Étant donnés un corps de nombres et un polynôme , dont toutes les racines sont dans , soit la variété définie par l'équation . En combinant la combinatoire additive avec la descente, nous montrons que l'obstruction Brauer–Manin est le seul obstacle au principe de Hasse et à l'approximation faible sur un modèle projectif et lisse de .
Given a number field and a polynomial , all of whose roots are in , let be the variety defined by the equation . Combining additive combinatorics with descent we show that the Brauer–Manin obstruction is the only obstruction to the Hasse principle and weak approximation on any smooth and projective model of .
DOI : 10.24033/asens.2348
Keywords: additive combinatorics, Brauer–Manin obstruction, descent, Hasse principle, norm forms, weak approximation
Mot clés : Combinatoire additive, obstruction Brauer–Manin, descente, principe de Hasse, représentations de normes, approximation faible.
@article{ASENS_2017__50_6_1383_0, author = {Browning, Tim D. and Matthiesen, Lilian}, title = {Norm forms for arbitrary number fields as products of linear polynomials}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1383--1446}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {6}, year = {2017}, doi = {10.24033/asens.2348}, mrnumber = {3742196}, zbl = {1388.14070}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2348/} }
TY - JOUR AU - Browning, Tim D. AU - Matthiesen, Lilian TI - Norm forms for arbitrary number fields as products of linear polynomials JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 1383 EP - 1446 VL - 50 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2348/ DO - 10.24033/asens.2348 LA - en ID - ASENS_2017__50_6_1383_0 ER -
%0 Journal Article %A Browning, Tim D. %A Matthiesen, Lilian %T Norm forms for arbitrary number fields as products of linear polynomials %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 1383-1446 %V 50 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2348/ %R 10.24033/asens.2348 %G en %F ASENS_2017__50_6_1383_0
Browning, Tim D.; Matthiesen, Lilian. Norm forms for arbitrary number fields as products of linear polynomials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 6, pp. 1383-1446. doi : 10.24033/asens.2348. http://www.numdam.org/articles/10.24033/asens.2348/
Quadratic polynomials represented by norm forms, Geom. Funct. Anal., Volume 22 (2012), pp. 1124-1190 (ISSN: 1016-443X) | DOI | MR | Zbl
Rational points on pencils of conics and quadrics with many degenerate fibers, Ann. of Math., Volume 180 (2014), pp. 381-402 (ISSN: 0003-486X) | DOI | MR | Zbl
, Higher dimensional varieties and rational points (Budapest, 2001) (Bolyai Soc. Math. Stud.), Volume 12, Springer, Berlin, 2003, pp. 171-221 | DOI | MR | Zbl
, Number theory and algebraic geometry (London Math. Soc. Lecture Note Ser.), Volume 303, Cambridge Univ. Press, Cambridge, 2003, pp. 69-89 | MR | Zbl
La -équivalence sur les tores, Ann. Sci. Éc. Norm. Sup., Volume 10 (1977), pp. 175-229 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
La descente sur les variétés rationnelles. II, Duke Math. J., Volume 54 (1987), pp. 375-492 (ISSN: 0012-7094) | DOI | MR | Zbl
Arithmetic on some singular cubic hypersurfaces, Proc. London Math. Soc., Volume 58 (1989), pp. 519-549 (ISSN: 0024-6115) | DOI | MR | Zbl
Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. reine angew. Math., Volume 453 (1994), pp. 49-112 (ISSN: 0075-4102) | DOI | MR | Zbl
Intersections of two quadrics and Châtelet surfaces. I, J. reine angew. Math., Volume 373 (1987), pp. 37-107 (ISSN: 0075-4102) | MR | Zbl
Intersections of two quadrics and Châtelet surfaces. II, J. reine angew. Math., Volume 374 (1987), pp. 72-168 (ISSN: 0075-4102) | MR | Zbl
Rational points and zero-cycles on fibred varieties: Schinzel's hypothesis and Salberger's device, J. reine angew. Math., Volume 495 (1998), pp. 1-28 (ISSN: 0075-4102) | DOI | MR | Zbl
Universal torsors and values of quadratic polynomials represented by norms, Math. Ann., Volume 361 (2015), pp. 1021-1042 (ISSN: 0025-5831) | DOI | MR | Zbl
On the sum , J. London Math. Soc., Volume 27 (1952), pp. 7-15 (ISSN: 0024-6107) | DOI | MR | Zbl
Primes in tuples. I, Ann. of Math., Volume 170 (2009), pp. 819-862 (ISSN: 0003-486X) | DOI | MR | Zbl
The primes contain arbitrarily long arithmetic progressions, Ann. of Math., Volume 167 (2008), pp. 481-547 (ISSN: 0003-486X) | DOI | MR | Zbl
Linear equations in primes, Ann. of Math., Volume 171 (2010), pp. 1753-1850 (ISSN: 0003-486X) | DOI | MR | Zbl
The Möbius function is strongly orthogonal to nilsequences, Ann. of Math., Volume 175 (2012), pp. 541-566 (ISSN: 0003-486X) | DOI | MR | Zbl
The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math., Volume 175 (2012), pp. 465-540 (ISSN: 0003-486X) | DOI | MR | Zbl
An inverse theorem for the Gowers -norm, Ann. of Math., Volume 176 (2012), pp. 1231-1372 (ISSN: 0003-486X) | DOI | MR | Zbl
Higher correlations of divisor sums related to primes. III. Small gaps between primes, Proc. Lond. Math. Soc., Volume 95 (2007), pp. 653-686 (ISSN: 0024-6115) | DOI | MR | Zbl
Rational solutions of certain equations involving norms, Acta Math., Volume 189 (2002), pp. 161-177 (ISSN: 0001-5962) | DOI | MR | Zbl
The Hardy-Littlewood conjecture and rational points, Compos. Math., Volume 150 (2014), pp. 2095-2111 (ISSN: 0010-437X) | DOI | MR | Zbl
, Chelsea Publishing Company, New York, N. Y., 1949, 147 pages | , Springer, New York-Heidelberg, 1977, 279 pages (ISBN: 0-387-90279-1) |Correlations of the divisor function, Proc. Lond. Math. Soc., Volume 104 (2012), pp. 827-858 (ISSN: 0024-6115) | DOI | MR | Zbl
Linear correlations amongst numbers represented by positive definite binary quadratic forms, Acta Arith., Volume 154 (2012), pp. 235-306 (ISSN: 0065-1036) | DOI | MR | Zbl
Correlations of representation functions of binary quadratic forms, Acta Arith., Volume 158 (2013), pp. 245-252 (ISSN: 0065-1036) | DOI | MR | Zbl
, Cambridge Univ. Press, 2007 |, Grundl. math. Wiss., 322, Springer, 1999 (ISBN: 3-540-54273-6) | DOI | MR | Zbl
, Springer, New York-Heidelberg, 1973, 115 pages |A Brun-Titchmarsh theorem for multiplicative functions, J. reine angew. Math., Volume 313 (1980), pp. 161-170 (ISSN: 0075-4102) | DOI | MR | Zbl
Norms as products of linear polynomials, J. Lond. Math. Soc., Volume 89 (2014), pp. 559-580 (ISSN: 0024-6107) | DOI | MR | Zbl
A note on a theorem of Heath-Brown and Skorobogatov, Q. J. Math., Volume 64 (2013), pp. 1239-1251 (ISSN: 0033-5606) | DOI | MR | Zbl
On the equation , Proc. Lond. Math. Soc., Volume 109 (2014), pp. 1402-1434 (ISSN: 0024-6115) | DOI | MR | Zbl
Cité par Sources :