part (2) is identical to the proof of [21, Prop. 6.4],
and the proof of part (1)(a)—(b) is identical to the proof of [21, Prop. 6.3(1)—(2)]. To prove part
(1)(c), we make some modifications in the proof of [21, Prop. 6.3(3))]. We start with the claim
below.

Claim. — If y,z € Dyandv € TyM,w € T; M with ||v| = ||lw| = 1 then

df= @) = 14/ )] < Rp(x)™[d(y. 2)P + v = Pz yw]] and
ld )
ldfz= )l
In particular |log | df;=! (v) || = log |/ (w)|| < Rp(x)4[d(y, 2)P + [[v = Pz yw]].

— 1| < Rp(x)2[d(y, 2)? + v — Pz yw]].

Proof of the claim. — The inequalities are consequences of (AS5)-(A7). Since these
assumptions are symmetric on f and f !, we only prove the claim for f. Note that:

ldfy W)l = lldfz )| < I|dfy(Py.xv) — dfz(Pzxw)]
< |dfy —dfzll + ldfNllv — Pz yw]
< &d(y.2)P + p(x)™[lv = Pz yw]|
< Ro(x)™“[d(y.2)" + v = Pz yw]].

The second inequality follows from the first one and from (A7).
Let us now prove part (1)(c). Write V5 = VS[{W2" nPi tn>0]- By the claim,

n—1
|log|ldf ™ ey | —log [ldf " €3|Il < kZ |log ldfec | = log ldfesi |
=0
n—1
< D &o(x) U W), @D + N5k ) = Procy. ren @i 1
k=0

By part (1)(a) and the definition of Q. (x),
P24 d(fF (), FH () < &'/120(xe)PP06e™ F K ()P
< 66112(pg) P10~ TR ()P
By (GPO2) we have pj < e® pk, then for small ¢ > 0 the last expression above is
< 681/12(p(s))—ﬂ/366—/‘7xk+%k(pg)ﬁ < 681/12e_%xk(p3)ﬂ/4

and thus

1/12

Zﬁp(xk) 22d(fF (). fH(2)P < SR <p0>/’/4 (9P,

k=0 -
We now estimate the second sum. Call Ny := ||e}k(y) Prizy, re e k(z) . Write f*(y) =

Wi (7)) = W ks Fie(yr)) and f5(2) = Wi (z) = Wy (2k, Fi(2x)), where Fy is the
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representing function of V*[{ \Il,f,f"pz jn=k]- Inpart (1), itis proved that ||y, —z || < 3pse 5k,
Asin [21, pp. 418-419],

Ni < 21Cx () llly, — zi 1P

+ 41C (50 |dexPi )y ey, © Colik) = d@XPy, )y ceprz © Cxl)

which, by (A3), is < 2/|Cy (xi) " llly, — 2 I#3 + 41 C(x) ™ oGa) ™y, — 2. For e > 0
small enough

_ _ _ Bx
4p(x)"“Ily, — 2P/ < 12p(xi)~ (p§) P72 T4

< lzp(xk)—a(pli)ﬂ/726—%k+%k < 1281/246—%1(-‘1-%]( < 1’
thus Ng < 3]|Cy (xp) 71|l Iy, — z;|I#/3. Hence for small & > 0

pOe) > Ny < 301 Cy (a) " llpCe) > Nly, — zeI1P?
< 9)1Cy () () 2 (pg)PPe e
< 91C (o) Mo (k) 24 (p) P26 K ()P4
< 9)1Cy (ki) () 2 (p)P 2o "k H T ()14
< 9ICy () PP/ plaxi) 2 (pf)P 1306 S KH 5K () P14
< 985/246—5—7’%(1)3)5/4

and therefore

n—1

_ 5/24
D 8o gy = Pre.rronerrall = emmm (o) < 3 ()P,
k=0
The conclusion is that | log [|df"e; || — log [|df"e3 || < (PHP/* < Qe(x)P/4. O

Proof of Lemma 6.6. — It is enough to prove the case n = 0. Write W17 = wZ"P"

\Ifgg’q" = lIJf,S’qu, p=p APt g =q°Aqg". Write Cy(x) = RyCyx, Cy(y) = R,C,. Since

Ry_1 R, is a rotation matrix, it is enough to estimate its angle. As in [21, pp. 372], A # 0 s.t.
Cra = Md(eXDy)cy el [A(exPy )y (] Cyb where:

- L e R[107?pl,a= [ﬂ and |a| < pP/3.

-~ neR[102q],b = m and |b| < ¢B/3.

The proof is based on three claims. Write ¥ o w if ¥ = rw for some ¢ # 0.

. 1+ pB/4 1+ ¢P/*
Claim 1. — Cya & Rx[ ipl/;M } and Cya Ry[ iq?ﬂm ]

The proof is the same as in [21, pp. 372].
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Claim2. — If x,y € D, and ||v|, |w|| < t(z) then
II[d (expy)o] "' [d(expy )w] — 1d|| < 2d(z, Z)“dsas(v, ).
The proof is a direct consequence of (A2)—(A3).
In particular, if we write E := [d(Cpr)cX(x)Q]_l [d(exp,)c, (y)n] — 1d then
IE] <2d(y, 2)“dsas(Cy(x)8. Cx(y)n) < 4d(y. 2)~[d(x,y) + 1§ —nll]
<4d(y.2)(p +q) <8d(x. 2)""p +8d(y.2)%q < pPI* + PP

since d(x, y) <257 (p +¢q) and [|¢]| + [In]l < 1072(p +q).

Claim 3. — Ry m +e xR, m + &, where [le, I, el < 3(pP/* + qB/4) < 6534,
To see this, note that since Cya o (E + I)Cyb, claim 1 gives that

B/4 B/4
Ralo] + Rel o] o el + 250 ] + £
———

S =&,

and that ||g, || < 2p#/* and ||e, || < 2¢P/* +2(pP/? +¢P/3) < 3(pP/* +¢P/*). The remainder
of the proof is identical to [21, pp. 373]. O
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