Norm forms for arbitrary number fields as products of linear polynomials
[Représentations de normes de corps de nombres arbitraires par des produits de polynômes linéaires]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 6, pp. 1383-1446.

Étant donnés un corps de nombres K/ et un polynôme P[t], dont toutes les racines sont dans , soit X la variété définie par l'équation 𝐍K(𝐱)=P(t). En combinant la combinatoire additive avec la descente, nous montrons que l'obstruction Brauer–Manin est le seul obstacle au principe de Hasse et à l'approximation faible sur un modèle projectif et lisse de X.

Given a number field K/ and a polynomial P[t], all of whose roots are in , let X be the variety defined by the equation 𝐍K(𝐱)=P(t). Combining additive combinatorics with descent we show that the Brauer–Manin obstruction is the only obstruction to the Hasse principle and weak approximation on any smooth and projective model of X.

Publié le :
DOI : 10.24033/asens.2348
Classification : 14G05 (11B30, 11D57, 11N37, 14D10)
Keywords: additive combinatorics, Brauer–Manin obstruction, descent, Hasse principle, norm forms, weak approximation
Mot clés : Combinatoire additive, obstruction Brauer–Manin, descente, principe de Hasse, représentations de normes, approximation faible.
@article{ASENS_2017__50_6_1383_0,
     author = {Browning, Tim D. and Matthiesen, Lilian},
     title = {Norm forms for arbitrary number fields   as products of linear polynomials},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1383--1446},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {6},
     year = {2017},
     doi = {10.24033/asens.2348},
     mrnumber = {3742196},
     zbl = {1388.14070},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2348/}
}
TY  - JOUR
AU  - Browning, Tim D.
AU  - Matthiesen, Lilian
TI  - Norm forms for arbitrary number fields   as products of linear polynomials
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 1383
EP  - 1446
VL  - 50
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2348/
DO  - 10.24033/asens.2348
LA  - en
ID  - ASENS_2017__50_6_1383_0
ER  - 
%0 Journal Article
%A Browning, Tim D.
%A Matthiesen, Lilian
%T Norm forms for arbitrary number fields   as products of linear polynomials
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 1383-1446
%V 50
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2348/
%R 10.24033/asens.2348
%G en
%F ASENS_2017__50_6_1383_0
Browning, Tim D.; Matthiesen, Lilian. Norm forms for arbitrary number fields   as products of linear polynomials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 6, pp. 1383-1446. doi : 10.24033/asens.2348. http://www.numdam.org/articles/10.24033/asens.2348/

Browning, T. D.; Heath-Brown, D. R. Quadratic polynomials represented by norm forms, Geom. Funct. Anal., Volume 22 (2012), pp. 1124-1190 (ISSN: 1016-443X) | DOI | MR | Zbl

Browning, T. D.; Matthiesen, L.; Skorobogatov, A. N. Rational points on pencils of conics and quadrics with many degenerate fibers, Ann. of Math., Volume 180 (2014), pp. 381-402 (ISSN: 0003-486X) | DOI | MR | Zbl

Colliot-Thélène, J.-L., Higher dimensional varieties and rational points (Budapest, 2001) (Bolyai Soc. Math. Stud.), Volume 12, Springer, Berlin, 2003, pp. 171-221 | DOI | MR | Zbl

Colliot-Thélène, J.-L.; Harari, D.; Skorobogatov, A. N., Number theory and algebraic geometry (London Math. Soc. Lecture Note Ser.), Volume 303, Cambridge Univ. Press, Cambridge, 2003, pp. 69-89 | MR | Zbl

Colliot-Thélène, J.-L.; Sansuc, J.-J. La R-équivalence sur les tores, Ann. Sci. Éc. Norm. Sup., Volume 10 (1977), pp. 175-229 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Colliot-Thélène, J.-L.; Sansuc, J.-J. La descente sur les variétés rationnelles. II, Duke Math. J., Volume 54 (1987), pp. 375-492 (ISSN: 0012-7094) | DOI | MR | Zbl

Colliot-Thélène, J.-L.; Salberger, P. Arithmetic on some singular cubic hypersurfaces, Proc. London Math. Soc., Volume 58 (1989), pp. 519-549 (ISSN: 0024-6115) | DOI | MR | Zbl

Colliot-Thélène, J.-L.; Swinnerton-Dyer, P. Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. reine angew. Math., Volume 453 (1994), pp. 49-112 (ISSN: 0075-4102) | DOI | MR | Zbl

Colliot-Thélène, J.-L.; Sansuc, J.-J.; Swinnerton-Dyer, P. Intersections of two quadrics and Châtelet surfaces. I, J. reine angew. Math., Volume 373 (1987), pp. 37-107 (ISSN: 0075-4102) | MR | Zbl

Colliot-Thélène, J.-L.; Sansuc, J.-J.; Swinnerton-Dyer, P. Intersections of two quadrics and Châtelet surfaces. II, J. reine angew. Math., Volume 374 (1987), pp. 72-168 (ISSN: 0075-4102) | MR | Zbl

Colliot-Thélène, J.-L.; Skorobogatov, A. N.; Swinnerton-Dyer, P. Rational points and zero-cycles on fibred varieties: Schinzel's hypothesis and Salberger's device, J. reine angew. Math., Volume 495 (1998), pp. 1-28 (ISSN: 0075-4102) | DOI | MR | Zbl

Derenthal, U.; Smeets, A.; Wei, D. Universal torsors and values of quadratic polynomials represented by norms, Math. Ann., Volume 361 (2015), pp. 1021-1042 (ISSN: 0025-5831) | DOI | MR | Zbl

Erdős, P. On the sum k=1xd(f(k)) , J. London Math. Soc., Volume 27 (1952), pp. 7-15 (ISSN: 0024-6107) | DOI | MR | Zbl

Goldston, D. A.; Pintz, J.; Yıldırım, C. Y. Primes in tuples. I, Ann. of Math., Volume 170 (2009), pp. 819-862 (ISSN: 0003-486X) | DOI | MR | Zbl

Green, B.; Tao, T. The primes contain arbitrarily long arithmetic progressions, Ann. of Math., Volume 167 (2008), pp. 481-547 (ISSN: 0003-486X) | DOI | MR | Zbl

Green, B.; Tao, T. Linear equations in primes, Ann. of Math., Volume 171 (2010), pp. 1753-1850 (ISSN: 0003-486X) | DOI | MR | Zbl

Green, B.; Tao, T. The Möbius function is strongly orthogonal to nilsequences, Ann. of Math., Volume 175 (2012), pp. 541-566 (ISSN: 0003-486X) | DOI | MR | Zbl

Green, B.; Tao, T. The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math., Volume 175 (2012), pp. 465-540 (ISSN: 0003-486X) | DOI | MR | Zbl

Green, B.; Tao, T.; Ziegler, T. An inverse theorem for the Gowers Us+1[N]-norm, Ann. of Math., Volume 176 (2012), pp. 1231-1372 (ISSN: 0003-486X) | DOI | MR | Zbl

Goldston, D. A.; Yıldırım, C. Y. Higher correlations of divisor sums related to primes. III. Small gaps between primes, Proc. Lond. Math. Soc., Volume 95 (2007), pp. 653-686 (ISSN: 0024-6115) | DOI | MR | Zbl

Heath-Brown, R.; Skorobogatov, A. Rational solutions of certain equations involving norms, Acta Math., Volume 189 (2002), pp. 161-177 (ISSN: 0001-5962) | DOI | MR | Zbl

Harpaz, Y.; Skorobogatov, A. N.; Wittenberg, O. The Hardy-Littlewood conjecture and rational points, Compos. Math., Volume 150 (2014), pp. 2095-2111 (ISSN: 0010-437X) | DOI | MR | Zbl

Landau, E., Chelsea Publishing Company, New York, N. Y., 1949, 147 pages | MR | Zbl

Marcus, D. A., Springer, New York-Heidelberg, 1977, 279 pages (ISBN: 0-387-90279-1) | MR | Zbl

Matthiesen, L. Correlations of the divisor function, Proc. Lond. Math. Soc., Volume 104 (2012), pp. 827-858 (ISSN: 0024-6115) | DOI | MR | Zbl

Matthiesen, L. Linear correlations amongst numbers represented by positive definite binary quadratic forms, Acta Arith., Volume 154 (2012), pp. 235-306 (ISSN: 0065-1036) | DOI | MR | Zbl

Matthiesen, L. Correlations of representation functions of binary quadratic forms, Acta Arith., Volume 158 (2013), pp. 245-252 (ISSN: 0065-1036) | DOI | MR | Zbl

Montgomery, H.; Vaughan, R., Cambridge Univ. Press, 2007 | MR | Zbl

Neukirch, J., Grundl. math. Wiss., 322, Springer, 1999 (ISBN: 3-540-54273-6) | DOI | MR | Zbl

Serre, J.-P., Springer, New York-Heidelberg, 1973, 115 pages | MR | Zbl

Shiu, P. A Brun-Titchmarsh theorem for multiplicative functions, J. reine angew. Math., Volume 313 (1980), pp. 161-170 (ISSN: 0075-4102) | DOI | MR | Zbl

Schindler, D.; Skorobogatov, A. Norms as products of linear polynomials, J. Lond. Math. Soc., Volume 89 (2014), pp. 559-580 (ISSN: 0024-6107) | DOI | MR | Zbl

Swarbrick Jones, M. A note on a theorem of Heath-Brown and Skorobogatov, Q. J. Math., Volume 64 (2013), pp. 1239-1251 (ISSN: 0033-5606) | DOI | MR | Zbl

Wei, D. On the equation NK/k(Ξ)=P(t) , Proc. Lond. Math. Soc., Volume 109 (2014), pp. 1402-1434 (ISSN: 0024-6115) | DOI | MR | Zbl

Cité par Sources :