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NORM FORMS FOR ARBITRARY NUMBER FIELDS
AS PRODUCTS OF LINEAR POLYNOMIALS

 T D. BROWNING  L MATTHIESEN

A. – Given a number field K=Q and a polynomial P 2 QŒt �, all of whose roots are in Q,
let X be the variety defined by the equation NK.x/ D P.t/. Combining additive combinatorics with
descent we show that the Brauer–Manin obstruction is the only obstruction to the Hasse principle and
weak approximation on any smooth and projective model of X .

R. – Étant donnés un corps de nombres K=Q et un polynôme P 2 QŒt �, dont toutes
les racines sont dans Q, soit X la variété définie par l’équation NK.x/ D P.t/. En combinant la
combinatoire additive avec la descente, nous montrons que l’obstruction Brauer–Manin est le seul
obstacle au principe de Hasse et à l’approximation faible sur un modèle projectif et lisse de X .

1. Introduction

LetK=Q be a finite extension of number fields of degree n > 2 and fix a basis f!1; : : : ; !ng
for K as a vector space over Q. We will denote by

NK.x1; : : : ; xn/ D NK=Q.x1!1 C � � � C xn!n/

the corresponding norm form, where NK=Q denotes the field norm. The objective of this
paper is to study the Hasse principle and weak approximation for the class of varieties
X � AnC1 satisfying the Diophantine equation

(1.1) P.t/ D NK.x1; : : : ; xn/;

where P.t/ is a product of linear polynomials all defined over Q. If r denotes the number of
distinct roots of P , then P takes the form

(1.2) P.t/ D c�1
rY
iD1

.t � ei /
mi ;

for c 2 Q�, m1; : : : ; mr 2 Z>0 and pairwise distinct e1; : : : ; er 2 Q.
We let Xc be a smooth and projective model of X . Such a model Xc need not satisfy the

Hasse principle and weak approximation, as has been observed by Coray (see [5, Eq. (8.2)]).
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1384 T.D. BROWNING AND L. MATTHIESEN

Specifically, whenP.t/ D t .t�1/ andK is the cubic extension Q.�/, obtained by adjoining a
root � of x3�7x2C14x�7 D 0, then the setXc.Q/ is not dense inXc.Q7/. It has, however,
been conjectured by Colliot-Thélène (see [3]) that all counter-examples to the Hasse principle
and weak approximation for Xc are accounted for by the Brauer–Manin obstruction.

This conjecture covers the more general case where X arises from an equation of the
form (1.1), but the ground field may be an arbitrary number field k instead of Q and the
polynomial need not factorize completely over k. In this more general setting the problem
of establishing Colliot-Thélène’s conjecture has been addressed under various assumptions
on the extension K=k and upon the polynomial P.t/. Thus the conjecture is now known to
be true for Châtelet surfaces (ŒK W k� D 2 and deg.P.t// 6 4) by work of Colliot-Thélène,
Sansuc and Swinnerton-Dyer [8, 9], a family of singular cubic hypersurfaces (ŒK W k� D 3 and
deg.P.t// 6 3) by work of Colliot-Thélène and Salberger [5], the case whereK=k is arbitrary
and P.t/ is split over k with at most two distinct roots (see [4, 22, 30, 33]) and the case where
K=Q is arbitrary andP.t/ is an irreducible quadratic polynomial over Q (see [1, 12]). Finally,
if one assumes Schinzel’s hypothesis, then it is true forK=k cyclic andP.t/ arbitrary, by work
of Colliot-Thélène, Skorobogatov and Swinnerton-Dyer [10].

Suppose now that k D Q and P is given by (1.2). Until recently, Colliot-Thélène’s
conjecture was only known to hold unconditionally when r 6 2. When r 6 1, the variety X
is a principal homogeneous space for the algebraic torus R1

K=Q, and so the conjecture
follows from work of Colliot-Thélène and Sansuc [6]. When r D 2, Heath-Brown and
Skorobogatov [22] prove it under the additional assumption that gcd.n;m1; m2/ D 1, while
Colliot-Thélène, Harari and Skorobogatov [4, Thm. 3.1] establish it in general. Our primary
result establishes the conjecture for any r > 1.

T 1.1. – The Brauer Manin obstruction is the only obstruction to the Hasse prin-
ciple and weak approximation on Xc .

By combining Theorem 1.1 with the Brauer group calculation in [4, Cor. 2.7] we obtain
the following corollary.

C 1.2. – Suppose that gcd.m1; : : : ; mr / D 1 and K does not contain a proper
cyclic extension of Q. Then Xc.Q/ ¤ ; and Xc satisfies weak approximation.

In [22], for the first time, Heath-Brown and Skorobogatov combined the descent theory
of Colliot-Thélène and Sansuc [7] with the Hardy–Littlewood circle method, in order to
study the Hasse principle and weak approximation. In joint work with Skorobogatov [2],
we introduced additive combinatorics into this subject and showed how it may usefully be
combined with descent. This approach allowed us to study the variety X when K=Q is
quadratic. The case n D 2 of Theorem 1.1 is a special case of [2, Thm 1.1]. Subsequently,
Harpaz, Skorobogatov and Wittenberg [21] succeeded in showing how the finite complexity
case of the generalized Hardy–Littlewood conjecture for primes, as established by Green and
Tao [17] and Green–Tao–Ziegler [20], can be used in place of Schinzel’s hypothesis to study
rational points on varieties using fibration arguments. Their work [21, Cor. 4.1] leads to a
version of Theorem 1.1 in which the extension K=Q is assumed to be cyclic, a fact that was
previously only available under Schinzel’s hypothesis, as a special case of work by Colliot-
Thélène and Swinnerton-Dyer [11] on pencils of Severi–Brauer varieties. Building on work
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NORM FORMS AND LINEAR POLYNOMIALS 1385

of Wei [34], they also handle (see [21, Thm. 4.6]) the case in whichK is a non-cyclic extension
of Q of prime degree such that the Galois group of the normal closure ofK over Q has a non-
trivial abelian quotient. We emphasize that the results of the present paper are unconditional
and make no assumptions on the degree of the field extension, nor upon the type of the
extension, other than that the ground field is Q.

Our approach is based upon the strategy of [2]. We use descent theory to reduce
Theorem 1.1 to establishing the Hasse principle and weak approximation for some auxiliary
varieties, which can be analyzed using additive combinatorics. To introduce these varieties,
let

f1; : : : ; fr 2 QŒu1; : : : ; us�
be a system of pairwise non-proportional homogeneous linear polynomials, with s > 2. For
each 1 6 i 6 r , let Ki denote a number field of degree ni D ŒKi W Q� > 2. Central to our
investigation will be the smooth variety V � An1C���CnrCsQ , defined by

(1.3) 0 ¤ NKi .xi / D fi .u1; : : : ; us/; .1 6 i 6 r/;

where xi D .xi;1; : : : ; xi;ni /. For this variety we establish the following theorem, whose proof
forms the bulk of this paper.

T 1.3. – The variety V defined by (1.3) satisfies the Hasse principle and weak
approximation.

In fact (see Theorem 5.2) we shall produce an asymptotic formula for the number of suit-
ably constrained integral points on V of bounded height. When V only involves quadratic
extensions, Theorem 1.3 recovers [2, Thm. 1.2]. The latter result was established using work
of the second author [26, 27]. We will build on this work in order to obtain the general case of
Theorem 1.3. WhenK1; : : : ; Kr are all assumed to be cyclic extensions of Q, a shorter proof
of Theorem 1.3 can be found in [21, Thm. 1.3].

1.1. Overview

We indicate how Theorem 1.3 implies Theorem 1.1 at the end of this introduction. The
remainder of this paper is organized as follows. The overall goal is to prove Theorem 1.3
by asymptotically counting points of bounded height in V.Z/, taking into account the
additional constraints that are imposed by the weak approximation conditions. The asso-
ciated counting function is introduced in Section 5. The asymptotic formula obtained in
Theorem 5.2 for this counting function may prove to be of independent interest. Theorem 5.2
is proved using Green and Tao’s nilpotent Hardy–Littlewood method (see [17]) in combina-
tion with the Green–Tao–Ziegler inverse theorem [20].

While containing mostly classical material, Section 2 fixes the notation for the rest of
the paper and describes a certain fundamental domain that is specific to our counting
problems. Section 3 contains a variety of technical results required at later stages in the
paper and may be consulted as needed. Section 4 studies the number of solutions to a
congruence NK.x/ � A .modpm/. These results are used in Section 5 in order to analyze
the non-archimedean local densities that appear in the statement of Theorem 5.2. Section 6
establishes those estimates for the Green–Tao method that correspond to the minor arc esti-
mates in the classical Hardy–Littlewood method. These are the estimates needed in order to
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1386 T.D. BROWNING AND L. MATTHIESEN

apply the Green–Tao–Ziegler inverse theorem [20]. Section 7 generalizes the construction
of the divisor function majorant from [25] to a fairly wide class of positive multiplicative
functions. Section 8 combines this majorant for a specific function with a sieve majorant (as
appears in Green and Tao’s work [17] on primes) to form a majorant for our main counting
function. Section 9 shows that this majorant is pseudorandom, which finally allows us in
Section 10 to employ the Green–Tao method in combination with the inverse result [20] to
prove Theorem 5.2.

1.2. Descent

We close our introduction with the deduction of Theorem 1.1 from Theorem 1.3. We use
the construction of “vertical” torsors due to Schindler and Skorobogatov [30]. These are
introduced in [30], in order to study varieties given by equations of a form similar to (1.3) via
the circle method. Let � W X ! A1 be the morphism which maps .t I x/ to t . Let U0 � A1 be
the open subset on which

Qr
iD1.t � ei / ¤ 0 and let U D ��1.U0/. Let T D R1

K=Q be the
torus given by the affine equation NK.x/ D 1. In [30, §2], a partial compactification Y ofX is
constructed and vertical torsors T ! Y are shown to exist. These are torsors T ! Y

whose type is the injective map of Gal.Q=Q/-modules bT r ! Pic.Y /. It follows from [30,
Lemma 2.2] that the restriction T U of T to U � Y is E � V , where E is a principal
homogeneous space for T and V � AnrC1 is defined by

t � ei D �i NK.xi / ¤ 0; .1 6 i 6 r/;

for �1; : : : ; �r 2 Q�. Finally, it follows from [30, Thm. 2.1] that Theorem 1.1 holds when V is
shown to satisfy the Hasse principle and weak approximation for any �1; : : : ; �r 2 Q�. But
V is isomorphic to the variety cut out by the system of equations

e1 � ei D �i NK.xi / � �1 NK.x1/; .2 6 i 6 r/:

By an obvious change of variables it suffices to establish the Hasse principle and weak
approximation for the variety in AnrCr defined by the system of equations

0 ¤ .e1 � ei /NK.y/ D �i NK.xi / � �1 NK.x1/; .2 6 i 6 r/:

But this variety is isomorphic to the variety

v D NK.y/ ¤ 0;

u � eiv D �i NK.xi / ¤ 0; .1 6 i 6 r/;

which is a special case of the varieties V considered in Theorem 1.3. This concludes our
deduction of Theorem 1.1 from Theorem 1.3.

Notation

In addition to the usual asymptotic notations, we write U � V to mean that U � V and
U � V , and we write V D U o.1/ to express that V D Oı.U

ı/ for every ı > 0. If U is a
finite set, then we define Eu2U D jU j

�1
P
u2U . We will write 1u2P , or equivalently 1 P .u/,

to denote the characteristic function of an element u satisfying property P .
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A. – While working on this paper the first author was supported
by ERC grant 306457 and the second author was supported by EPSRC grant EP/E053262/1
and by ERC grant 208091. Some of this work was carried out during the program “Arith-
metic and geometry” in 2013 at the Hausdorff Institute in Bonn. We are grateful to
J.-L. Colliot-Thélène and A. Skorobogatov for their interest in this work. We would also like
to thank U. Derenthal for useful comments on Section 5 and A. Skorobogatov for pointing
out a simplification in the descent argument above. Special thanks are due to the anonymous
referee for numerous useful comments and for giving us a much simpler proof of Lemma 4.2
and Lemma 8.4.

2. Algebraic number theory

The purpose of this section is threefold. First, in Section 2.1, we recall mostly standard
material from algebraic number theory (as found in [23] and [24]), in order to fix the notation
for the rest of the paper. Next, in Section 2.2, we will turn to our specific situation. We
will ultimately require a counting function that assigns to each integer m its number of
representations by the norm form NK=Q.x1!1 C � � � C xn!n/. Writing x D .x1; : : : ; xn/ and
! D .!1; : : : ; !n/, this problem will be turned into a finite counting problem by identifying
representationsm D NK=Q.x:!/ andm D NK=Q.y:!/ if x:! and y:! are associated by a unit
in the ring of integers oK of K. Such a unit is necessarily of norm C1. With this in mind,
we will need to describe a fundamental domain for the action by (the free part of) the group
of norm C1 units, and its properties relevant to us. In particular, in order to apply a lattice
point counting result from the geometry of numbers we will need to show that the regions
we work with have a sufficiently nice boundary. Finally, Section 2.3 collects together some
analytic information about the Dedekind zeta function.

2.1. Three ways to view a number field

Let K be a number field of degree n over Q. We let DK denote its discriminant, let
o D oK be the ring of integers and let UK be the unit group. Given any ˛ 2 K we will denote
its norm by NK=Q.˛/. For any integral ideal a � o we write N a D #o=a for its ideal norm.

Let r1 (resp. 2r2) be the number of distinct real (resp. complex) embeddings of K.
Hence n D r1 C 2r2. The r1 distinct real embeddings are denoted by �1; : : : ; �r1 , while
�r1C1; : : : ; �r1C2r2 denote a complete set of 2r2 distinct complex embeddings, with �r1Ci
conjugate to �r1Cr2Ci for 1 6 i 6 r2.

The map ' W ˛ 7! .�1.˛/; : : : ; �r1Cr2.˛// canonically embeds K into the n-dimensional
commutative R-algebra V D K ˝Q R Š Rr1 � Cr2 . We will typically write v.l/, for
superscripts 1 6 l 6 r1C r2, for the projection of any v 2 V onto the lth component, which
is uniquely determined by '. Thus any v 2 V can be written v D .v.1/; : : : ; v.r1Cr2//. We
identifyK with its image '.K/ in V . Under this identification our fixed Q-basis f!1; : : : ; !ng
for K gives rise to an R-basis f'.!1/; : : : ; '.!n/g for V and we may consider V to be the set

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1388 T.D. BROWNING AND L. MATTHIESEN

fx1!1C � � � C xn!n W xi 2 Rg. This allows us to associate to v 2 V the corresponding vector
x 2 Rn and vice versa. For v 2 V we define

Nm.v/ D v.1/ : : : v.r1/jv.r1C1/j2 : : : jv.r1Cr2/j2;

which in accordance with our convention, we shall also denote as Nm.x/. This gives us a
formal extension of the norm form NK W Qn ! Q to Rn. Indeed, if v D '.˛/ for some
˛ D x1!1 C � � � C xn!n 2 K, then

Nm.'.˛// D NK=Q.˛/ D Nm.x/ D NK.x/:

A third way of viewing K is through logarithmic coordinates (see [24, §5] for details).
Writing V � D .K˝QR/� Š .R�/r1�.C�/r2 , we define the homomorphismL W V � ! Rr1Cr2
to be

v 7! .log jv.1/j; : : : ; log jv.r1/j; 2 log jv.r1C1/j; : : : ; 2 log jv.r1Cr2/j/:

Composing L with the embedding ' from above, we obtain the diagram

K� V �

Rr1Cr2

'

 L

where  D L ı '. For any ˛ 2 K�, the coordinate sum of  .˛/ is given by

 .˛/:1 D log jNK=Q.˛/j;

where 1 D .1; : : : ; 1/ 2 Rr1Cr2 . In particular  .UK/ is contained in the hyperplane

(2.1) H D fv 2 Rr1Cr2 W v:1 D 0g � Rr1Cr2 :

If ur1Cr2 D .1; : : : ; 1; 2; : : : ; 2/ 2 Rr1Cr2 , then ur1Cr2 62 H . For any v 2 V � we may write

L.v/ D uH C �r1Cr2ur1Cr2

for some uH 2 H and �r1Cr2 2 R. This decomposition allows us to understand easily the
norm of an element v, since

(2.2) log jNm.v/j D L.v/:1 D �r1Cr2ur1Cr2 :1 D n�r1Cr2 :

It follows that jNm.v/j 6 1 if and only if �r1Cr2 6 0. Finally, note that ker. / D �K , where
�K < UK denotes the subgroup of roots of unity. Thus the map L separates the free part of
the group of unity from its torsion part.

2.2. Units of normC1

We are now ready to discuss the subgroup of UK relevant to us and its action on V . Recall
that NK=Q.�/ D ˙1 for any � 2 UK . We shall work with the subgroup U .C/K of � 2 UK such

thatNK=Q.�/ D 1. SinceU .C/K is the kernel of the group homomorphismNK=Q W UK ! f˙1g,

we deduce that either UK D U
.C/
K or UK=U

.C/
K Š Z=2Z. In particular, UK and U .C/K share

the same rank r D r1 C r2 � 1.

4 e SÉRIE – TOME 50 – 2017 – No 6



NORM FORMS AND LINEAR POLYNOMIALS 1389

Let �.C/K be the normC1 subgroup of �K . Then we have decompositions

UK D �K � YK ; U
.C/
K D �

.C/
K � Y

.C/
K ;

where YK Š Y
.C/
K Š Zr . The relation between these decompositions can be described

more precisely. This is only interesting in the case where U .C/K is a proper subgroup of UK ,
which we assume for now. If K has a root of unity of norm �1 then one can ensure that
each generator of YK has norm 1, since each generator may be replaced by the product of
itself and a root of unity. This allows for decompositions where YK D Y

.C/
K . If K has no

root of unity of norm �1, then �K D �
.C/
K , and one can ensure that exactly one generator

of YK has norm �1. To see this, suppose �1 : : : ; �r is a system of fundamental units such
that NK=Q.�1/ D �1. We keep �1, but replace any other generator �i of norm �1 by the
product �1�i . The resulting system of units �1; �02 : : : ; �

0
r , say, still generates YK and has the

required property. Furthermore, �21; �
0
2 : : : ; �

0
r forms a system of generators for Y .C/K .

Our main interest in Y .C/K lies in the action it induces on V and the associated coordinate
space Rn. In general, the action ofUK on V by multiplication induces a natural action on the
coordinate space Rn as follows. For any pair .�; x/ 2 UK � Rn we let �:x D y 2 Rn denote
the coordinate vector of �.x1!1 C � � � C xn!n/ D y1!1 C � � � C yn!n.

We require a fundamental domainFC � V � for the action of'.Y .C/K / onV � that is explicit

enough to allow lattice point counting arguments to be applied. In the case where Y .C/K is
replaced by YK , the construction of such a domain is classical (see [24, §5,6]), and it is not
difficult to adapt the construction so as to apply to our situation. This construction builds
on the observation that the action ofUK is easier to understand in the logarithmic space. This
is useful since the restriction of L to '.Y .C/K / is an isomorphism, which allows us to describe

a fundamental domain for the action of '.Y .C/K / on V � in terms of a fundamental domain

for the action of  .Y .C/K / on Rr1Cr2 .

Let ı1; : : : ; ır be generators for Y .C/K and let ui D  .ıi / for 1 6 i < r1 C r2. Then

 .U
.C/
K / D  .Y

.C/
K / is a lattice of rank r contained in the hyperplane H that was defined

in (2.1). We denote this lattice by ƒC and note that it is generated by u1; : : : ;ur1Cr2�1. Let
FC � H be a fundamental parallelotope for ƒC, and recall that the vector ur1Cr2 D
.1; : : : ; 1; 2; : : : ; 2/ 2 Rr1Cr2 does not belong to H . Thus FC ˚ Rur1Cr2 describes a
fundamental domain for the action of  .Y .C/K / on  .K�/ D Rr1Cr2 . Since Y .C/K maps
isomorphically onto ƒC, an application of [24, Lemma 1 in §6] implies the following result.

L 2.1. – The set FC D fv 2 V � W L.v/ 2 FC ˚ Rur1Cr2g is a fundamental domain
for the action of '.Y .C/K / on V �.

We now turn to the desirable properties of the domain FC, that ultimately facilitate lattice
point counting. Recall that a region S � Rn is said to be a cone when x 2 S if and only
if �x 2 S , for any � 2 R>0. Moreover, if S � Rn is bounded, its boundary is called
.n � 1/-Lipschitz parametrisable (see [24, p.166]) if it is contained in the union of the images
of finitely many Lipschitz functions f W Œ0; 1�n�1 ! Rn. It is easy to see that FC is a cone.
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We are interested in the set

FC.1/ D fv 2 FC W jNm.v/j 6 1g

D fv 2 V � W L.v/ 2 FC ˚ R60ur1Cr2g;

where the second equality follows from (2.2). The proof contained in [24, pp.168–172] applies
mutatis mutandis to our situation and establishes the following result.

L 2.2. – The domain FC.1/ has an .n � 1/-Lipschitz parametrisable boundary.

We will mainly be working in the coordinate space Rn. The map

v W Rn n f0g ! .R�/r1 � .C�/r2

that takes x to v.x/ D x1!1 C � � � C xn!n D .v.1/; : : : ; v.r1Cr2// is a linear isomorphism and
preserves Lipschitz parametrisability. In particular, if

(2.3) DC D fx 2 Rn W v.x/ 2 FCg

denotes the preimage of the fundamental domain in Rn, and if

DC.1/ D fx 2 DC W jNK.x/j 6 1g;

then Lemma 2.2 implies that DC.1/ has an .n � 1/-Lipschitz parametrisable boundary.
We slightly refine the sets under consideration. The sign of NK is invariant under the action

of Y .C/K . Thus, for � 2 f˙g and T > 0 we define the sets

D�C D fx 2 DC W 0 < �NK.x/g

and

(2.4) D�C.T / D fx 2 DC W 0 < �NK.x/ 6 T g:

Since FC is a cone, the same is true for DC and D�C. We deduce that D�C.1/ has an
.n � 1/-Lipschitz parametrisable boundary from the same property for DC.1/. Further-
more, we have D�C.T / D T

1=nD�C.1/.
Note that the same facts hold true in the classical setting for

(2.5) D�.T / D fx 2 D W 0 < �NK.x/ 6 T g;

where D D fx 2 Rn W v.x/ 2 Fg and F � V � is the fundamental domain for '.YK/.

2.3. Dirichlet coefficients of �K

The construction of the majorant in Section 8 relies on a careful analysis of the sequence
of Dirichlet coefficients of the Dedekind zeta function of a number field K. Here we recall
the essential properties of �K and its Dirichlet coefficients, as found in Landau [23] or
Marcus [24], and deduce some preliminary facts required in Section 8.

The Dedekind zeta function is defined to be

(2.6) �K.s/ D
X

.0/¤a�o

1

.N a/s
D

1X
mD1

rK.m/

ms
;

for s 2 C with <.s/ > 1, with

rK.m/ D #fa � o W N a D mg:
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The Dedekind zeta function admits a meromorphic continuation to all of C with a simple
pole at s D 1 and ResiduesD1 �K.s/ D h�, where h is the class number,

(2.7) � D
2r1.2�/r2RK

j�K j
p
jDK j

;

and RK is the regulator. It follows from [24, Thms. 39 and 40] that

(2.8)
X
m6x

rK.m/ D h�x CO.x
1�1=n/;

so that the average order of rK is constant.
The function rK is multiplicative. To describe its behavior at prime powers, let p be any

rational prime and recall that the principal ideal .p/ factorizes into a product of prime ideals
in o. That is,

(2.9) .p/ D p
e1
1 : : : p

er
r ;

where ei D epi .p/; r D r.p/ 2 Z>0 and each pi � o is a prime ideal satisfying N pi D pfi ,
for some fi D fpi .p/ 2 Z>0. As in [24, §3], we have

Pr
iD1 eifi D n. Thus

rK.p
m/ D #

˚
p
m1
1 : : : pmrr � o W f1m1 C � � � C frmr D m

	
;

for any m 2 Z>0. It follows from this that

(2.10) rK.p
m/ 6 .mC 1/n:

At rational primes we obtain

(2.11) rK.p/ D #fi 2 f1; : : : ; rg W fi D 1g D #fp j .p/ W fp.p/ D 1g:

In view of (2.11), we partition the set of rational primes into three sets

P0 D fp j DKg;

P1 D fp - DK W 9 p j .p/ such that fp.p/ D 1g;

P2 D fp - DK W fp.p/ > 2 8p j .p/g:

(2.12)

The contributions to rK from P0 [ P1 and from P2 will be dealt with separately.
We end this section with some technical results concerning the restricted Euler product

(2.13) F.s/ D
Y
p2P2

�
1 �

1

ps

��1
;

for s 2 C with <.s/ > 1. The following result describes the analytic structure of F.s/.

L 2.3. – There exists ı 2 Q satisfying 1=n 6 ı 6 1 such that P1 has Dirichlet
density ı. Furthermore, there is a functionG.s/, which is holomorphic and non-zero in the closed
half-plane <.s/ > 1, such that F.s/ D �.s/1�ıG.s/.

Proof. – The first part follows from the Čebotarev density theorem (cf. [29, Cor 13.6]),
with ı D 1=n if and only if K=Q is a Galois extension. This implies that there exists a
function G1.s/, which is holomorphic and non-zero in the closed half-plane <.s/ > 1, such
that

(2.14)
Y
p2P1

�
1 �

1

ps

��1
D �.s/ıG1.s/:
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On the other hand,Y
p2P1

�
1 �

1

ps

��1
D �.s/

Y
p2P0[P2

�
1 �

1

ps

�
D �.s/F.s/�1G2.s/;

where G2.s/ is entire and non-zero. Combining these expressions we conclude the proof of
the lemma by taking G.s/ D G1.s/�1G2.s/.

C 2.4. – We haveY
p2P2
p6T

�
1 �

1

p

��1
� .logT /1�ı :

Proof. – By means of the Tauberian theorem [28, Thm. 5.11], applied to the Dirichlet
series F.s/, we deduce from Lemma 2.3 that

.logT /1�ı �
X
m6T

1hP2i
.m/

m
6

Y
p2P2
p6T

�
1 �

1

p

��1
:

This gives the correct lower bound. To establish the upper bound, we deduce from (2.14) that

.logT /ı �
X
m6T

1hP1i
.m/

m
6

Y
p2P1
p6T

�
1 �

1

p

��1
:

But then

.logT /ı
Y
p2P2
p6T

�
1 �

1

p

��1
�

Y
p2P1[P2

p6T

�
1 �

1

p

��1
� logT;

as required.

3. Technical tools

3.1. Geometry of numbers

We will need to be able to estimate the number of lattice points in shifts of sufficiently
well-behaved expanding regions. Let n 2 Z>0 and let B be any bounded subset of Rn. Write
T B D fT x W x 2 Bg for the dilation by T > 0. The following result is classical.

L 3.1. – Assume that B is bounded and that for any " 2 .0; 1/ the "-neighborhood
of the boundary @B has volume O."/. Let a 2 Rn and let T > 1. Then

#
�
Zn \ .T BC a/

�
D vol.B/T n CO.T n�1/:
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Proof. – Observe that the "-neighborhood of @T B arises as dilation by T of the
"T �1-neighborhood of @B and has volumeO."T n�1/. The lemma follows (cf. [17, App. A])
since

#
�
Zn \ .T BC a/

�
D vol

�
.Zn \ .T BC a//C Œ0; 1/n

�
;

and the set in the latter volume agrees with T BC a outside an O.1/-neighborhood
of @T BC a.

It is not hard to see that any non-empty bounded set inRn whose boundary is .n � 1/-Lip-
schitz parametrisable satisfies the hypotheses of Lemma 3.1. This follows, for example, from
the proof of Lemma 2 in [24, §6]. Similarly, bounded convex sets in Rn satisfy the hypotheses
of the lemma (see [17, Cor. A.2], for example).

Given a finite set of fixed regions B1; : : : ; Bm to which Lemma 3.1 applies, the
hypotheses of the lemma are also met by any set which arises through unions and inter-
sections of these sets. In particular it applies to intersections of bounded convex sets with
bounded sets having .n � 1/-Lipschitz parametrisable boundary.

3.2. Complex analysis

Throughout this section we will write � for the real part of a complex number s 2 C. In the
course of Sections 8 and 9 we will encounter several truncated Euler products of the following
form. For a given constantC > 0, given x > 1 and a given multiplicative arithmetic function
h W Z>0 ! C, define the Euler product

EC;x.sI h/ D
Y

C<p<x

0@1CX
k>1

h.pk/

psk

1A ;
for � > 1. Since the product is truncated, one expects that EC;x.1 C s0I h/ is well approxi-
mated by its value at s D 1, provided that js0j is sufficiently small and one has some control
on h. The following result makes this statement precise.

L 3.2. – Let c > 0 be a constant. Let H > 1 and suppose h W Z>0 ! C is a
multiplicative function satisfying jh.pk/j 6 H k at all prime powers pk . Then the Euler product
E.s/ D E3eH;x.sI h/ satisfies

E.1C s0/ D E.1/CO.js0j.log x/O.1//;

uniformly in x, for s0 2 C with js0j 6 x�c . Furthermore, we have

(3.1) jE.1/j �

ˇ̌̌̌
ˇ̌ Y
3eH<p<x

�
1C

h.p/

p

�ˇ̌̌̌ˇ̌ :
The implied constants in these estimates are allowed to depend on c and H .

For h satisfying jh.p/j 6 H on the primes, we may combine (3.1) with Mertens’s theorem
to deduce that

.log x/�H � jE.1/j � .log x/H :

This shows that the main term dominates the error term in our asymptotic formula
for E.1C s0/, when js0j 6 x�c .
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Proof of Lemma 3.2. – We allow our implied constants to depend on c andH . LetE.s/ D
E3eH;x.sI h/ and let s 2 C be such that jsj < .log x/�1. Thenˇ̌̌̌

ˇ̌X
k>1

h.pk/

p.1Cs/k

ˇ̌̌̌
ˇ̌ 6 H

p1C� �H
:

This is at most 1=2 for 3eH < p < x, since

p1C� > p1�.logx/�1 > pe�1 > 3H:

This shows that E.1C s/ is non-zero for s satisfying jsj < .log x/�1 and, furthermore, that
E is holomorphic on a domain containing this disk. The Taylor expansion about 1 is given
by

E.1C s/ D
X
j>0

sj
E.j /.1/

j Š
:

Cauchy’s inequality yields

jE.j /.1/j

j Š
6 .log x/j max

jsjD.logx/�1
jE.1C s/j:

But the right hand side is bounded by

6 .log x/j
Y

3eH<p<x

�
1C

X
k>1

jh.pk/j

p.1�1= logx/k

�
6 .log x/j

Y
3eH<p<x

�
1C

H

p
1� 1

logx �H

�
6 .log x/j

Y
3eH<p<x

�
1C

3eH

2p

�
� .log x/jCO.1/:

Thus for js0j < x�c we have

jE.1/ �E.1C s0/j �
X
j>1

js0j
j .log x/jCO.1/ 6 js0j.log x/O.1/:

To check the final claim of the lemma, we recall that jh.pk/j 6 H k . Using the logarithmic
series we therefore deduce that

log

0@E.1/ Y
3eH<p<x

�
1C

h.p/

p

��11A D X
3eH<p<x

0@log
�
1C

X
k>1

h.pk/

pk

�
� log

�
1C

h.p/

p

�1A
D

X
3eH<p<x

�X
k>2

h.pk/

pk
CO

�H 2

p2

��
:

But this is O.1/, which therefore concludes the proof.
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3.3. Lifting lemmas

This section establishes two fairly general results of Hensel type, the second of which will
be applied in Sections 4, 5, 6 and 10. Let p denote a prime number and let vp.n1; : : : ; ns/
denote thep-adic order of the greatest common divisor of any s-tuple of integers .n1; : : : ; ns/.

L 3.3. – Let m; `; ı 2 Z>0, with

m > 2ı C 1; 0 6 ı 6 m � `:

Suppose we are given a polynomial F 2 ZŒt1; : : : ; ts�, A 2 Z and a 2 Zs . Let

Rı.p
m; AIp`/ D

(
t 2 .Z=pmZ/s W

F.t/ � A .modpm/; vp.rF.t// D ı

t � a .modp`/

)
:

Then we have
#Rı.pm; AIp`/

pm.s�1/
D

#Rı.pmC1; AC kpmIp`/
p.mC1/.s�1/

;

uniformly for k 2 Z=pZ.

Proof. – For any t 2 Rı.pm; AIp`/ and any t0 2 Zs , the condition m > 2ı C 1 implies
that

F.tC pm�ı t0/ � F.t/C pm�ı t0:rF.t/ .modpm/

� A .modpm/:

Similarly, we deduce that

rF.tC pm�ı t0/ � rF.t/ � 0 .modpm�ı/

� 0 .modpıC1/;

and, since ` 6 m� ı, we also have tCpm�ı t0 � a .modp`/. Thus Rı.pm; AIp`/ consists of
cosets modulo pm�ı .

Let t 2 .Z=pmC1Z/s such that t .modpm/ 2 Rı.pm; AIp`/. Then tCpm�ı t0 runs through
ps different cosets modulo pmC1�ı as t0 runs through Zs . Moreover, for any k 2 Z=pZ, we
have tC pm�ı t0 2 Rı.pmC1; AC kpmIp`/ if and only if

p�m.F.t/ � A/C p�ı t0:rF.t/ � k .modp/;

for which there are precisely ps�1 incongruent solutions in t0 modulo p. This establishes the
lemma.

Now let G 2 ZŒx1; : : : ; xn� be a homogeneous polynomial of degree n and let A 2 Z. For
given a 2 Zn and m; ` 2 Z>0, let

.pm; AIp`/ D #

(
x 2 .Z=pmZ/n W

G.x/ � A .modpm/

x � a .modp`/

)
:

The counting function  satisfies the following lifting property.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1396 T.D. BROWNING AND L. MATTHIESEN

L 3.4 (cf. [26, Cor. 6.4]). – Assume that m > 1, A 6D 0 and

`C vp.A/C vp.n/ <
m

2
:

Then we have
.pm; AIp`/

pm.n�1/
D
.pmC1; AC kpmIp`/

p.mC1/.n�1/
;

uniformly for k 2 Z=pZ.

Proof. – Let m > 1 and let x .modpm/ be such that G.x/ � A .modpm/ and
x � a .modp`/ and pı j rG.x/, for some ı > 0. Since x:rG.x/ D nG.x/ we conclude
that pminfı;mg j nA; whence ı < m

2
� ` under the hypotheses of the lemma. In particular this

inequality implies that m > 2ı C 1 and ı 6 m � `. Observe that

.pm; AIp`/ D
X

06ı<m2 �`

#Rı.p
m; AIp`/;

.pmC1; AC kpmIp`/ D
X

06ı<m2 �`

#Rı.p
mC1; AC kpmIp`/;

for any k 2 Z=pZ, in the notation of Lemma 3.3. The statement of Lemma 3.4 therefore
follows from Lemma 3.3 with F D G and s D n.

4. Norm forms modulo pm

Throughout this section K=Q will denote a finite extension of degree n, with integral
basis f!1; : : : ; !ng for the ring of integers o D oK . Suppose we are given an integral ideal
a � o, with corresponding Z-basis f˛1; : : : ; ˛ng. These bases are both Q-bases for K=Q. We
let �.˛1; : : : ; ˛n/ D j det.�i . j̨ //j2, and similarly for f!1; : : : ; !ng. Let ck` 2 Z be such that

(4.1) ˛k D

nX
`D1

ck`!`;

for 1 6 k 6 n. Then according to [23, Satz 40 and 103], we have

�.˛1; : : : ; ˛n/ D .N a/2jDK j D j det.ck`/j
2�.!1; : : : ; !n/:

In particular N a D j det.ck`/j.

The norm forms we discuss in this section take the more general shape

(4.2) N.xI a/ D NK=Q.x1˛1 C � � � C xn˛n/;

which defines a homogeneous polynomial of degree n with coefficients in Z. Note that
N.xI o/ D NK.x/ in our earlier notation, which we will often abbreviate by N.x/. GivenA 2 Z,
x0 2 Zn and M;q 2 Z>0 with M j q, we define the counting function

(4.3) %.q; A; aIM/ D #

(
x 2 .Z=qZ/n W

N.xI a/ � A .mod q/

x � x0 .modM/

)
:
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Such counting functions appear naturally when analyzing weak approximation conditions
at non-archimedean places. In the special case a D o, we put

(4.4) %.q; AIM/ D %.q; A; oIM/:

Likewise, when M D 1, we set

%.q; A; a/ D %.q; A; aI 1/; %.q; A/ D %.q; A; oI 1/:

This section is devoted to a detailed analysis of the quantities %.q; A; a/ and %.q; A/. When
M ¤ 1 it will suffice for our purposes to note that %.q; A; aIM/ 6 %.q; A; a/ and apply the
results forM D 1. By the Chinese remainder theorem we may consider %.q; A; a/ and %.q; A/
in the special case q D pm for a rational prime p andm 2 Z>0. We will mainly be concerned
with the situation for p - DK N a. Our first result shows that any two norm forms are locally
equivalent.

L 4.1 (cf. [26, Lemma 4.2]). – Let m 2 Z>0 and let p - N a. Then we have

%.pm; A; a/ D %.pm; A/:

Proof. – Let C 2Mn.Z/ be the matrix with coefficients ck` as in (4.1). Since N a D j det Cj,
it follows that p - det C, whence C and Ct are invertible in Zp. Let ! D .!1; : : : ; !n/. Then,
for any x 2 Zn, we have

N.xCt I o/ D NK=Q
�
!:.xCt /

�
D NK=Q ..C!/:x/

D N.xI a/:

It follows that N.xI a/ and N.xI o/ are equivalent over Zp, which suffices for the lemma.

We now have everything in place to record our main result in this section.

L 4.2. – Let A 2 Z, let m 2 Z>0, let p be a prime and let k D vp.A/. Then we have

%.pm; A/

pm.n�1/
� min fk C 1;mgn :

Suppose that p - DK and k < m. Then we have

%.pm; A/

pm.n�1/
D rK.p

k/

�
1 �

1

p

��1Y
pjp

�
1 �

1

N p

�
:

Proof. – Our proof of this result was suggested to us by the anonymous referee and is
based on the observation that %.pm; A/ is equal to the number of ˛ 2 o, modulo pm, for
which NK=Q.˛/ � A .modpm/. It will be convenient to temporarily abbreviate NK=Q by N
in what follows.

We first consider the special case where pm j A. In this case every ˛ that is counted
by %.pm; A/ will have an ideal divisor q such that pm j N q, and with the property that
pm - N q0 for every proper divisor q0 j q. Thus q D

Q
p p

ep for prime ideal divisors p j .p/,
with ep 6 m for each p. Since there are at most n prime ideal factors of p, there are at
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most .mC 1/n possibilities for q. For each such q the number of ˛ .modpm/ with q j .˛/ is
pmn=N q 6 pm.n�1/. All together, this yields

(4.5) %.pm; A/ 6 .mC 1/npm.n�1/ � mnpm.n�1/

whenever pm j A.

Suppose now that pkkA with 0 6 k < m. Then, for any ˛ as above, pkkN.˛/ and there is
a unique ideal q containing ˛, with N q D pk . Note that q contains pk . It follows that

%.pm; A/ D
X
q

#f˛ .modpm/ W ˛ 2 q; N.˛/ � A .modpm/g;

where the sum is extended over integral ideals q of norm pk . The next goal is to relate, for any
of these q, the cardinality above to %.pm�k ; B/ for some B that is coprime to p. To this end,
recall that there exists a prime ideal r in the ideal class Œq� which is coprime to .p/. Suppose
that q.ˇ/ D r./, so that ˛ 2 q if and only if ˛ˇ�1 2 r. We now have

#f˛ .modpm/ W ˛ 2 q; N.˛/ � A .modpm/g

D #f˛ .modpm/ W ˛ˇ�1 2 r; N.˛ˇ�1/ � AN.ˇ�1/ .modpmN.ˇ�1//g

D #f� .modpmˇ�1/ W � 2 r; N.�/ � B .modpm�k N r/g;

where B D Ap�k N r, and where we note that pmˇ�1 2 r since pm 2 q. Since N rjN.v/ for
any v 2 r, we can replace the final congruence condition above by N.�/ � B .modpm�k/.
Now choose a Z-basis f�1; : : : ; �ng for r and recall the Definition (4.2) of the associated norm
form N.xI r/. Then the above counting function is equal to the number of integer vectors
x 2 Zn producing distinct � .modpmˇ�1/ for which N.xI r/ � B .modpm�k/. Our task
therefore falls to counting solutions of N.xI r/ � B .modpm�k/ lying in cosets of a certain
lattice. To describe this lattice, note that q j .pk/ and therefore pm�kr j pmrq�1. Further, if
� and �0 agree modulo pm�kr then we have x � x0 .modpm�k/ and so N.xI r/ and N.x0I r/
coincide modulo pm�k . It therefore follows that

#f� .modpmˇ�1/ W � 2 r; N.�/ � B .modpm�k/g

D
N.pmrq�1/
N.pm�kr/

#
n
x .modpm�k/ W N.xI r/ � B .modpm�k/

o
D pk.n�1/%.pm�k ; B/;

by Lemma 4.1, sincep - N r. Observing that the number of ideals q of normpk is just rK.pk/,
we have therefore shown that for any prime p, there existsB D Ap�k N r 2 Z such that p - B
and

(4.6) %.pm; A/ D rK.p
k/pk.n�1/%.pm�k ; B/;

whenever 0 6 k < m.

It remains to analyze %.pm; A/ when p - A. Consider the group homomorphism

� W .o=.pm//� ! .Z=.pm//�

that is induced by the norm. Since %.pm; A/ D #��1.A/ 6 # Ker � , we proceed by bounding
its kernel. Suppose first that p > 2 and let g be a primitive root for pm. Note that the image
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of � contains the subgroup H generated by nth powers of elements of .Z=.pm//�. Hence

Œ.Z=.pm//� W Im.�/� D
Œ.Z=.pm//� W H�
ŒIm.�/ W H�

6 Œ.Z=.pm//� W H� D
'.pm/

#H
:

But #H D '.pm/= gcd.n; '.pm//, which readily implies that Im.�/ has index at most n
in .Z=.pm//�. When p D 2 we argue similarly, using the fact that elements of .Z=.2m//�

can be expressed uniquely as .�1/u5v for u 2 f1; 2g and v 2 f1; : : : ; 2m�2g, to deduce
that Œ.Z=.pm//� W Im.�/� 6 2n. For any prime power pm it therefore follows that we have
Ker.�/ 6 2n'K.p

m/='.pm/, where 'K is the Euler totient function associated to K. Hence

(4.7) %.pm; A/ 6 2n
'K.p

m/

'.pm/
� pm.n�1/;

whenever p - A. We can be more precise when p is further assumed to be unramified.
Assuming that p - ADK , we claim that

(4.8)
%.pm; A/

pm.n�1/
D

�
1 �

1

p

��1Y
pjp

�
1 �

1

N p

�
:

Taking G D N and ` D 0 in Lemma 3.4, we see that it suffices to establish this fact when
m D 1. The strategy is to show that the map � is onto, which immediately implies that
%.p;A/ D # Ker.�/ D 'K.p/='.p/, so that the case m D 1 of (4.8) follows. To show that
� is onto we must show that there exists x 2 Fnp such that N.x/ � A .modp/. For this we
deduce from the Chevalley–Warning theorem (see [31, §I.2.2]) that the number of projective
solutions is divisible by p. Moreover, the number of solutions on the hyperplane at infinity
is

#fx 2 Fnp W N.x/ � 0 .modp/g D pn � #fx 2 Fnp W p - N.x/g D pn � 'K.p/:

Since p - 'K.p/ for an unramified prime p, we may conclude that the number of affine
solutions to the congruence N.x/ � A .modp/ is not divisible by p. This shows that � is
onto, as required.

We may now conclude the proof of Lemma 4.2. The second part follows from (4.6) and
(4.8). Recalling from (2.10) that rK.pk/ 6 .k C 1/n, the first part follows from (4.5), (4.6)
and (4.7).

5. Counting points on systems of norm form equations

While the previous two sections described background, notation and technical tools, we
now begin with the proof of our main theorem. In the first two parts of this section we state
and discuss our main auxiliary result which may be interpreted as an asymptotic formula
for the number of integral points of bounded height on an integral model for the variety
V � An1C���CnrCsQ defined in (1.3). In the final part of this section we deduce Theorem 1.3
from this asymptotic formula.
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5.1. Representation function and asymptotic formula

After a change of variables we may assume that we are working with an integral model
for V, defined by the system of equations

0 ¤ NKi .xi / D fi .u1; : : : ; us/; .1 6 i 6 r/;

where eachKi is a number field of degree ni > 1, each fi is a linear form defined over Z, and
the forms fi are pairwise non-proportional. We further assume that each NKi is defined using
a Z-basis f!i;1; : : : ; !i;ni g for the ring of integers of oKi , so that it too has integer coefficients.

We will phrase the problem of counting integral points on V in terms of representation
functions Ri W Z! Z>0 that, in the simplest instance, count the number of representations
m D NKi .xi / of each non-zero integer m, where xi runs through equivalence classes with
respect to the action of the free part Y .C/Ki

of U .C/Ki
. Our application to Theorem 1.3 requires

us to incorporate some flexibility into the definition ofRi as to exactly which representations
are counted. To describe these restrictions, we use the notation of Section 2. In particular,
recall that

Di;C D fx 2 Rni W x1!i;1 C � � � C xni!i;ni 2 Fi;Cg

is a fundamental domain for the action of Y .C/Ki
on the coordinate space Rni . Furthermore,

we recall from (2.4) that

D�i;C.T / D fx 2 Di;C W 0 < �NKi .x/ 6 T g;

for � 2 f˙g and T > 1.

D 5.1 (Representation function). – Let i 2 f1; : : : ; rg and let Xi � Di;C be a
cone such that each of the bounded setsXi\D�i;C.1/ has an .ni�1/-Lipschitz parametrizable
boundary, unless it is empty. Let M 2 Z>0 and let bi 2 .Z=MZ/ni for 1 6 i 6 r . For any
m 2 Z we define

Ri .mIXi ;bi ;M/ D 1m 6D0 � #

(
x 2 Zni \ Xi W

NKi .x/ D m

x � bi .modM/

)
:

We shall abbreviate Ri .m/ D Ri .mIXi ;bi ;M/, once Xi ;bi and M are fixed.

Next, let K � Rs be any convex bounded set. Our interest lies in the counting function

(5.1) N.T / D
X

u2Zs\TK
u�a .modM/

rY
iD1

Ri .fi .u//;

for given a 2 .Z=MZ/s . By unraveling the definition of Ri , this is seen to express the
number of suitably constrained points in V.Z/. For technical reasons, we restrict attention
to a 2 .Z=MZ/s such that pvp.M/ - fi .a/ for any p jM and any 1 6 i 6 r .

From now on we will viewM;K1; : : : ; Kr , together with a;bi and the coefficients of V as
being fixed once and for all. Any implied constants in our work will therefore be allowed
to depend on these quantities in any way. Moreover, the regions X1; : : : ;Xr are also to
be considered fixed, with any implied constant being allowed to depend on the Lipschitz
constants of the maps parametrising the boundaries.
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Before revealing our asymptotic formula for N.T / we require a bit more notation. For
given q 2 Z>0 and A 2 Z, with M j q, we let

%i .q; AIM/ D #

(
x 2 .Z=qZ/ni W

NKi .x/ � A .mod q/

x � bi .modM/

)
;

for 1 6 i 6 r , as in (4.4). Moreover, for � 2 f˙g, we define

R� D fx 2 R W �x > 0g

and

(5.2) ��i .Xi / D vol
�
D�i;C.1/ \ Xi

�
:

Finally, we denote by f W Rs ! Rr the linear map defined by the system f D .f1; : : : ; fr / of
linear forms. Bearing this notation in mind we have the following result.

T 5.2. – Let f1; : : : ; fr 2 ZŒu1; : : : ; us� be pairwise non-proportional linear forms
and assume that jfi .K/j 6 1, for 1 6 i 6 r . Suppose thatM , bi and a are as above; in particular,
pvp.M/ - fi .a/ for any p jM and any 1 6 i 6 r . Then we have

N.T / D ˇ1
Y
p

p̌ � T
s
C o.T s/; .T !1/;

where

ˇ1 D
X
�2f˙gr

vol
�
K \ f�1.R�1 � � � � � R�r /

� rY
iD1

�
�i
i .Xi /

and

p̌ D lim
m!1

1

pms

X
u2.Z=pmZ/s

u�a .modpvp.M//

rY
iD1

%i .p
m; fi .u/Ipvp.M//

pm.ni�1/
;

for each prime p. Furthermore, the product
Q
p p̌ is absolutely convergent.

We will show how Theorem 5.2 implies Theorem 1.3 in Section 5.3. The proof of
Theorem 5.2 takes up most of the remainder of this paper. The first part is established
in the course of Sections 6–10, while the final part is dealt with in Section 5.2 below.

R 5.3. – Our proof uses the machinery developed in Green and Tao [17]. As such,
it in fact covers the case where in the statement of Theorem 5.2 each linear form fi is replaced
by a linear polynomial fi C ai , for an integer ai D O.T /.

R 5.4. – In the special case where Xi D Di;C for 1 6 i 6 r and M D 1

in N.T /, it is straightforward to adapt the calculation in [24, §6] to find a precise value

for ��i .Di;C/ D vol
�
D�i;C.1/

�
. Let us drop the index i and work with a typical field K of

degree n. Let ı1; : : : ; ır1Cr2�1 be generators for Y .C/K . We define a modified regulator R.C/K

to be the absolute value of the determinant of the .r1 C r2/ � .r1 C r2/ matrix, whose rows
are given by  .ı1/; : : : ;  .ır1Cr2�1/;ur1Cr2 2 Rr1Cr2 , in the notation of Section 2.2. Then
one finds that

��i .Di;C/ D

(
0; if � D � and r1 D 0,

2r1�1.2�/r2R
.C/
K =

p
jDK j; otherwise:
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Observing that  .�21/ D 2 .�1/, furthermore, an inspection of the explicit choice of gener-
ators for Y .C/K given in Section 2.2 shows that R.C/K D ŒYK W Y

.C/
K �RK . Theorem 5.2 recovers

[27, Thm. 1.1] when K1; : : : ; Kr are all taken to be quadratic.

5.2. Convergence of the product of local densities

In this section we prove the absolute convergence of the product
Q
p p̌ from Theorem 5.2,

by establishing an asymptotic estimate for the local density p̌, valid whenever p is large
compared to

(5.3) L D max
16i6r

˚
kfik; s; r; jDKi j

	
and p -M . Here kfik denotes the maximum modulus of the coefficients of fi .

P 5.5. – We have p̌ D 1COL.p
�2/ whenever p -M and p̌ D OL.1/ when

p j M . In particular, there exists L0 D OL.1/, which is independent of M , such that p̌ > 0

whenever p > L0 and p -M .

This proposition immediately implies the convergence of the product
Q
p p̌. The proof

of Proposition 5.5 splits into two cases according to whether p is large or small compared
to L, and follows that of [26, Lemma 8.3]. The main ingredients are the information that
Lemma 4.2 provides about %.q; A/, and the properties of local divisor densities, which we
discuss next.

Let

(5.4) Um D fu 2 .Z=pmZ/s W u � a .modpvp.M//g;

for any m 2 Z>0. For given c 2 Zr>0 and a given system f D .f1; : : : ; fr / as above, we define
the local divisor density (cf. [17, p.1831] and [26, Def. 8.4]) to be

˛f.p
c1 ; : : : ; pcr / D

1

pms

X
u2Um

rY
iD1

1pci jfi .u/;(5.5)

wherem D maxfc1; : : : ; crg. Let n.c/ denote the number of non-zero components of c. Then

(5.6) ˛f.p
c1 ; : : : ; pcr /

8̂̂̂̂
<̂
ˆ̂̂:
D 1; if n.c/ D 0,

D p�maxi fci g; if p �L 1, p -M and n.c/ D 1,

6 p�maxi¤j fciCcj g; if p �L 1, p -M and n.c/ > 1,

�L p
�maxi fci g; otherwise.

It is important to note here that even when p j M and n.c/ > 1 the implied constant in
the final estimate does not depend on M . Moreover, here (and elsewhere) we take p �L 1

to mean that p is sufficiently large in terms of L. An easy way to bound sums over divisor
densities uses the observation that there are at most rJ r�1 choices of k 2 Zr>0 such that
maxi ki D J and therefore

(5.7)
X
J>J0

X
k2Zr>0

maxfk1;:::;kr gDJ

J T

pJ
6 r

X
J>J0

J TCr�1

pJ
�T;r;J0

1

pJ0

X
J>0

J TCr�1

2J
�T;r;J0

1

pJ0

for any T; J0 > 0.
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Proof of Proposition 5.5. – We may write p̌ D limm!1 p̌.m/, with

(5.8) p̌.m/ D
1

pms

X
k2Zr>0

X
u2Um

vp.fi .u//Dki

rY
iD1

%i .p
m; fi .u/Ip�/
pm.ni�1/

and � D vp.M/. We begin by analyzing p̌ when p is small. In fact we will show that

p̌ D OL.1/, for any prime p, which suffices for Proposition 5.5.

Since

%i .p
m; fi .u/Ip�/ 6 %i .p

m; fi .u//;

an application of the first part of Lemma 4.2 in (5.8) shows that

p̌.m/ 6
1

pms

X
J>0

X
k2Zr>0

maxfk1;:::;kr gDJ

X
u2Um

vp.fi .u//Dki

rY
iD1

%i .p
m; fi .u//

pm.ni�1/

�
1

pms

X
J>0

X
k2Zr>0

maxfk1;:::;kr gDJ

X
u2Um
pki jfi .u/

minfm; J C 1gn1C���Cnr :

Next we invoke (5.6) and (5.7) to obtain

p̌.m/�L

X
J>0

X
k2Zr>0

maxfk1;:::;kr gDJ

minfm; J C 1gn1C���Cnr

pJ
�L 1:

Taking the limit m!1, this shows that p̌ D OL.1/, as required for Proposition 5.5.

We proceed to analyze p̌ when p �L 1 and p - M . In particular, we have � D 0 and
Um D .Z=pmZ/s . Let K 1 D .Z \ Œ0;m//r and let K 2 D Zr>0 n Œ0;m/r . Accordingly, we

write p̌.m/ D ˇ
.1/
p .m/C ˇ

.2/
p .m/, where ˇ.i/p .m/ is the contribution from k 2 K i .

Since p �L 1, it follows from (5.3) that p - DKi for each 1 6 i 6 r . Thus the second part
of Lemma 4.2 implies that

ˇ.1/p .m/ D cp.K1/ : : : cp.Kr /
1

pms

X
k2K1

X
u2Um

vp.fi .u//Dki

rY
iD1

rKi .p
ki /

D cp.K1/ : : : cp.Kr /
1

pms

X
k2K1

 
rY
iD1

rKi .p
ki /

! X
u2Um

vp.fi .u//Dki

1;

where

cp.Ki / D

�
1 �

1

p

��1 Y
pjp;p�oKi

�
1 �

1

N p

�
:
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For given k 2 K 1, we have
1

pms

X
u2Um

vp.fi .u//Dki

1 D
X

"2f0;1gr

.�1/"1C���C"r˛f.p
k1C"1 ; : : : ; pkrC"r /

D

8̂̂̂̂
<̂
ˆ̂̂:
1 � rp�1 COr .p

�2/; if k D 0,

p�1 COr .p
�2/; if k 2 f.1; 0; : : : ; 0/; : : : ; .0; : : : ; 0; 1/g,

Or .p
�maxfk1;:::;kr g/; if n.k/ D 1, maxfk1; : : : ; krg > 1,

Or .p
�1�maxfk1;:::;kr g/; otherwise,

by (5.6).
Since rKi .p

k/ D O..k C 1/ni /, by (2.10), we deduce from (5.7) thatX
J>2

X
k2K1

maxfk1;:::;kr gDJ
n.k/D1

p�J
rY
iD1

rKi .p
ki /C

X
J>1

X
k2K1

maxfk1;:::;kr gDJ
n.k/>1

p�J�1
rY
iD1

rKi .p
ki /�r

1

p2
:

Hence (2.11) implies that

ˇ.1/p .m/ D cp.K1/ : : : cp.Kr /

 
1C

rX
iD1

rKi .p/ � 1

p
COr

�
1

p2

�!
D 1COr

�
1

p2

�
:

Putting everything together, we conclude thatˇ̌
p̌.m/ � 1

ˇ̌
�r

1

p2
C ˇ.2/p .m/:

The first part of Lemma 4.2 can be used to show that ˇ.2/p .m/ is at most

1

pms

X
k2K2

X
u2Um
pki jfi .u/

rY
iD1

%i .p
m; fi .u//

pm.ni�1/
�

mn1C���Cnr

pms

X
k2K2

X
u2Um
pki jfi .u/

1

D mn1C���Cnr
X

k2K2

˛f.p
k1 ; : : : ; pkr /

�
mn1C���Cnr

p1Cm
;

by (5.6). Substituting this into our expression for p̌ and taking the limit m ! 1, this
completes the proof of Proposition 5.5 when p �L 1.

5.3. Deduction of Theorem 1.3

We proceed to show how Theorem 1.3 follows from Theorem 5.2. Our task is to establish
the Hasse principle and weak approximation for the smooth variety V � An1C���CnrCsQ ,
which after the reductions from the start of Section 5.1 is given by

0 ¤ NKi .xi / D fi .u1; : : : ; us/; .1 6 i 6 r/;

for pairwise non-proportional linear forms f1; : : : ; fr defined over Z.
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Suppose that we are given a point .u; xi / 2 V.Q/. Then each point in the orbit f.u; �i :xi / W
�i 2 U

.C/
Ki
g also belongs to V.Q/. We will therefore content ourselves with looking for points

.u; xi / 2 V.Q/ such that each xi lies in the fundamental domainDi;C which we constructed
in Lemma 2.1 and (2.3) for the free part of U .C/Ki

. We will call such points primary.

Let � denote the set of places of Q. We assume we are given points .u.�/; x.�/i / 2 V.Q�/
for every � 2 �. By possibly replacing the adelic point .x.�/i /�2� by .�i :x

.�/
i /�2� for an

appropriate �i 2 U
.C/
Ki

, we may assume that x.1/i belongs to Di;C for each 1 6 i 6 r . Let
S be any finite set of places, including the archimedean place as well as all non-archimedean
places corresponding to primes p < L0, whereL0 D O.1/was determined in Proposition 5.5.

Let " > 0. Then, in order to prove Theorem 1.3, it suffices to show that there is a primary
point .u; xi / 2 V.Q/ such that

(5.9) ju � u.�/j� < "; jxi � x.�/i j� < "; .1 6 i 6 r/;

for every � 2 S . Here, j � j� denotes the �-adic norm extended to vectors in the obvious way,
and we follow the convention that j � j1 D j � j.

On rescaling appropriately we may assume that the points .u.�/; x.�/i / that we are given
belong to Zn1C���CnrCs� for every finite � 2 S . By the Chinese remainder theorem we can then
produce an integer vector .u.M/; x.M/

i / such that

(5.10) ju.M/
� u.�/j� < "; jx

.M/
i � x.�/i j� < "; .1 6 i 6 r/;

for all finite � 2 S . We now seek integral points .u; xi / 2 V.Z/ satisfying the following local
conditions. For the finite places we impose

u � u.M/ .modM/; xi � x.M/
i .modM/; .1 6 i 6 r/;(5.11)

for an appropriate modulusM 2 Z>0 with the property that p -M whenever p 62 S . In view
of (5.10) these conditions imply (5.9). To guarantee that

(5.12) pvp.M/ - fi .u.M// for all p jM; .1 6 i 6 r/;

it suffices to choose " sufficiently small, since fi .u.�// ¤ 0 in Q� .
For the infinite place we impose that

(5.13) ju � Bu.1/j < "B; jxi � B1=ni x
.1/
i j < "B

1=ni ; .1 6 i 6 r/;

with B D P n1:::nr and P 2 Z>0 tending to infinity such that P � 1 .modM/. Thus any
point .u; xi / 2 V.Z/ satisfying (5.11) and (5.13) gives rise to .B�1u; B�1=ni xi / 2 V.Q/
satisfying the original condition (5.9). We aim to detect the existence of integral points
satisfying (5.11) and (5.13) using Theorem 5.2. For this reason, we now proceed to replace
(5.13) by a condition that is more suitable for an application of the theorem.

Let 1 6 i 6 r and let "0 > 0. We begin by defining a cone that is symmetric about x.1/i ,
via

Bi .x
.1/
i I "

0/ D

(
x 2 Rni \Di;C W

ˇ̌̌̌
ˇ x
jNKi .x/j

1=ni
�

x.1/i

jNKi .x
.1/
i /j1=ni

ˇ̌̌̌
ˇ < "0

)
:

Note that Bi .x
.1/
i I "

0/ ¤ ;, since x.1/i 2 Di;C by our work above. It follows from
Sections 2.2 and 3.1, that for � 2 f˙g each D�i;C.1/ \ Bi .x

.1/
i I "

0/ is either empty or such
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that Lemma 3.1 applies. Indeed, these sets arise as the intersection of a bounded convex set
with a set that has an .ni �1/-Lipschitz parametrisable boundary. Moreover, we clearly have

(5.14) vol.D�i;C.1/ \Bi .x
.1/
i I "

0// > 0

when � D sign.NKi .x
.1/
i //. The second condition in (5.13) now holds whenever

(5.15) xi 2 Bi .x
.1/
i I "

0/ \ fx 2 Rni W jNKi .x/ � B NKi .x
.1/
i /j < "0Bg

for sufficiently small "0 in terms of max16i6r jNKi .x
.1/
i /j. We fix such a choice of "0 < ".

In view of the first part of (5.13), we define the convex bounded region

K.u.1/I "00/ D fu 2 Rs W ju � u.1/j < "00g;

for "00 > 0. Observe that for sufficiently small "00 < ", the condition u 2 BK.u.1/I "00/ implies
both the first part of (5.13) and, furthermore,

jfi .u/ � Bfi .u.1//j < "0B:

In conclusion, any point .u; xi / 2 V.R/ with

(5.16) u 2 BK.u.1/I "00/ and xi 2 Bi .x
.1/
i I "

0/

satisfies (5.15) and therefore also (5.13).
With these choices of "0; "00, we fix the representation functions

Ri .m/ D Ri .mIBi .x
.1/
i I "

0/; x.M/
i ;M/

from Definition 5.1, for 1 6 i 6 r . It is clear that

jfi .K.u.1/I "00//j � Œ�H;H�

for H D s.1C "/ju.1/j �maxi kfik. In particular, H � 1. Thus we observe that, on the one
hand,

N.HB/ D
X

u2Zs\HB.H�1K.u.1/I"00//
u�u.M/ .modM/

rY
iD1

Ri .fi .u//

counts exactly the primary points .u; xi / 2 V.Z/which satisfy (5.11) and (5.16). On the other
hand, N.HB/ takes the shape of the counting function (5.1) from Theorem 5.2, with

K D H�1K.u.1/I "00/; Xi D Bi .x
.1/
i I "

0/; a D u.M/; bi D x.M/
i :

Moreover, all the conditions of Theorem 5.2 are satisfied. We conclude, for T D HB, that

N.HB/ D .HB/sˇ1
Y
p

p̌ C o.B
s/;

where the error term may depend on "0, "00, M , K1; : : : ; Kr , as well as on u.M/, u.1/, x.M/
i ,

x.1/i and on the coefficients of V. All that remains now, in order to deduce Theorem 1.3, is
to show that

ˇ1
Y
p

p̌ � 1:

Beginning with ˇ1 we recall that

��i D �
�
i .Bi .x

.1/
i I "

0// D vol
�
D�i;C.1/ \Bi .x

.1/
i I "

0/
�
:
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Thus, (5.14) yields ��ii > 0 when �i D sign.fi .u1// for each 1 6 i 6 r . Next we check that
for these choices of �1; : : : ; �r we also have

vol.H�1K.u.1/I "00/ \ f�1.R�1 � � � � � R�r // > 0:

Since f1; : : : ; fr are linear homogeneous polynomials, the region f�1.R�1 � � � � � R�r / is a
cone. Thus

vol
�
H�1K.u.1/I "00/ \ f�1.R�1 � � � � � R�r /

�
D H�s vol

�
K.u.1/I "00/ \ f�1.R�1 � � � � � R�r /

�
;

which is positive, since u.1/ is an element of the open set f�1.R�1 � � � � � R�r /.
Turning to the local factors at the non-archimedean places p, we recall that

p̌ D lim
m!1

1

pms

X
u2Um

rY
iD1

%i .p
m; fi .u/Ipvp.M//

pm.ni�1/
;

where Um is given by (5.4), with a D u.M/. By construction, we have p -M whenever p 62 S
and it follows from Proposition 5.5 thatY

p 62S

p̌ � 1;

and that p̌ D O.1/ for p 2 S . This leaves us to show that p̌ > 0 for every p 2 S in order
to complete the proof of Theorem 1.3. We will deduce this with the help of Lemma 3.4 from
the existence of local solutions at these primes. While we are primarily interested in p 2 S ,
the following argument works for any prime p.

With Lemma 3.4 in mind, we fix a prime p and let

m0 D 2
�
1C vp.M/C

rX
iD1

vp.fi .u.M///C

rX
iD1

vp.ni /
�
:

Recall that we are given .u.p/; x.p/i / 2 V.Qp/ such that (5.10) holds for � D p. By solving
this approximation problem for a smaller value of ", we can find .u0; x0i / 2 Zn1C���CnrCs such
that

.u0; x0i / � .u
.M/; x.M/

i / .modpvp.M// and fi .u0/ � NKi .x
0
i / .modpm

0

/:

Thus,
rY
iD1

%i .p
m0 ; fi .u0/Ipvp.M// > 1;

where each %i is defined with respect to x.M/
i . The technical condition (5.12) ensures that such

approximations u0 satisfy vp.fi .u0// D vp.fi .u.M/// and fi .u0/ ¤ 0.
The definition ofm0 ensures that the conditions of Lemma 3.4 are satisfied whenm > m0,

` D vp.M/, A D fi .u0/, a D x.M/
i and G D NKi , for any 1 6 i 6 r . Hence we obtain

rY
iD1

%i .p
m; fi .u/Ipvp.M//

pm.ni�1/
D

rY
iD1

%i .p
m0 ; fi .u0/Ipvp.M//

pm
0.ni�1/

>
1

pm
0.n1C���Cnr�r/

;
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whenever u 2 U 0m D fu 2 .Z=pmZ/s W u � u0 .modpm
0

/g. The set U 0m has p.m�m
0/s

elements and is clearly a subset of Um. Therefore

p̌.m/ >
1

pms

X
u2U 0m

rY
iD1

%i .p
m; fi .u/Ipvp.M//

pm.ni�1/

>
1

pm
0.n1C���CnrCs�r/

;

for every m > m0, which provides the desired inequality p̌ > 0 for p 2 S .

6. W -trick and non-correlation with nilsequences

The balance of this paper is dedicated to the proof of Theorem 5.2. Our proof proceeds
via the methods from [17] and therefore splits into two tasks. This section accomplishes one
them. Recall Definition 5.1 of Ri for 1 6 i 6 r . We show here that the function Ri , when
passing to suitable subprogressions and subtracting off its mean value, does not correlate
with nilsequences. In Sections 7 and 8 we deal with the second task and construct a pseu-
dorandom majorant for Ri . To ease notation we shall drop the subscript i and consider the
representation function associated to a typical K of degree n.

In order for an arithmetic function to be orthogonal to nilsequences, it first of all needs
to be equidistributed in residue classes to small moduli. That is, its average value should not
change when passing to subprogressions with respect to small moduli. For this to be valid in
our situation, we will choose a product W of powers of small primes, split

R.m/ D
X

A.modW /

R.m/1m�A.modW /

and consider each of the functionsm 7! R.WmCA/ separately. This operation is called the
“W -trick” and was introduced in [16].

Following [26, p.260], let w.T / D log logT and let

(6.1) W D
Y

p6w.T /

p˛.p/;

where ˛.p/ D d.C1 C 1/ logp logT e for a constant 1 6 C1 � 1 to be specified in
Proposition 8.2. In particular,

p˛.p/�1 < .logT /C1C1 6 p˛.p/:

Taking T sufficiently large, we may henceforth assume thatM j W . Moreover, it is clear that
W D O.T o.1//.

Our first result concerns the average order of theW -tricked functionsm 7! R.WmCA/.

L 6.1. – Let R D R.mIX;b;M/ and let � 2 f˙g be such that X\D�C 6D ;. For any
q 2 Z>0 with M j q, we haveX

0<�m6x
m�A.modq/

R.m/ D
%.q; AIM/

qn
��x CO.qx1�1=n/;

where %.q; AIM/ is given by (4.3) and (4.4) with x0 D b and �� D ��.X/ is given by (5.2).
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Proof. – Let us writeX.x/ D X\D�C.x/: Breaking the given sum overR.m/ into residue
classes, we find thatX

0<�m6x
m�A.modq/

R.m/ D
X

y2.Z=qZ/n
NK .y/�A.modq/

y�b .modM/

# fx 2 Zn \ X.x/ W x � y .mod q/g :

The inner cardinality equals #
�
Zn \ q�1.X.x/ � y/

�
, which in turn equals

��.X/x

qn
CO

�
q1�nx1�1=n

�
;

by Lemma 3.1. The statement of the lemma easily follows.

The results that follow no longer hold for arbitrary residue classesA .modW / and we will
be forced to work with the set of unexceptional residue classes

(6.2) A D

8̂̂<̂
:̂A .modW / W

0 6 vp.A/ < vp.W /=3 for all p < w.T /

0 6 vp.A/ < vp.M/ for all p jM

%.W;AIM/ > 0

9>>=>>; :
To justify this, we shall see in Proposition 8.2 that integers that are divisible by a large
prime power make a negligible contribution to the asymptotic formula in Theorem 5.2.
Consequently, such integers may be excluded from consideration altogether. Next, in view
of our assumption that pvp.M/ - fi .a/ for any p j M and any 1 6 i 6 r , it is clear that
there is no contribution from progressions fm � A .modW /g such that vp.A/ > vp.M/

for any p j M . Finally, when %.W;AIM/ D 0 then R is identically 0 on the progression
fm � A .modW /g and so we may exclude these residue classes A as well.

The next result shows that the function m 7! R.Wm C A/ is equidistributed in residue
classes to w.T /-smooth moduli whenever A .modW / is an unexceptional residue.

L 6.2. – Let � 2 f˙g be such that X \ D�C 6D ;. Let A be a representative of a
class from A such that 0 < �A < W , and let a; q 2 Z be such that 0 6 �a < q < T=W .
Suppose further that q is w.T /-smooth, and assume that T 0; T 00 2 Z>0 such that T 0 � T=W

and T 00 � T=.qW /. Then we have

E06�m<T 0 R.WmC A/ D E06�m<T 00 R.W.qmC a/C A/CO.q2T �1=nCo.1//:

Proof. – Let E1 denote the sum on the left hand side and let E2 be the sum on the
right hand side. Since T 0 is an integer, the summation range of E1 may be written as
0 6 �m 6 T 0 � 1. Since m and A are both of sign �, we deduce that 0 < �.W m C A/ 6
.T 0 � 1/W C �A < T 0W . Thus after a change of variable we have

E1 D
1

T 0

X
0<�m0<T 0W
m0�A.modW /

R.m0/;

and, similarly,

E2 D
1

T 00

X
0<�m0<T 00Wq

m0�ACWa .modWq/

R.m0/:
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Recall that M j W . Two applications of Lemma 6.1 therefore imply that it suffices to prove
that

(6.3)
%.W;AIM/

W n�1
D
%.Wq;ACWaIM/

.Wq/n�1
:

But this follows from the Chinese remainder theorem and applications of Lemma 3.4 for
each prime p < w.T /. Indeed, let p < w.T /, G D NK , ` D vp.M/ and let m be any
integer such that m > vp.W /. Since A describes an unexceptional residue class, we have
A 6� 0 .modpvp.W // and furthermore

vp.M/C vp.A/C vp.n/ 6
vp.W /

3
CO.1/ <

m

2
;

provided T is sufficiently large. Hence, the conditions of Lemma 3.4 are satisfied for
large T and we deduce (6.3) by applying this lemma once for each value of m in the range
vp.W / 6 m < vp.Wq/.

The next goal is to establish that the normalized counting function

m 7!
W n�1

%.W;AIM/
R.WmC A/

does not correlate with nilsequences ifA is unexceptional. A discussion of the various objects
appearing in the following proposition may be found in [26, §13–15]. A thorough treatment
is contained in [19], which is the paper that the results from [26, §14–16] build on and extend.

P 6.3. – LetG=� be a nilmanifold of dimensionmG > 1, letG� be a filtration
ofG of degree d > 1, and let g 2 poly.Z; G�/ be a polynomial sequence. Suppose thatG=� has
a Q-rational Mal’cev basis X for some Q > 2, defining a metric dX on G=�. Suppose that
F W G=� ! Œ�1; 1� is a Lipschitz function. Then for � 2 f˙g, T 0 � T=W and A 2 Z with
A .modW / 2 A and 0 6 �A < W , we have the estimateˇ̌̌

E0<�m6T 0

�
R.WmC A/ �

%.W;AIM/

W n�1
��
�
F.g.jmj/�/

ˇ̌̌
�mG ;d;E

%.W;AIM/

W n�1
QOmG;d;E .1/

1C kF kLip

.log log logT /E
;

for any E > 0.

Exactly as in [26, Props. 17.1 and 17.2] we deduce the above proposition from a special
case involving only “minor arc nilsequences”. This reduction is modeled upon [18, §2] and
we will not give the details. The key ingredients are Lemma 6.2 and [26, Thm. 16.4], which is
a factorisation theorem for nilsequences. Due to the similar set-up, the choice of parameters
from the proof of [26, Prop. 17.1] remains unchanged.

P 6.4. – Let � 2 f˙g, T 0 � T=W and A .modW / 2 A with 0 6 �A < W .
Suppose that ı 2 .0; 1=2/ and S D O.T o.1// are parameters such that ı�t �t T , for all
t 2 Z>0. Assume that .G=�; dX / is an mG-dimensional nilmanifold with a filtration G� of
degree d and that g 2 poly.Z; G�/. Finally, suppose that for everyw.T /-smooth number Qq 6 S

the finite sequence .g. Qqm/�/0<m6T 0= Qq is totally ı-equidistributed in G=�.
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For every Lipschitz function F W G=� ! Œ�1; 1� satisfying
R
G=�

F D 0, for every
w.T /-smooth number q D O.T o.1// and every 0 6 b < q, for every T 00 � T=.Wq/, there
exists c �mG ;d 1 such thatˇ̌

E0<�m6T 00 R.W.qmC b/C A/F.g.jmj/�/
ˇ̌
� ıc.1C kF kLip/

%.W;AIM/

W n�1
:

Proof. – To begin with we note that in the polynomial NK 2 ZŒX1; : : : ; Xn� the coefficient
of Xni is given by NK=Q.!i / ¤ 0, for 1 6 i 6 n.

Our first step is to rewrite the given correlation as a sum over lattice points. A change of
variables yields

E0<�m06T 00R.W.qm0 C b/C A/F.g.jm0j/�/

D
1

T 00

X
0<�m6B

m�ACWb .modWq/

R.m/F
�
g
�m � A �W b

�Wq

�
�
�
;(6.4)

for some B � T . Let

Y D

(
y 2 .Z=WqZ/n W

NK.y/ � ACW b .modWq/

y � b .modM/

)
;

so that # Y D %.Wq;ACW bIM/. The right hand side of (6.4) becomes

1

T 00

X
y2Y

X
x2Zn

WqxCy2B1=nX.1/

F
�
g
�NK.WqxC y/ � A �W b

�Wq

�
�
�
;(6.5)

where X.1/ D fx 2 X W 0 < �NK.x/ 6 1g.

Since the coefficient of Xnn in NK.X1; : : : ; Xn/ is non-zero, we obtain an integral polyno-
mial of degree n and leading coefficient �NK=Q.!n/.Wq/n�1 when fixing all but the nth vari-
able in

NK.WqxC y/ � A �W b
�Wq

:

Let � W Rn ! Rn�1 denote the projection onto the coordinate plane fxn D 0g, and
let P�.x/;y.x/ D 0 C � � � C nx

n denote the above polynomial, for suitable coefficients
0; : : : ; n 2 Z, with n D �NK=Q.!n/.Wq/

n�1. If Wqx C y 2 B1=nX.1/, then it follows
that i � B.n�i/=n.Wq/i�1, for 0 6 i 6 n. Thus the hypotheses of [26, Prop. 15.4] are met.
We aim to employ this to bound (6.5) by splitting the range of the x-summation into lines on
which �.x/ is constant. With this in mind, we proceed to investigate how such lines intersect
the domain X.1/.

We have X.1/ � .�˛; ˛/n for some constant 0 < ˛ D O.1/. Let a D .a1; : : : ; an�1/,
with jaj < ˛, and consider the line `a W .�˛; ˛/ ! Rn given by `a.x/ D .a; x/. For " > 0,
let @"X.1/ � Rn denote the set of points at distance at most " to the boundary of the closure
of X.1/. We note that the set

fx 2 .�˛; ˛/ W `a.x/ 2 X.1/ n @0X.1/g
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is the union of disjoint open intervals. By removing all intervals of length at most ", we obtain
a collection of at most 2˛"�1 � "�1 open intervals I1.a/; : : : ; Ik.a/.a/ 2 .�˛; ˛/ such that
any x 2 .�˛; ˛/ satisfies the implication

`a.x/ 2 X.1/ n @"X.1/ H) x 2 Ij .a/ for some j 2 f1; : : : ; k.a/g:

We will choose a suitable value of " at the end of the proof.

Observe that any interval .z0; z1/ � .�˛; ˛/ can be expressed as a difference of intervals
in .�˛; ˛/ that have length at least 2˛=3. Indeed, z0 and z1 partition .�˛; ˛/ into three
(possibly empty) intervals, at least one of which has length at least 2˛=3. Thus, one of the
three representations

.z0; z1/ D .�˛; z1/ n .�˛; z0� D .z0; ˛/ n Œz1; ˛/

has the required property. For each a and j 2 f1; : : : ; k.a/g, we let Ij .a/ D J
.1/
j .a/nJ .2/j .a/ be

such a decomposition, where J .2/j .a/ is possibly empty.

Abbreviating a0 D B�1=n.WqaC �.y//, we see that (6.5) equals

1

T 00

X
y2Y

X
a2Zn�1
ja0j<˛

k.a/X
jD1

X
x2Z

n
1
B�1=nWqx2J

.1/

j
.a0/
� 1

B�1=nWqx2J
.2/

j
.a0/

o
F
�
g
�
Pa;y.x/

�
�
�

CO
� 1
T 00

X
y2Y

#fx 2 Zn W B�1=n.WqxC y/ 2 @"X.1/g
�
:

(6.6)

Here, the error term accounts for all points in the B1=n"-neighborhood of the boundary
ofB1=nX.1/, that were excluded through the choice of intervals Ij .a/. Observe that we made
use of the fact that kF k1 6 1. Since X.1/ is .n � 1/-Lipschitz parametrisable, we have
vol.@"X.1// � ". Together with an application of (6.3) this shows that the error term is
bounded by

T 00�1# Y
"B

.Wq/n
� "BT �1

%.Wq;ACW bIM/

.Wq/n�1
� "

%.W;AIM/

W n�1
:

Turning towards the main term, [26, Prop. 15.4] implies that for every polynomial Pa;y

there is a w.T /-smooth integer Qq 2 Z>0, with Qq � T o.1/, and a constant c �mG ;d 1 such
that for each 0 6 Qb < Qq the sequences

.g.Pa;y. Qqx C Qb//�/x6.T 0=n Qqn/1=n

are totally ıc-equidistributed inG=�, provided that T is large enough. Recall that the leading
coefficient of Pa;y satisfies n � .Wq/n�1. Since the set�

x 2 Z W
Wq

B1=n
. Qqx C Qb/ 2 J

.1/
j .a0/

�
is a discrete interval of length

#
�
x 2 Z W

Wq

B1=n
. Qqx C Qb/ 2 J

.1/
j .a0/

�
�
T 1=n

Wq Qq
;
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we may employ the above total ıc-equidistribution property to deduce thatˇ̌̌̌
ˇ̌̌̌
ˇ

X
x2Z

B�1=nWqx2J
.1/

j
.a0/

F
�
g
�
Pa;y.x/

�
�
�ˇ̌̌̌ˇ̌̌̌
ˇ 6

Qq�1X
QbD0

ˇ̌̌̌ X
x2Z

B�1=nWq. QqxCQb/2J
.1/

j
.a0/

F
�
g
�
Pa;y. Qqx C Qb/

�
�
�ˇ̌̌̌

� QqT 1=n.Wq Qq/�1ıckF kLip

� T 1=n.Wq/�1ıckF kLip:

The same holds for J .1/j .a0/ replaced by any non-empty J .2/j .a0/. Hence (6.6) is bounded by

� T 00�1# Y
�T 1=n
Wq

�n�1
"�1T 1=n.Wq/�1ıckF kLip C "

%.W;AIM/

W n�1

� T 00�1# Y
T

.Wq/n
"�1ıckF kLip C "

%.W;AIM/

W n�1

�
%.W;AIM/

W n�1

�
"�1ıckF kLip C "

�
;

where we applied (6.3). Choosing " D ıc=2 completes the proof.

7. Majorants for positive multiplicative functions

The aim of this section is to construct for every multiplicative function f W Z>0 ! R>0
whose growth is controlled in some precise sense, for every sufficiently small  2 .0; 1/ and for
any increasing infinite sequence T D fT1 < T2 < : : :g of sufficiently large positive integers,
a family of majorant functions�

�.T / W f1; : : : ; T g ! R>0
�
T2T

with the following properties:

(i) f .m/ 6 C�.T /.m/ for all m 6 T and some absolute constant C > 0;
(ii) Em6T f .m/ � Em6T �

.T /.m/; and
(iii) �.T / has the structure of a truncated divisor sum. That is to say, it takes the form

�.T /.m/ D
X
d6T 

�d1d jm;

for suitable coefficients �d 2 R, for all m 6 T that lie outside a sparse exceptional set.

In [25] such majorant functions were constructed for the divisor function, building on work
of Erdős [13]. Shiu [32] observed that Erdős’ methods carry over to all multiplicative func-
tions f W Z>0 ! R>0 that satisfy the two conditions:

(a) f .pk/ 6 H k for all prime powers; and
(b) f .m/�ı m

ı for all m 2 Z>0 and any ı > 0.
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Equally, the majorant construction from [25, §4] has an analog for a more general class of
multiplicative functions, which we shall describe below. The results in this section do not
require condition (b). We employ this condition however in Section 9 when checking the
correlation condition. In order to ensure that condition (ii) from above applies to the type
of majorant we construct, we impose the further condition that g D � � f is non-negative

D 7.1. – Let M .H/ denote the set of multiplicative functions f W Z>0 ! R>0

such that:

(a) f .pk/ 6 H k for all primes p and k 2 Z>0;
(b) f .m/�ı m

ı for all m 2 Z>0 and any ı > 0; and
(c) f .pk/ > f .pk�1/ for all primes p and k 2 Z>0.

Let M 0
.H/ denote the set of non-negative multiplicative functions f satisfying (a) and (b).

Property (c) ensures that any f 2 M .H/ always takes positive values. Moreover,
given f 2 M .H/, we note that g D � � f satisfies 0 6 g.pk/ 6 H k .

R 7.2. – Examples of functions which belong to M .H/, for suitable H , include
the generalized divisor functions �k , which appear as Dirichlet coefficients in �k.s/, and
functions of the form h!.m/, for any real number h > 1.

For technical reasons we replace all cut-offs, as in (iii) above, by smooth cut-offs. For this
purpose, let � W R ! Œ0; 1� be a smooth function that is supported on Œ�1; 1�, monoton on
both Œ�1; 0� and Œ0; 1�, and satisfies �.x/ D 1 for x 2 Œ�1=2; 1=2�.

D 7.3 (Truncated multiplicative function). – Given a cut-off parameter T and
any multiplicative function f W Z>0 ! R>0, let f .T / W f1; : : : ; T g ! R>0 be defined by

f .T / .m/ D
X
d2Z>0

1d jmg.d/�
� log d

logT 

�
;

where g D � � f .

Since g is non-negative if f 2 M .H/, we have f .T / .m/ 6
P
d2Z>0 1d jmg.d/ D f .m/

for m 6 T . The fact that �.x/ D 1 for x 2 Œ�1=2; 1=2� implies the lower bound

f .T / .m/ >
X

d6T =2

1d jmg.d/;(7.1)

which is an equality form 6 T =2. The following lemma generalizes a result of Erdős, in the
form of [25, Lemma 4.1].

L 7.4. – Let f 2 M .H/ forH > 1, let C1 > 1 be a fixed constant and let � < 1=2.
Furthermore, let T > 1 be an arbitrary integer, let m 6 T and suppose that

f .m/ > H �f
.T /

2�
.m/;

for some � > 2=�. Then one of the following three alternatives holds:

1. m is excessively “rough” in the sense that it is divisible by some prime power pa, a > 2,
with pa > .logT /C1 I
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2. m is excessively “smooth” in the sense thatY
p6T 1=.log logT/3

pvp.m/ > T �= log logT
I

3. m has a “cluster” of prime factors in the sense that there is a � in the interval

log2 � � 2 6 � < log2..log logT /3/ < 6 log log logT

such thatm has at least ��.�C 3� log2 �/=100 distinct prime factors in the superdyadic
range I� D ŒT 1=2

�C1
; T 1=2

�
� and is not divisible by the square of any prime in this range.

Proof. – In view of (7.1), the proof of [25, Lemma 4.1] applies when replacing � by f .T /
2�

in such a way that � takes the role of  . Two obvious changes are necessary:

f .m/ 6 H k�jf .m0/ 6 H 2=�f .m0/ 6 H 2=�f
.T /

2�
.m/ < H �f

.T /

2�
.m/;

and
f .m/ 6 H ajC1C���Cakf .m0/ 6 H .rC1/=�f

.T /

2�
.m/ 6 H 2r=�f

.T /

2�
.m/:

The rest of the argument is identical.

The previous lemma allows us to extract majorant functions of truncated divisor sum
type, at least outside the following exceptional set.

D 7.5 (Exceptional set). – For fixed  > 0, let S D S C1;T denote the set of
positive integers satisfying condition (1) or (2) of Lemma 7.4 with � D =2. (This exceptional
set is identical to the exceptional set in the divisor function case [25] for =2 instead of  .)

Lemma 7.4 will provide us with a majorant function of the correct average order for
functions f 2 M .H/. However, in view of theW -trick from the previous section, we require
majorant functions for each of the functions m 7! f .W mC A/, where as in (6.1),

W D
Y

p<w.T /

p˛.p/;

with w.T / D log logT and ˛.p/ D d.C1 C 1/ logp logT e, and where 0 < A < W is such
that vp.A/ < vp.W / for p < w.T /. Since f .W m C A/ D f .A0/f ..W m C A/=A0/, where
A0 D gcd.A;W /, it suffices to study a function that ignores the contribution from small prime
factors. Define the function hT W m 7! f .m=m0/, where

m0 D
Y

p<w.T /

pvp.m/;

for any integer m. Then hT satisfies (a)–(c) in Definition 7.1 whenever f does.

P 7.6 (Majorant). – Let T D fT1 < T2 < : : :g � Z>1 be an infinite set of
positive integers, and let f be a non-negative multiplicative function. Assume that for all T 2 T

the function hT W m 7! f .m=m0/, where m0 D
Q
p<w.T / p

vp.m/, belongs to M .H/.
Fix  > 0 of the form  D 2�z for some z 2 Z>0. For any positive integers �, � and T > 1

let

!.�; �/ D

�
�.�C 3 � log2 �/

200

�
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and I� D ŒT 1=2
�C1

; T 1=2
�
�, and define the sets

U.�; �/ D

8̂̂̂̂
<̂
ˆ̂̂:
f1g; if � D 4= and � D log2 � � 2;

;; if � D 4= and � ¤ log2 � � 2;�
p1 : : : p!.�;�/ W

pi 2 I� distinct primes

f .pi / 6D 1

�
; if � > 4=:

Let the family of functions �
�
.T /

f
W f1; : : : ; T g ! R>0

�
T2T

be defined via

�
.T /

f
.m/ D

Œ.log logT /3�X
�D4=

Œlog2..log logT /3/�X
�Ddlog2 ��2e

X
u2U.�;�/

H �1ujmf .u/h
.T /


 
mQ

pju p
vp.m/

!
C 1m2S hT .m/;

where h.T / is associated to hT via Definition 7.3 and where S D S C1;T is the exceptional set
from Definition 7.5.

Then, for all sufficiently large T > 1 and for all m 6 T , we have the majorisation property

f .m/ 6 Hf.m0/�
.T /

f
.m/� f .m0/�

.T /

f
.m/:

Furthermore, for any 0 < A < W such that vp.A/ < vp.W / for p < w.T /, we have

(7.2) Em6.T�A/=W �
.T /

f
.W mC A/�

Em6.T�A/=W f .W mC A/

f .gcd.A;W //
;

as T !1 through T . The implied constant may depend on  and H , but not on T .

R 7.7. – Apart from the term 1m2S hT .m/, the majorant �.T /
f

has a truncated
divisor sum structure, since each u 2 U.�; �/ satisfies u 6 T  , by remark (3) after [25,
Prop. 4.2].

R 7.8. – In view of Definition 7.3 it is clear that h.T / is a divisor sum. It is not
difficult to deduce some information on the set of positive integers d that cannot occur in
this sum. This is the set of integers d such that g.d/ D � � hT .d/ D 0. The definition of hT
implies that g.d/ D 0 whenever d has a prime factor that is smaller than w.T /. Similarly,
g.d/ D 0 if d has a prime factor p > w.T /, such that hT .pvp.d// D 1. The latter condition
certainly holds when f .pk/ D 1 for all k 2 Z>0. Thus the truncated divisor sum h

.T /
 only

runs through divisors that are free from prime factors of both these types. Moreover, we
remark that the definition ofU.�; �/ shows that the sum over u in �.T /

f
only contains divisors

that are free from primes p with f .p/ D 1.

Our proof of Proposition 7.6 does not actually require property (b) of Definition 7.1. This
property will be used when establishing the pseudorandomness of our majorant function in
Section 9.
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Proof of Proposition 7.6. – We define for each “level” � > 0 an exceptional set

S.�/ D fm 6 T W hT .m/ > H �h.T / .m/g:

For any m 6 T and any �0 > 0, we then either have m 62 S.�0/, or else there is some integer
� > �0 such that m 2 S.�/ n S.� C 1/. For �0 D 4= C 1, this yields

(7.3) hT .m/ 6 H 4=C1h.T / .m/C
X
�>4=

H �C11S.�/.m/h
.T /
 .m/:

We claim that Lemma 7.4, applied with � D =2, provides an upper bound of the form

1S.�/.m/ 6
Œlog2..log logT /3/�X
�Ddlog2 ��2e

X
u2U.�;�/

1ujm;

valid for every m 62 S .

Taking this claim on trust for the moment, let us first deduce that hT .m/ 6 H�
.T /

f
.m/.

Since H > 1, this bound is only non-trivial if m 62 S . Note that if m 2 S.�/ for some
� > .log logT /3, then the third alternative from Lemma 7.4 is empty and we must have
m 2 S . Thus, if m 62 S , we can truncate the summation in (7.3) at � D Œ.log logT /3�.
Further, if m 62 S and ujm for some u 2 U.�; �/, u > 1, then vp.m/ D 1 for any pju. Thus,
for any m 62 S , the properties of � and Definition 7.3 imply

1ujmh
.T /
 .m/ 6 1ujmhT

�Y
pju

pvp.m/
�
h.T /

�
mQ

pju p
vp.m/

�
D 1ujmhT .u/h

.T /


�
mQ

pju p
vp.m/

�
:

Inserting the claimed bound on 1S.�/.m/ in all remaining terms of the sum in (7.3), making
use of the inequality above, and comparing with the definition of �.T /

f
.m/, we indeed obtain

that hT .m/ 6 H�
.T /

f
.m/, provided the summations in � and � in �.T /

f
contain each at least

one term; i.e., provided T is sufficiently large.
To prove the claim it suffices to check that Lemma 7.4 guarantees for m 62 S (that is,

for m which do not have property (1) or (2)) that there actually is a cluster of prime divisors
all satisfying f .p/ 6D 1. Thus, suppose m 62 S . Every prime p that can appear in a cluster
satisfies p > T .log logT /�3=2, which is larger than both w.T / and .logT /C1 , provided T is
sufficiently large. Hence f .p/ D hT .p/ for such primes and, furthermore, p2 - m since
m 62 S C1;T . Let

q D
Y

p>T .log logT/�3=2

f .p/D1; pjm

p:

Then g.d/ D 0 for all d jm with gcd.d; q/ > 1, by Remark 7.8. This, in turn, implies that
h
.T /
 .m/ D h

.T /
 .m=q/. Since hT .q/ D 1, we also have hT .m/ D hT .m=q/. Hencem=q 2 S.�/

and we may apply Lemma 7.4 tom=q in order to obtain a cluster of prime factors as required.
It remains to check (7.2). We certainly have

Em6.T�A/=W 1WmCA2S hT .W mC A/ 6
Em6.T�A/=W f .W mC A/

f .gcd.A;W //
;

which reduces matters to considering the triple sum from �
.T /

f
. Since 2� 6 .log logT /3, any

prime divisor p of an element u 2 U.�; �/ satisfies p > T 1=.2.log logT /3/, which is larger
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than w.T / when T is large enough. Thus we may assume gcd.u;W / D 1. Let g D � � hT ,
which is a non-negative multiplicative function. If P D fm 6 T W m � A .modW /g, then

1

jP j

X
m2P

X
u2U.�;�/

1ujmhT .u/h
.T /


 
mQ

pju p
vp.m/

!
6
2W

T

X
m6T=A0

A0m2P

X
u2U.�;�/

hT .u/
X
d6T 

gcd.d;u/D1

g.d/1dujm;

where A0 D gcd.A;W /. Note that g.d/ D 0 unless gcd.d;W / D 1, by Remark 7.8. Since
gcd.du;W / D 1, the right hand side above is

�

X
u2U.�;�/

hT .u/

u

X
d6T 

gcd.d;uW /D1

g.d/

d

�

X
u2U.�;�/

H!.u/

u

X
d6T 

gcd.d;W /D1

g.d/

d
:(7.4)

Note that X
u2U.�;�/

H!.u/

u
�

H!.�;�/

!.�; �/Š

 X
p2I�

1

p

!!.�;�/
�

.H log 2C o.1//!.�;�/

!.�; �/Š
:

If gcd.d;W / D 1 and d 6 T  , then the number of integers x 6 T for which x � A .modW /
and d j x has order T=.Wd/. Since hT D 1 � g, we deduce that

(7.5)
X
d6T 

gcd.d;W /D1

g.d/

d
�
W

T

X
m6T

m�A.modW /

hT .m/:

Hence the inner sum from (7.4) is bounded by T �1W
P
m2P hT .m/.

The above estimates allow us to bound the average value of �.T /
f
.m/ � 1m2S hT .m/ via X

m2P

hT .m/

!�1 X
m2P

�
�
.T /

f
.m/ � 1m2S hT .m/

�
D

 X
m2P

hT .m/

!�1 X
m2P

X
�>4=

X
�>log2 ��2

X
u2U.�;�/

H �1ujmh
.T /
 .m/

�

X
�>4=

X
�>log2 ��2

H � � .H log 2C o.1//!.�;�/

!.�; �/Š

�

X
�>4=

X
j>1

H �
�

�
200 � e � .H log 2C o.1//

�j

��j=200

�

X
�>4=

H �

��=200

0@X
j>1

�
200 � e � .H log 2C o.1//

j

�j=2001A� :
This converges absolutely, and hence completes the proof.
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Our final objective in this section is to show that the exceptional set S C1;T is negligible
when evaluating correlations such as the counting function N.T / given by (5.1), provided
C1 is sufficiently large.

Let ‰ D . 1; : : : ;  r / W Zs ! Zr be a system of non-constant linear polynomials whose
non-constant parts are pairwise non-proportional and have coefficients bounded by L in
absolute value. Let K � Œ�1; 1�s be such that ‰.TK/ � .0; T �r and assume that

Em2Zs\TK 1d j i .m/ �L

1

d
;

for any d 2 Z>0 and each 1 6 i 6 r . Since no  i is constant, the latter condition is
guaranteed to hold when K is convex or when K has an .s � 1/-Lipschitz parametrisable
boundary. Then it follows from [13] (cf. [25, Lemmas 3.2 and 3.3]) that the exceptional set
satisfies

(7.6) Em2Zs\TK 1 i .m/2SC1;T
�L;C1 .logT /�C1=2;

for each 1 6 i 6 r . We shall combine this estimate with the following bound on the kth
moment of a non-negative multiplicative function f .

L 7.9 (kth moment bound for f ). – Suppose f satisfies Definition 7.1(a) and (b).
Let k be a positive integer and let ‰ and K be as above. Then

Em2Zs\TK

rY
iD1

f k. i .m//�L;r;k .logT /Or;k;H .1/:

Proof. – Let g D � � f . Then Hölder’s inequality implies

Em2Zs\TK

rY
iD1

f k. i .m// 6
rY
iD1

�
Em2Zs\TK f

kr . i .m//
�1=r

6
rY
iD1

0@ X
d1;:::;drk6T

Em2Zs\TK

rkY
jD1

1dj j i .m/g.dj /

1A1=r

�L;"

X
d1;:::;drk6T

minf.d1 : : : drk/";H�.d1:::drk/g

lcm.d1; : : : ; drk/

�L;"

Y
p6T

0BB@1C X
ı1;:::;ırk>0
ı1C���Cırk>1

minfp".ı1C���Cırk/;H ı1C���Cırk g

pmaxfı1;:::;ırkg

1CCA ;
for any " > 0. For given ` 2 Z>0 there are at most .1C `/rk choices of ı1; : : : ; ırk for which
maxfı1; : : : ; ırkg D `. Taking " D 1

2rk
, it follows that the right hand side is

6
Y
p6T

0@1CX
`>1

.1C `/rk minfp`=2;H `rkg

p`

1A
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6
Y

p6H2rk

0@1CX
`>1

.1C `/rk

p`=2

1A Y
H2rk<p6T

0@1CX
`>1

.1C `/rkH `rk

p`

1A
�r;k;H .logT /Or;k;H .1/;

as required.

P 7.10 (Reduction to unexceptional residues). – Let S C1;T be the excep-
tional set from Definition 7.5. Suppose that f1; : : : ; fr W Z>0 ! R are functions that are all
bounded pointwise in modulus by some function f 2 M 0

.H/. Let i 2 f1; : : : ; rg. Suppose
that f 0i W f1; : : : ; T g ! R denotes a function which agrees with fi on f1; : : : ; T g n S C1;T and
satisfies jf 0i .m/j 6 f .m/ for all m 2 S C1;T . If the parameter C1 of the exceptional set is
sufficiently large depending on r and H , and if ‰ and K are as above, then

E D
ˇ̌̌ X

m2Zs\TK

rY
iD1

fi . i .m// �
X

m2Zs\TK

rY
iD1

f 0i . i .m//
ˇ̌̌
D O.T s.logT /�C1=4/:

Proof. – Since

E 6 2
X

m2Zs\TK

rX
iD1

1 i .m/2SC1;T

rY
jD1

f . j .m//;

the proposition follows by the Cauchy–Schwarz inequality from (7.6) and Lemma 7.9.

8. Construction of the majorant

The previous section described the construction of majorants for a general class of positive
multiplicative functions. Returning to the proof of Theorem 5.2, we shall now consider the
representation functions Ri from Definition 5.1. Building on the results from Section 7, we
construct for each of these representation functions a family of majorant functions

.�
.T /
Ri
W f1; : : : ; T g ! R>0/T2T

with the properties (i)–(iii) described at the start of Section 7. (The cut-off parameter T 2 T

will later correspond to the parameter T that appears in Theorem 5.2.)

We begin with an easy estimate forRi that relates it to the multiplicative function rKi .jmj/
whose values are given by the coefficients of the Dedekind zeta function (2.6) for the number
field Ki=Q of degree ni .

L 8.1. – We have Ri .m/ 6 2j�Ki jrKi .jmj/; for non-zero m 2 Z.

Proof. – Replacing Xi � Di;C by Di;C and dropping the congruence condition from
Definition 5.1, we obtain the upper bound

Ri .m/ 6 #
˚
x 2 Zni \Di;C W NKi .x/ D m

	
:
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The discussion of the unit groups UKi and U .C/Ki
in Section 2.2 showed that the index of Y .C/Ki

in YKi is at most two, which implies that

Ri .m/ 6 2#
˚
x 2 Zni \Di W NKi .x/ D m

	
6 2j�Ki j#

˚
x 2 Zni =UKi W jNKi .x/j D jmj

	
;

where Di is a fundamental domain (in the coordinate space) for the free part of UKi . The
cardinality in the final line equals #f.˛/ � o W N.˛/ D jmjg, which itself is bounded
by rKi .jmj/, as required.

Let S C1;T be the set from Definition 7.5 and recall the Definition (5.1) of N.T /.

P 8.2. – For each 1 6 i 6 r , let R0i W f�T; : : : ; T g ! R>0 denote a function
such that R0i .m/ D Ri .m/ for all m satisfying jmj 2 f1; : : : ; T g n S C1;T , and which further
satisfies 0 6 R0i .m/ 6 Ri .m/ when jmj 2 S C1;T . If the parameter C1 of the exceptional set is
sufficiently large, then

N.T / D ˇ1
Y
p

p̌ � T
s
C o.T s/

if and only if X
u2Zs\TK

u�a .modM/

rY
iD1

R0i .fi .u// D ˇ1
Y
p

p̌ � T
s
C o.T s/:

Proof. – We haveRi .m/ 6 2j�Ki j�.jmj/
ni by Lemma 8.1 and (2.10), where �ni 2 M .2ni /.

For � D .�1; : : : ; �r / 2 f˙gr we let K� D K\ f�1.R�1 �� � ��R�r /. Then we may decompose K
as the union of the 2r sets K�, together with one set K0 such that at each point u 2 K0 at
least one fi vanishes. We may discard K0 since

Qr
iD1Ri .fi .u// D 0 at all of its integral

points. Proposition 7.10 may be applied separately to each of the 2r remaining sums, by
reinterpreting Ri and R0i as functions on f1; : : : ; T g via m 7! Ri .�im/.

Proposition 8.2 allows us to work with functions

(8.1) R0i .m/ D

(
Ri .m/; if jmj 62 S C1;T ,

0; if jmj 2 S C1;T ,

instead of the original counting functions. Thus the majorant function only needs to
majorize Ri outside the exceptional set.

R 8.3. – For later applications it is convenient at this point to note that

(8.2) Ejmj<T=W Ri .W mC A/1WmCA2SC1;T
� .logT /�C1=4

and

Em6.T�A/=W R0i .W mC A/ D Em6.T�A/=W Ri .W mC A/CO
�
.logT /�C1=4

�
�
%i .W;AIM/

W ni�1
:

(8.3)

The first bound follows from Proposition 7.10, applied with (cf. Proposition 8.2) r D s D 1,
f1 D Ri and  1.m/ D m. The second part follows by combining (8.2) with Lemma 6.1.
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For most of the remainder of this section we consider a typical representation function
and will drop the index i in such situations. Lemma 8.1 implies thatR.m/� rK.jmj/. Taking
q D 1 in Lemma 6.1, we deduce that for � 2 f˙g

1

T

X
0<�m6T

R.m/ � ��; .T !1/;

whereas (2.8) yields
1

T

X
0<m6T

rK.m/ � h�; .T !1/:

Hence R is majorised by rK and has the same average order as it.
Given T 2 Z>0, consider PA D fm � A .modW /g, for A 2 A given by (6.2) and W

as in (6.1). Lemma 4.2 only provides us with precise information on %.pm; A/ when p - DK
and vp.A/ < m. This limits our ability to deduce that R and rK have the same average order
on progressions PA unless gcd.A;DK/ D 1. For this reason we will need to refine the bound
on R from Lemma 8.1 to one that is tighter at integers m with gcd.m;DK/ > 1. We set

W0 D
Y
pjDK

p˛.p/

and proceed to establish the following result.

L 8.4. – Let A 2 A and write A0 D gcd.A;W0/. Then

R.WmC A/�
%.W0; A/

W n�1
0

rK

�
jWmC Aj

A0

�
:

Proof. – The following shorter proof of this result was suggested to us by the referee. To
begin with, Lemma 8.1 implies thatR.WmCA/� rK.jWmCAj/. Moreover, for anyA 2 A

it is clear thatA0 is coprime to jWmCAj=A0. Since rK is multiplicative it is therefore enough
to show that

rK.A0/�
%.W0; A/

W n�1
0

:

Now since A 2 A we must have vp.A0/ < vp.M/� 1 for any p j W0. Thus rK.A0/� 1 by
(2.10). Hence it remains to prove that %.W0; A/=W n�1

0 � 1. Let p j DK . Setting

m0 D 1C 2
�
vp.M/C vp.A/C vp.n/

�
< 1C 4vp.M/C 2vp.n/� 1;

we apply Lemma 3.4 to obtain

(8.4)
%.p˛.p/; A/

p˛.p/.n�1/
>
%.p˛.p/; AIpvp.M//

p˛.p/.n�1/
D
%.pm0 ; AIpvp.M//

pm0.n�1/
>

1

pm0.n�1/
� 1;

since %.W;AIM/ > 0 in (6.2). This completes the proof of the lemma.

In view of Lemma 8.4 we are therefore led to construct a majorant function for each
restriction of the multiplicative function rK to a progression PA, with A 2 A . Given
T 2 Z>1, we write

(8.5) m0 D
Y

p<w.T /

pvp.m/;

for m 2 Z. Then rK.m0/ is constant for m 2 PA. Thus we seek a majorant for the function
m 7! rK.m=m

0/, which is free from the contributions of small prime factors.
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Note that rK is an unbounded function with sparse support. Our next aim, accomplished
in Lemma 8.5 below, is to simplify the task by separating these two properties, replacing rK
by the product of a bounded function with sparse support and an unbounded function with
dense support.

In general we write hPi D fn 2 Z>0 W p j n) p 2 Pg for a set P of rational primes.
Recall the Definition (2.12) of P0; P1 and P2. Additionally, we require the sets

Pj D fp 2 Pj W p > w.T /g;

for j D 1; 2. It follows from (2.11) that the restriction of rK to square-free numbers is
supported on hP0 [ P1i. Let rres denote the multiplicative function defined via

(8.6) rres.p
m/ D

(
rK.p

m/; if p 2 P0 [ P1,

1; if p 2 P2.

We have the following result.

L 8.5. – For all m 2 Z>0, we have

rK.m/ 6 rres .m/
X

q2hP2i

vp.q/6D1 8p

1qjm�.q/
n1hP0[P1i

�
m

q

�
:

Proof. – If rK.m/ is positive, then m has no prime divisor p 2 P2 for which p2 - m.
In this case the sum on the right hand side has exactly one term, corresponding to the
factorisation ofm into the product of q 2 hP2i andm=q 2 hP0[P1i. The multiplicativity
of rK implies

rK.m/ D rK.q/rK

�
m

q

�
D rK.q/rres

�
m

q

�
D rK.q/rres .m/ 6 �.q/nrres .m/ ;

where we used (2.10) to bound rK.q/.

As a direct consequence of this lemma, we obtain

(8.7) rK.m/ 6 rK.m
0/ � rres

� m
m0

� X
q2hP2i

vp.q/6D1 8p

1qjm�.q/
n1hP0[P1i

�
m

qm0

�
;

where m0 is given by (8.5) and we have observed that rK.m/ D rK.m
0/rK.m=m

0/, by multi-
plicativity. In view of (8.7) we proceed by constructing two families of majorant functions in
Sections 8.1 and 8.2: one for the positive multiplicative function m 7! rres.m=m

0/ and one
for the characteristic function 1hP0[P1i

. Inserting these majorants into the bound (8.7), we
will obtain a family of majorant functions for rK . In Section 9 we check that the resulting
majorants for rK form a family of pseudorandom majorants when restricting them to the
arithmetic progressions PA.
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8.1. Majorant for rres

Our first task is to check that Proposition 7.6 applies to the function rres.

L 8.6. – Let T 2 Z>1. Given m 2 Z>0, let m0 be defined by (8.5). If hT denotes the
function m 7! rres.m=m

0/, then hT 2 M .2n/, provided that T > exp.exp.2jDK j//.

Proof. – We need to check conditions (a)–(c) in Definition 7.1. By (2.10), we have

rres.p
m/ 6 rK.p

m/ 6 .mC 1/n D .�.pm//n 6 2mn:

Thus part (a) holds with H D 2n. Part (b) follows immediately from the respective property
for the divisor function. To check part (c), we may restrict attention to p 2 P1 [ P2, since
p < w.T /when p 2 P0 and T > exp.exp.2jDK j//. Recalling (8.6) we see that condition (c)
is trivially satisfied for p 2 P2. If p 2 P1, then there is a prime ideal pj.p/ of residue
degree 1 in K=Q. Thus, if a � o is counted by rres.p

m/, that is to say N a D pm, then ap is
an ideal counted by rres.p

mC1/. Hence rres.p
m/ 6 rres.p

mC1/, as required for (c).

Lemma 8.6 implies that ri;res.m=m
0/ 2 M .2ni / for each 1 6 i 6 r , withm0 given by (8.5).

Taking f D ri;res and hT D ri;res.m=m
0/, let h.T / be as in Definition 7.3, with g D � � hT .

Let

�
.T /
i .m/ D

Œ.log logT /3�X
�D4=

Œlog2..log logT /3/�X
�Ddlog2 ��2e

X
u2U.�;�/

2ni�1ujmri;res.u/h
.T /


 
m

m0
Q
pju p

vp.m/

!
:

(8.8)

Then Proposition 7.6 implies that �.T /i .m/ majorises ri;res.m=m
0/ on f1; : : : ; T g n S C1;T .

According to Remark 7.8, furthermore, it is a truncated divisor sum that only involves

divisors from hP
.i/

1 i provided T > exp.exp.2jDKi j//. Indeed, if p 2 P
.i/
0 then p < w.T /,

and if p 2 P
.i/

2 then ri;res.p
k/ D 1 for any k 2 Z>0.

Proposition 7.6 provides the upper bound

Em6.T�A/=W �
.T /
i .W mC A/�

Em6.T�A/=W ri;res.W mC A/

ri;res.gcd.A;W //
;

for any A belonging to the set A i defined in (6.2). We proceed by deducing the following
bound in terms of the arithmetic data that is involved.

L 8.7. – For A 2 A i we have

Em6.T�A/=W �
.T /
i .W mC A/� .logT /1�ıi

Y
p<w.T /

p2P
.i/
0
[P

.i/
1

�
1 �

1

p

��1 Y
pjp
p�oKi

�
1 �

1

N p

�
;

where P
.i/
0 ; P

.i/
1 ; P

.i/
2 are the sets (2.12) of rational primes corresponding toKi and ıi is the

Dirichlet density of P
.i/
1 .
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Proof. – Let g D ��hT and hT D ri;res.m=m
0/withm0 D

Q
p<w.T / p

vp.m/, as before. We
may assume that T is large enough to guarantee that g is non-negative, with g 2 M 0

.2ni /.
Then it follows from (7.5) that

Em6.T�A/=W ri;res.W mC A/

ri;res.gcd.A;W //
�

X
d6T

g.d/

d
6
Y
p6T

0@1CX
k>1

g.pk/

pk

1A� exp

0@X
p6T

g.p/

p

1A :
Since ri;res.p/ D rKi .p/ C 1

P
.i/
2

.p/ and g.p/ D 0 for p 6 w.T /, the sum in the argument

of the exponential function is equal toX
p6T

g.p/

p
D

X
p6T

rKi .p/ � 1

p
C

X
p6T

1
P
.i/
2

.p/

p
C

X
p<w.T /

p2P
.i/
0
[P

.i/
1

�
1

p
�
rKi .p/

p

�
:

The prime ideal theorem [23, Satz 192] implies that the first sum isX
p6T

rKi .p/ � 1

p
D log logT � log logT CO.1/ D O.1/:

Corollary 2.4 shows that the second sum satisfies

exp

0@X
p6T

1
P
.i/
2

.p/

p

1A � .logT /1�ıi :

For the final sum we obtain

exp

 X
p<w.T /

p2P
.i/
0
[P

.i/
1

�
1

p
�
rKi .p/

p

�!
�

Y
p<w.T /

p2P
.i/
0
[P

.i/
1

�
1 �

1

p

��1 Y
pjp
p�oKi

�
1 �

1

N p

�

by combining the approximation log.1˙m�1/ D ˙m�1CO.m�2/, valid for integersm > 2,
with the identity rKi .p/ D #fp j .p/ W p � oKi ; N p D pg. This completes the proof.

8.2. Sieve majorant

In this section we drop the index i and work with a typical number field K of degree n
over Q. Our next objective is to construct a majorant function of the correct average
order for the characteristic function 1hP0[P1i

in any of the arithmetic progressions
fm � A .modW /g, for A 2 A .

Let � W R ! R>0 be a smooth even function with supp� � Œ�1; 1� and �.x/ D 1

for x 2 Œ�1=2; 1=2�. As before we let  > 0, to be viewed as a small fixed constant. In analogy
to the construction from [17, App. D], which itself builds on work of Goldston and Yıldırım
[15, 14], we consider the functions �.T /sieve; �

0.T /
sieve W f1; : : : ; T g ! R>0, defined via

�
.T /
sieve.m/ D

0BBB@ X
d2hP2i

d jm

�.d/�
� log d

logT 

�1CCCA
2

(8.9)
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and

�0
.T /
sieve.m/ D

X
q2hP2i

vp.q/ 6D1 8p

1qjm�.q/
n�
� log q

logT 

�
�
.T /
sieve

�
m

q

�
:(8.10)

Both of these functions are non-negative. Moreover we note that form 2 hP0[P1iwe have
�
.T /
sieve.m/ D 1. Hence �.T /sieve majorises 1hP0[P1i

. The main goal of this section is to establish
the following lemma.

L 8.8. – For every A 2 A we have

W

T

X
m6.T�A/=W

�0
.T /
sieve.W mC A/� .logT /ı�1

Y
p2P2

p6w.T /

�
1C

1

p

�
;

where ı is the Dirichlet density of P1.

The key element used for both the proof of Lemma 8.8 and for asymptotically evaluating
linear correlations of �0sieve in the next section is the observation, due to Green and Tao [17,
App. D], that one can turn the smooth cut-off � in (8.9) into multiplicative functions as
follows. Let # be the transform of � that is defined via

ex�.x/ D

Z
R
#.�/e�ix�d�:

Recall that � has compact support and is smooth. Fourier inversion and partial integration
therefore yield the bound

(8.11) #.�/�E .1C j�j/
�E

for any E > 0. Following [17, App. D], we make use of this rapid decay to truncate the
integral representation of � which will enable us to swap integrations and summations later
on. Let I D f� 2 R W j�j 6

p
logT g, then for any m 2 Z>0 we have

�

�
logm
logT 

�
D

Z
R
m
�
1Ci�

logT #.�/ d�

D

Z
I

m
�
1Ci�

logT #.�/ d� COE

 
m�1= logT 

.logT  /E

!
:

(8.12)

Proof of Lemma 8.8. – We begin by estimating, for any parameter T 06 T and 0 6 A0 < W ,
the sum

S.T 0/ D
X

m6T 0=W

�
.T /
sieve.W mC A

0/:

We will show that

(8.13) S.T 0/�E

T 0

W
.logT /ı�1

Y
p2P2

p<w.T /

�
1 �

1

p

��1
C

T 0

W.logT /E
C T 2 ;
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for anyE > 0. In order to bound the average order of �0.T /sieve.W mCA/we apply this estimate
with T 0 D T=q � A0, for q 6 T  and for A0 with qA0 � A .modW /. Since W � T o.1/, the
first term in the bound dominates and we obtain 

.logT /1�ı
Y
p2P2

p<w.T /

�
1 �

1

p

�! X
m6.T�A/=W

�0
.T /
sieve.W mC A/�

T

W

X
q2hP2i

vp.q/6D1 8p

�.q/n

q

�
T

W
:

This shows that the lemma will follow if we can establish (8.13).

Let d 2 hP2i. We first note that

#
˚
m 6 T 0=W W WmC A0 � 0 .mod d/

	
D

T 0

Wd
CO.1/;

since gcd.d;W / D 1. Hence

S.T 0/ D
X

m6T 0=W

X
d;d 02hP2i

Œd;d 0�jWmCA0

�.d/�.d 0/�
� log d

logT 

�
�
� log d 0

logT 

�

D

X
d;d 02hP2i

�.d/�.d 0/�
� log d

logT 

�
�
� log d 0

logT 

�� T 0

W Œd; d 0�
CO.1/

�
:

The overall contribution from the error term is O.T 2 /. Applying (8.12), we obtain

S.T 0/ D
T 0

W

X
d;d 02hP2i

�.d/�.d 0/

Œd; d 0�

Z
I

Z
I

d
�
1Ci�

logT d
0�
1Ci�0

logT #.�/#.� 0/ d� d� 0

COE

� T 0

W.logT  /E
X
d;d 0

.dd 0/�1= logT 

Œd; d 0�

�
CO.T 2 /;

for any E > 0. Let us denote the main term, temporarily, by M.T 0/. The first of the error
terms may be bounded by noting that

T 0

W.logT  /E
X
d;d 0

.dd 0/�1= logT 

Œd; d 0�
6

T 0

W.logT  /E
X

d;d 0;d 00

.dd 0d 00/�1�1= logT 

6
T 0

W.logT  /E�3
:

Thus both error terms are satisfactory for (8.13), on redefining E.

It remains to estimate the main termM.T 0/. On interchanging the sum over d; d 0 with the
double integral and taking the Euler product, we obtain

jM.T 0/j 6
T 0

W

ˇ̌̌̌
ˇ̌Z
I

Z
I

Y
p2P2

�
1 � p

�1� 1Ci�
logT � p

�1� 1Ci�
0

logT C p
�1� 1Ci�C1Ci�

0

logT
�
#.�/#.� 0/ d� d� 0

ˇ̌̌̌
ˇ̌

�
T 0

W

Z
I

Z
I

ˇ̌
….�; � 0/#.�/#.� 0/

ˇ̌
d� d� 0;
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where

….�; � 0/ D
Y
p2P2

�
1 � p

�1� 1Ci�
logT

��
1 � p

�1� 1Ci�
0

logT
��
1C p

�1� 1Ci�C1Ci�
0

logT
�
:

We denote the final integral by

I D

Z
I

Z
I

ˇ̌
….�; � 0/#.�/#.� 0/

ˇ̌
d� d� 0:

Our aim is to estimate I by bounding the product ….�; � 0/ from above.

The product ….�; � 0/ is intimately related to the Euler product

F.s/ D
Y
p2P2

�
1 �

1

ps

��1
; .<.s/ > 1/

that we met in (2.13). From Lemma 2.3 we deduce that there is a function G.s/, which is
holomorphic and non-zero in the closed half-plane <.s/ > 1, such that

F.1C s/ D G.1C s/

�
1

s
CO.1/

�1�ı
D G.1C s/

1

s1�ı
.1CO.jsj//1�ı

for <.s/ > 0. The primes in ….�; � 0/ only run over P2. Thus, since we may freely disregard
finitely many primes, it suffices to ally our knowledge of F.s/ with an investigation of

QF .s/ D
Y
p2P2

C<p<w.T /

�
1 �

1

ps

��1
near s D 1, for a suitable absolute constant C D O.1/. Lemma 3.2 applies to QF .s/
with h D 1hP2i

and H D 1. The primes in QF run up to x D w.T / D log logT and
we are interested in s0 D s satisfying <.s/ D .logT  /�1 or <.s/ D 2.logT  /�1 and
jsj 6 3.logT  /�1=2 D 3�1=2e�w.T /=2. Thus the conditions of Lemma 3.2 are satisfied and
we obtain

j QF .1C s/j � QF .1/ �
Y
p2P2

p<w.T /

�
1 �

1

p

��1
:

Thus, invoking (8.11), we obtain

I �

Z
I

Z
I

ˇ̌̌1C i�
logT 

ˇ̌̌1�ı ˇ̌̌1C i� 0
logT 

ˇ̌̌1�ı ˇ̌̌1C i� C 1C i� 0
logT 

ˇ̌̌ı�1
�

ˇ̌̌̌
QF
�
1C

1C i�

logT 

�
QF
�
1C

1C i� 0

logT 

�
QF
�
1C

2C i.� C � 0/

logT 

��1
�.�/�.� 0/

ˇ̌̌̌
d� d� 0

� .logT /ı�1 QF .1/
Z
I

Z
I

.1C j�j/�2.1C j� 0j/�2 d� d� 0

� .logT /ı�1
Y
p2P2

p<w.T /

�
1 �

1

p

��1
:

This concludes the proof of (8.13) and so completes the proof of the lemma.

4 e SÉRIE – TOME 50 – 2017 – No 6



NORM FORMS AND LINEAR POLYNOMIALS 1429

8.3. Conclusion

Let 1 6 i 6 r . We are finally in a position to reveal the majorant for the representation
function R0i W f�T; : : : ; T g ! R>0 in (8.1), where S C1;T is the exceptional set from
Definition 7.5.

Let A 2 A i and let W0 D
Q
pjDKi

p˛.p/. Let A0 D gcd.A;W / and let A0 D gcd.A;W0/.
Then

gcd
�
A0

A0
;
W t C A

A0

�
D 1;

for any t 2 Z. Hence it follows from Lemma 8.4

(8.14) Ri .W t C A/�
%i .W0; A/

W
ni�1
0

rKi

�
A0

A0

�
rKi

�
W t C A

A0

�
;

when W t C A > 0. Put m D W t C A and assume that m 62 S C1;T . Then A0 D m0, in the
notation of (8.5). Combining the majorants (8.8) and (8.10) according to (8.7), we obtain

rKi

� m
m0

�
6 ri;res

� m
m0

� X
q2hP

.i/

2 i

vp.q/6D1 8p

1qjm�.q/
ni 1
hP

.i/
0
[P

.i/
1
i

�
m

qm0

�

� �
.T /
i .m/

X
q2hP

.i/

2 i

vp.q/6D1 8p

1qjm�.q/
ni�

� log q
logT 

�
�
.T /
i;sieve

�
m

q

�

D �
.T /
i .m/�0

.T /
i;sieve.m/:

(8.15)

Here we have noted that �.T /i;sieve.m=.qm
0// D �

.T /
i;sieve.m=q/ and truncated the q summation

using �. To see that the latter is valid, suppose that q j m with q > T =2 and recall that
�.x/ D 1 for x 2 Œ�1=2; 1=2�. If there is a prime divisor p > T 1=.log logT /3 of q, then there
exists a divisor p2 j m with p2 > .logT /C1 , since q is square-full, which implies that m is
rough in the sense of part (1) of Lemma 7.4. If, on the other hand, p 6 T 1=.log logT /3 for
every p j q, then m is smooth in the sense of part (2) of the lemma. Neither case can occur
since m 62 S C1;T .

Our final task is to check condition (ii) from the start of Section 7, which states that the
mean value of our majorant should agree with the mean value of R0i , with respect to T .

L 8.9. – Let 1 6 i 6 r and define A i as in (6.2). Suppose 1 6 A < W withA 2 A i

and write A0 D gcd.A;W /. Then

%i .W0; A/

W
ni�1
0

rKi

�
A0

A0

�
Em6.T�A/=W �

.T /
i .W mC A/�0

.T /
i;sieve.W mC A/ �

%i .W;AIM/

W ni�1
;

provided the parameter  appearing in �.T /i and �0.T /i;sieve is sufficiently small.

Proof. – To begin with, recall that %i .W;AIM/ > 0 and that vp.A/ < vp.M/� 1 for all
p jM by our assumption (6.2). Thus, for p jM , the first part of Lemma 4.2 yields

0 <
%i .p

˛.p/; AIpvp.M//

p˛.p/.ni�1/
6
%i .p

˛.p/; A/

p˛.p/.ni�1/
� 1:
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Since the above is positive, we may use Lemma 3.4 to deduce a matching lower bound as in
(8.4). Thus, the multiplicativity of %i implies that

(8.16)
%i .W;A/

W ni�1
�

%i .W;AIM/

W ni�1
6
%i .W;A/

W ni�1
:

Next we note that A0=A0 D gcd.W=W0; A/. Hence the second part of Lemma 4.2 yields

(8.17)
%i .W;A/

W ni�1
D
%i .W0; A/

W
ni�1
0

rKi

�
A0

A0

� Y
p<w.T /
p-DKi

�
1 �

1

p

��1 Y
pjp
p�oKi

�
1 �

1

N p

�
:

This reduces our task to establishing, for sufficiently small  , the estimate

Em6.T�A/=W �
.T /
i .W mC A/�0

.T /
i;sieve.W mC A/ �

Y
p<w.T /

�
1 �

1

p

��1 Y
pjp
p�oKi

�
1 �

1

N p

�
:

We temporarily set

S.T 0/ D Em6T 0=W �
.T /
i .W mC A/�0

.T /
i;sieve.W mC A/;

for any T 0 6 T . The two factors of the majorant are truncated divisor sums. According to

the discussion following (8.8), the first function �.T /i is constructed from divisors in hP
.i/

1 i

provided T is sufficiently large, whereas the function �0.T /i;sieve is constructed from divisors

belonging to hP
.i/

2 i. In particular the divisors used in the construction of the former are all
coprime to the divisors appearing in the latter. We therefore deduce (cf. [26, p. 262]) that

S.T 0/ D Em6T 0=W �
.T /
i .W mC A/

� Em6T 0=W �0
.T /
i;sieve.W mC A/CO.T

O./W=T 0/;

which provides an asymptotic formula whenever T O./W D o.T 0/. Combining Lemmas 8.7
and 8.8, this allows us to deduce the upper bound

S.T � A/�
Y

p<w.T /

�
1 �

1

p

��1 Y
pjp
p�oKi

�
1 �

1

N p

�
if  is sufficiently small. To obtain the lower bound for S.T �A/, we combine (8.14), (8.15),
(8.3) to get

%i .W0; A/

W
ni�1
0

rKi

�
A0

A0

�
S.T � A/� Em6.T�A/=W R0i .W mC A/

�
%i .W;AIM/

W ni�1
:

But then it follows that

S.T � A/�
Y

p<w.T /

�
1 �

1

p

��1 Y
pjp
p�oKi

�
1 �

1

N p

�
;

by (8.16) and (8.17).
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For every i 2 f1; : : : ; rg let Ai be such that 1 6 Ai < W and Ai .modW / 2 A i . The
proof of Lemma 8.9 shows that there is a function

(8.18) 'i .T IAi / �
Y

p<w.T /

�
1 �

1

p

� Y
pjp
p�oKi

�
1 �

1

N p

��1
such that

(8.19) 'i .T IAi /Em<T=W �
.T /
i .W mC Ai /�

0.T /
i;sieve.W mC Ai / D 1:

We define the joint normalized majorant function

(8.20) $
.T /
A1;:::;Ar

.m/ D
1

r

rX
iD1

'i .T IAi /�
.T /
i .W mC Ai /�

0.T /
i;sieve.W mC Ai /:

We will often write

$ .T /.m/ D $
.T /
A1;:::;Ar

.m/;

for short. It satisfies Em<T=W $ .T /.m/ D 1: Moreover, $ .T / simultaneously majorises the
normalized counting functions�%i .W;Ai IM/

W ni�1

��1
R0i .W mC Ai /;

for 1 6 i 6 r and R0i as in (8.1), in the sense of (i) from the start of Section 7.

9. The majorant is pseudorandom

Let Ai 2 A i for 1 6 i 6 r , in the notation of (6.2), and recall the Definition (8.20)
of $ .T / D $

.T /
A1;:::;Ar

. Given D > 1, our aim in this section is to show that the family

.$ .T //T2Z>0 gives rise to a family of D-pseudorandom majorants, in the sense of [17, §6]
with m0 D d0 D L0 D D, provided that the parameter  appearing in the truncations is
sufficiently small. In our setting it suffices to consider D �L 1, where L is as in (5.3).

For each T let QT be a prime number such that T=W < QT �L T=W . Choosing QT
sufficiently large in terms of L allows us to pass from counting problems within the set
of integers f1; : : : ; ŒT=W �g to counting problems in the group Z= QTZ, without creating new
solutions due to the wrap-around effect. The majorants are extended to Z= QTZ by defining
$ 0

.T /
W Z= QTZ! R>0 via

$ 0
.T /
.m/ D

(
.1C$ .T /.m//=2; if m 6 T=W;

1; if T=W < m 6 QT :

By [17, App. D] it suffices to prove the following two propositions in order to show that
.$ 0

.T /
/T2Z>0 is a family of D-pseudorandom majorants. As indicated above, we will apply

them with D �L 1.
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P 9.1 (D-Linear forms estimate). – Let T 2 Z>0, T 0 D Œ T
W
�, and let D > 1.

Suppose that 1 6 r 0; s0 6 D and let h D .h1; : : : ; hr 0/ W Zs
0

! Z be a system of linear
polynomials whose non-constant parts are pairwise non-proportional. Suppose that coefficients
of each hi , other than possibly the constant terms, are bounded in absolute value by D, while
hi .0/ D OD.T /. Suppose K � Œ�1; 1�s

0

is a convex body such that h.T 0K/ � Œ1; T 0�r
0

and
vol.K/� 1. Then we have

1

vol.T 0K/

X
m2Zs0\T 0K

r 0Y
jD1

$
.T /
A1;:::;Ar

.hj .m// D 1C oD.1/;(9.1)

provided  is small enough.

P 9.2 (D-correlation estimate). – Let T 2 Z>0, T 0 D Œ T
W
� and let D > 1.

Then there exists a function � W f�T 0; : : : ; T 0g ! R>0 with bounded moments

Ejmj6T 0 �q.m/�D;q 1;

such that for every discrete interval I � f1; : : : ; T 0g, every 1 6 d 6 D, every .i1; : : : ; id / 2
f1; : : : ; rgd and every choice of (not necessarily distinct) a1; : : : ; ad 2 f1; : : : ; T 0g, we have

X
m2I

dY
jD1

'ij .T IAij /�
.T /
ij
.W.mC aj /C Aij /�

0.T /
ij ;sieve.W.mC aj /C Aij / 6 T 0

X
16j<j 06d

�.aj � aj 0/;

provided  is small enough.

In proving Propositions 9.1 and 9.2, we will allow all of our implied constants to depend
on the parameter D. We begin with the proof of the former. Unraveling definitions, we see
that (9.1) is implied by the estimate

1

vol.T 0K/

X
m2Zs0\T 0K

r 0Y
jD1

�
.T /
ij
.W hj .m/C Aij /�

0.T /
ij ;sieve.W hj .m/C Aij /

D .1C o.1//

r 0Y
jD1

'ij .T IAij /
�1;

(9.2)

for every collection of indices 1 6 i1; : : : ; ir 0 6 r . Here we have 'ij .T IAij /
�1 � …ij , by

(8.18), where

(9.3) …i D

Y
p<w.T /

�
1 �

1

p

��1 Y
pjp
p�oKi

�
1 �

1

N p

�
:
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The strategy to proving (9.2) is the same as in [26, §9], which is related to that of [17,
App. D]. Inserting all definitions and writing gi D � � ri;res, we have

�
.T /
i .W mC A/�0

.T /
i;sieve.W mC A/

D

Œ.log logT /3�X
�D4=

Œlog2..log logT /3/�X
�Ddlog2 ��2e

X
u2U.�;�/

2ni�1ujWmCA ri;res.u/

�

X
d2hP

.i/

1 i

gcd.d;u/D1

1d jWmCA gi .d/�
� log d

logT 

�

�

X
q2hP

.i/

2 i

vp.q/6D1 8p

1qjWmCA �.q/
ni�

� log q
logT 

�� X
e2hP

.i/

2 i

qejWmCA

�.e/�
� log e

logT 

��2
:

Here the restriction to d 2 hP
.i/

1 i arises from Remark 7.8 and the fact that gi .d/ D 0 when
d has a prime factor p < w.T /. Noting that gcd.qe; d/ D 1, the right hand side is seen to be

Œ.log logT /3�X
�D4=

Œlog2..log logT /3/�X
�Ddlog2 ��2e

X
u2U.�;�/

X
d2hP

.i/

1 i

gcd.d;u/D1

X
q2hP

.i/

2 i

vp.q/6D1 8p

�

X
e;e02hP

.i/

2 i

2ni�ri;res.u/�.q/
ni�.e/�.e0/gi .d/1�jWmCA

Y
x2fd;e;e0;qg

�
� log x

logT 

�
;

where � D lcm.u; d; qe; qe0/: Together, Remark 7.7 and the compact support of � ensure
that all divisors d; e; e0; q; u are bounded by T  . For each 1 6 j 6 r 0 we define the linear
polynomial

h0j .m/ D W hj .m/C Aij :

We may assume that T is sufficiently large in terms ofD to ensure that the non-constant parts
of the polynomials h1; : : : ; hr 0 are pairwise non-proportional modulo any prime p > w.T /.
The same then holds for the polynomials h01; : : : ; h

0
r 0 .

Let �j D lcm.uj ; dj ; qj ej ; qj e0j /, for 1 6 j 6 r 0. We are interested in estimating the
cardinality

#fm 2 Zs0\T 0K W �j j h0j .m/g D
X

s .mod�u;d;q;e;e0 /�j jh
0
j
.m/

#fm 2 Zs0\T 0K W m � s .mod�u;d;q;e;e0/g;

where�u;d;q;e;e0 D lcm.�1; : : : ; �r 0/ 6 T O./:Extending the notion of local divisor densities
multiplicatively from (5.5), with Um D .Z=pmZ/s0 and the set of polynomials h0, the outer
sum has cardinality ˛h0.�1; : : : ; �r 0/�

s0

u;d;q;e;e0 : The inner cardinality is equal to

#
�
.�u;d;q;e;e0Zs

0

C s/ \ T 0K
�
D #

�
Zs0 \ .��1u;d;q;e;e0T

0KC��1u;d;q;e;e0s/
�
:
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We may therefore apply Lemma 3.1 with B D K and T D ��1u;d;q;e;e0T
0 to each of the above

cardinalities. This leads to the conclusion that

1

vol.T 0K/

X
m2Zs0\T 0K

r 0Y
jD1

�
.T /
ij
.h0j .m//�

0.T /
ij ;sieve.h

0
j .m//

D

X
�

X
�

X
u

uj2U.�j ;�j /

X
d

gcd.dj ;uj /D1

X
q

X
e;e0

�
˛h0.�1; : : : ; �r 0/CO

�T 0�1CO./
vol.K/

��

�

r 0Y
jD1

2
�jnij �.qj /

nij �.ej /�.e
0
j /gij .dj /

Y
x2fdj ;ej ;e

0
j
;qj g

�
� log x

logT 

�
;

(9.4)

where �;�;u;d;q; e; e0 2 Zr 0 are assumed to satisfy the correct multiplicative restrictions
component-wise. Thus, for example, the sum over d is restricted to

fd W dj 2 hP
.ij /

1 i; 1 6 j 6 r 0g:

Similarly, those over q; e and e0 are restricted to

fx W xj 2 hP
.ij /

2 i; 1 6 j 6 r 0g:

We assume, furthermore, that all coordinates of q satisfy vp.qj / 6D 1 for all primes p.

We begin by examining the error term in (9.4). As mentioned above, each of the sums
over uj , dj , ej , e0j and qj have at most T  terms. Together with the trivial bounds �.q/ 6 T 

for q 6 T  and 2�j 6 2.log logT /3 � T o.1/; this implies that the error term makes a total
contribution of

O
�T 0�1CO./

volK

�
D o.1/;

by our assumptions on K.

The main term will now be analyzed in much the same way as in [25, §6] and [26, §9]. Our
majorant very closely resembles that from [26], the latter in fact being a special case of it.
The analysis of (9.4) is therefore only a minor adaptation of what is established in [26, §9].
Given the length of the argument we include an overview here as guidance, and only include
the details of the more complicated proofs where it may not be immediately clear that the
corresponding argument from [26, §9] still applies.

Any prime p j � satisfies p > w.T /. Hence ˛h0.�1; : : : ; �r 0/will be determined using the
first three alternatives from (5.6). In particular,

˛h0.�1; : : : ; �r 0/ D

r 0Y
jD1

1

�j

whenever �1; : : : ; �r 0 are pairwise coprime. Put Q�j D dj qj lcm.ej ; e0j /, for 1 6 j 6 r 0. The
first step is to show that we may replace ˛h0.�1; : : : ; �r 0/ in the main term by

˛h0. Q�1; : : : ; Q�r 0/

u1 : : : ur 0
;
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at the expense of an overall error term o.1/. To prove this, it suffices to show that we may
restrict the summation to vectors .u;d;q; e; e0/ for which

gcd.uj ; Q�j / D 1 and gcd.ui ; uj Q�j / D 1

for all j and all i 6D j . Since gcd.dj ; uj / D 1, it follows from Remark 7.8 that the first
condition is always satisfied. Furthermore, the set of all vectors .u;d;q; e; e0/ failing the
second condition makes a negligible contribution. The proof follows (cf. the proof of [26,
Claim 2]) by the Cauchy–Schwarz inequality from a second-moment estimate together with
a lower bound on the prime divisors of any uj .

We note that

(9.5)
X
�

X
�

X
u

uj2U.�j ;�j /

r 0Y
jD1

2
�jnij rj;res.uj /

uj
<1:

The absolute convergence of this sum follows from the proof of Proposition 7.6.

The next step is to replace � by a multiplicative function using (8.12). For 1 6 j 6 r 0 and
1 6 k 6 4 we write

zj;k D
1C i�j;k

logT 
:

Likewise we set d� D
Q
j;k d�j;k and

(9.6) Jj D �.ej /�.e
0
j /e
�zj;1
j e

0�zj;2
j gij .dj /d

�zj;3
j �.qj /

nij q
�zj;4
j ;

for 1 6 j 6 r 0. With this notation the new main term is equal toX
�

X
�

X
u

r 0Y
jD1

2
�jnij rj;res.uj /

uj0BB@J.u/COE
0BB@ 1

.logT /E
X

d
.dj ;uj /D1

X
q

X
e;e0

r 0Y
jD1

H�.dj qj /˛h0. Q�1; : : : ; Q�r 0/

.ej e
0
jdj qj /

1= logT 

1CCA
1CCA

for any E > 0, where H D max16i6r 0 2ni and

J.u/ D
X

d
.dj ;uj /D1

X
q

X
e;e0

˛h0. Q�1; : : : ; Q�r 0/

Z
I

: : :

Z
I

0@ r 0Y
jD1

Jj

4Y
kD1

#.�j;k/

1A d�:

The error terms that appear in the next step will again depend on how small the prime factors
of the relevant numbers can be. This time these are the coordinates of d;q; e and e0 instead
of u and we can only assume that the primes are larger than w.T /, which is much smaller
than the lower bound on prime factors of the ui . For this reason it was essential to treat
the uj separately first, in order to make use of the convergence of the sums over �, � and
U.�j ; �j / when showing that the new error term is negligible.

The next step is to show that we may swap the product over j with all the sums. That is,
we replace ˛h0. Q�1; : : : ; Q�r 0/ by . Q�1 : : : Q�r 0/�1, while only introducing a small error. We will
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show that

J.u/C o

0@ r 0Y
jD1

…ij

1A D Z
I

: : :

Z
I

0BBBB@
r 0Y
jD1

X
dj

.dj ;uj /D1

X
qj2hP

.ij /

2
i

vp.qj /6D1 8p

X
ej ;e
0
j
2hP

.ij /

2
i

Jj
Q�j

4Y
kD1

#.�j;k/

1CCCCA d�

D

r 0Y
jD1

X
dj

.dj ;uj /D1

X
qj2hP

.ij /

2
i

vp.qj /6D1 8p

X
ej ;e
0
j
2hP

.ij /

2
i

Z
I4

 
Jj
Q�j

4Y
kD1

#.�j;k/

!
d�j;1 : : : d�j;4;

(9.7)

where …i is given by (9.3) for 1 6 i 6 r . Before establishing this estimate, we remark that
the final main term is now a product of r 0 factors that are independent of each other and
independent of the system h of linear polynomials that we started with. In particular, we
may consider this estimate in the special case where s0 D r 0 D 1 and where h1.m/ D m.
Reinstating the sums over �, � and u, this relates the j th factor of the above product to the
average value of the majorant function. By (8.19) and (9.5), we therefore deduce thatX

�

X
�

X
u

r 0Y
jD1

2
�jnij rj;res.uj /

uj

0@J.u/C o0@ r 0Y
jD1

…ij

1A1A D .1C o.1// r 0Y
jD1

'ij .T IAij /
�1:

This completes the proof of (9.2), and hence the proof of Proposition 9.1, subject to the
verification of (9.7). Our proof of (9.7) will be undertaken in two steps, as recorded in the
following two results. We fix values of � and � for now.

L 9.3. – For each 1 6 j 6 r 0 and each uj 2 U.�j ; �j /, we haveZ
I4

ˇ̌̌̌ X
dj

gcd.dj ;uj /D1

X
qj2hP

.ij /

2
i

vp.qj /6D1 8p

X
ej ;e
0
j
2hP

.ij /

2
i

Jj
Q�j

4Y
kD1

#.�j;k/

ˇ̌̌̌
d�j;1 : : : d�j;4 � …ij ;

where …ij is given by (9.3), and where the implied constant is independent of �j , �j , uj .

This lemma corresponds to [26, Claim 5]. We take the opportunity to provide a full proof
here, since the extra factors gij .dj /�.qj /

nij implicit in Jj make the analysis slightly more
delicate. Moreover, while the proof of [26, Claim 5] is correct, it requires an application of
Lemma 3.2, which is not present in [26].

Proof of Lemma 9.3. – The first step is to express the integrand, which we denote by
K D K.�j;1; : : : ; �j;4/, as an Euler product. The fact that<.zj;k/ D .logT  /�1 > 0will allow
us to restrict to the square-free part. Recall that

Jj
Q�j
D
�.ej /�.e

0
j /e
�zj;1
j e

0�zj;2
j gij .dj /d

�zj;3
j �.qj /

nij q
�zj;4
j

dj qj lcm.ej ; e0j /

and put

QL D

4Y
kD1

.1C j�j;kj/:
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By (8.11) we have

K �E
QL�E

ˇ̌̌̌ Y
p2P

.ij /

2

.1 � p�1�zj;1 � p�1�zj;2 C p�1�zj;1�zj;2 CO.p�2//

ˇ̌̌̌

�

ˇ̌̌̌ Y
p2P

.ij /

1

p-u

.1C .rKij
.p/ � 1/p�1�zj;3 CO.p�2//

ˇ̌̌̌
;

for any E > 3. Since for sufficiently large primes p each of the factors of these products can
be analyzed via the logarithmic series, we deduce that

K � QL�E
ˇ̌̌̌ Y
p2P

.ij /

2

.1 � p�1�zj;1/.1 � p�1�zj;2/.1C p�1�zj;1�zj;2/

ˇ̌̌̌

�

ˇ̌̌̌ Y
p2P

.ij /

1

.1 � p�1�zj;3/.1C rKij
.p/p�1�zj;3/

ˇ̌̌̌Y
pju

�
1C

rKij
.p/C 1

p

�
:

Since any prime divisor of u comes from an interval of the form Œy; y2�, with y D T 1=.2
�C1/,

the final product over pju is easily seen to be Onij .1/, and can be ignored.

We will now proceed as in Section 8.2. Let 1 6 i 6 r . Recall that there are func-
tions G1; G2, which are non-zero and holomorphic on <.s/ > 1, such that

Fi;1.s/ D
Y

p2P
.i/
1

�
1 �

1

ps

��1
D �ıi .s/G1.s/;

Fi;2.s/ D
Y

p2P
.i/
2

�
1 �

1

ps

��1
D �1�ıi .s/G2.s/:

Hence, when <s > 0 and jsj � 1, then

jFi;1.1C s/j � jsj
�ıi ; jFi;2.1C s/j � jsj

�1Cıi :

Likewise, jF �1i;1 .1 C s/j � jsjıi and jF �1i;2 .1 C s/j � jsj1�ıi . In order to employ these
asymptotic orders to bound the integral above, we apply Lemma 3.2 to deduce that there
is an absolute positive constant C such that each of the three Euler products E.s/, given by

Hi;1.s/ D
Y

p2P
.i/
1

C<p<w.T /

�
1 �

1

ps

��1
; Hi;2.s/ D

Y
p2P

.i/
2

C<p<w.T /

�
1 �

1

ps

��1
;

and

HKi .s/ D
Y

C<p<w.T /

�
1C

rKi .p/

ps

��1
;
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satisfies jE.1 C s/j � E.1/ and (3.1) when jsj � .logT  /�1=2. Recall the Definition (9.3)
of …ij . We may conclude that

K � QL�E jzj;1j
1�ıij jzj;2j

1�ıij jzj;1 C zj;2j
ıij �1jzj;3j

ıij jzj;3j
�1

�Hij ;2.1/Hij ;1.1/
Y

p<w.T /

�
1 �

rKi .p/

p

�
� QL�E

�
1C j�j;1j

logT 

�1�ıij �1C j�j;2j
logT 

�1�ıij �1C j�j;1 C �j;2j
logT 

�ıij �1
�

�
1C j�j;3j

logT 

�ıij �1
…ij

� QL�E=2…ij ;

since 0 < ıij 6 1. The lemma now follows since
R
I4
QL�E=2d�j;1 : : : d�j;4 D OE .1/:

L 9.4. – For every u 2 U.�;�/, we haveX
d;q;e;e0

gcd.dj ;uj /D1

˛h0
�
Q�1; : : : Q�r 0

�
J1 : : : Jr 0 D .1C o.1//

r 0Y
jD1

X
dj W

.dj ;uj /D1

X
qj2hP

.ij /

2
i

vp.qj /6D1 8p

X
ej ;e
0
j
2hP

.ij /

2
i

Jj
Q�j
:

Before establishing this result, let us indicate how it suffices to conclude the proof of (9.7).
The second equality in (9.7) is obvious, and so only the first requires a proof. Lemma 9.4
implies that the difference of the two integrands is pointwise bounded by

o

 ˇ̌̌̌ r 0Y
jD1

X
dj W

.dj ;uj /D1

X
qj2hP

.ij /

2
i

vp.qj /6D1 8p

X
ej ;e
0
j
2hP

.ij /

2
i

Jj
Q�j

ˇ̌̌̌!
:

Lemma 9.3 implies that the integral over this bound equals o.
Q
j …ij /, which implies the first

part of (9.7).

Proof of Lemma 9.4. – Our argument is identical to that of [26, Claim 3], but we provide
more detail here. Throughout this proof we assume, without explicitly mentioning so, that
all entries dj of any vector d satisfy gcd.dj ; uj / D 1. The aim is to study the multiplicative
function

�.d;q; e; e0/ D ˛h0
�
Q�1; : : : ; Q�r 0

�
J1 : : : Jr 0 ;

where Jj is given by (9.6). We may factorize

�.d;q; e; e0/ D �. Qd; Qq; Qe; Qe0/�.d;q; e; e0/

in such a way that in the first factor the r 0 entries Qdj Qqj Qej Qe0j for 1 6 j 6 r 0 of ˛h0 are pairwise
coprime, while in the second factor, any prime that divides one entry of ˛h0 also divides a
second entry. The aim is to show that the main contribution from either side of the expression
in the statement of the lemma comes from such vectors .d;q; e; e0/ for which the second factor
in this decomposition is 1 D �.1; 1; 1; 1/.
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We begin with the left hand side. Let k be an integer. Then, with the notation px D

.px1 ; : : : ; pxr0 / for a prime p and x 2 Zr 0>0, we haveX0

d;q;e;e0

�.d;q; e; e0/ D
� X0

d;q;e;e0

gcd.dj qj ej e
0
j
;k/D1

16j6r 0

�.d;q; e; e0/
�Y
pjk

� X0

d;q;e;e02Zr0>0

�.pd; pq; pe; pe0/

�
;

where
P0 denotes that the sum is restricted to coprime vectors in the above sense; i.e.,

.d;q; e; e0/ D . Qd; Qq; Qe; Qe0/ in the first two sums, and in the third sum only one of the r 0 integers
max.dj ; qj ; ej ; e0j /may be non-zero. We claim that for p > w.T / and sufficiently large T the
latter sum satisfies

(9.8)
X0

d;q;e;e02Zr0>0

�.pd; pq; pe; pe0/ D 1CO.p�1/:

Taking this on trust for a moment, we see that the previous two equations implyX0

d;q;e;e0

gcd.dj qj ej e
0
j
;k/D1

16j6r 0

�.d;q; e; e0/ D
X0

d;q;e;e0

�.d;q; e; e0/
Y
pjk

.1CO.p�1//:

Applying this with k D
Qr 0

jD1 dj qj ej e
0
j , we obtain

X
.d;q;e;e0/

fdj qj ej e
0
j
W16j6r 0g

not pairwise coprime

�.d;q; e; e0/ D

0@ X0

d;q;e;e0

�.d;q; e; e0/

1A
0BB@ X�

.d;q;e;e0/
¤.1;1;1;1/

�.d;q; e; e0/
Y
pjk

.1CO.p�1//

1CCA ;
where

P� denotes that the sum is restricted to vectors failing coprimality at every prime p;
i.e., the vector .vp.dj qj ej e

0
j //

r 0

jD1 has either no or at least two non-zero entries.

Our next aim is to bound this second factor from above. We will do this by writing it as
an Euler product and analyzing contributions for each prime factor separately. The saving in
the bound will come from the factor ˛h0 in �. The remaining factors may be bounded trivially
by

ˇ̌̌
�.pej /�.p

e0
j /p�ej zj;1p

�e0
j
zj;2gij .p

dj /p�dj zj;3�.pqj /
nij p�qj zj;4

ˇ̌̌
6 2

djnij .qj C 1/
nij :

(9.9)

In order to turn the sum over d;q; e; e0 into one that directly runs over the entries of ˛h0 , note
that any integer kj may be factorized as Q�j in at most �5.kj / ways, corresponding to the
five factors dj , qj , gcd.ej ; e0j /, ej = gcd.ej ; e0j / and e0j = gcd.ej ; e0j /. We will employ the crude

bound �5.paj /� a4j . Let n.x/ denote the number of non-zero components of x 2 Zr 0 . Then
the previous inequality impliesX

d;q;e;e0

n.dCqCmax.e;e0//>2

�.pd; pq; pe; pe0/�
X

a2Zr0>0
n.a/>2

˛h0.p
a1 ; : : : ; par0 /

r 0Y
jD1

C aj .aj C 1/
C ;
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for some absolute positive constant C . Assuming p > w.T / for sufficiently large T and
introducing the variable J D maxj 6Dj 0.aj C aj 0/, the third case of (5.6) shows that this in
turn is bounded by

�

X
J>2

p�JC r
0JJ r

0C
�

1

p2
:

Recall that all components of d;q; e and e0 are composed only of prime factors larger
than w.T /. In total, we deduce thatX

.d;q;e;e0/
.d;q;e;e0/6D.1;1;1;1/

�.d;q; e; e0/ 6
X0

d;q;e;e0

�.d;q; e; e0/

 Y
p>w.T /

�
1CO

�
1

p2

��
� 1

!

6
X0

d;q;e;e0

�.d;q; e; e0/

 X
m>w.T /

m�3=2

!
� w.T /�1=2

X0

d;q;e;e0

�.d;q; e; e0/:

Thus, for the treatment of the left hand side of the expression from the lemma, it remains
to prove (9.8). Employing (9.9) and the bound on �5 another time, we turn the sum into one
that only involves ˛h0 and may be estimated using the second part of (5.6). Introducing the
variable Q D maxj .aj /, we have

X0

pd;pq;pe;pe0

�.pd; pq; pe; pe0/ D 1CO

0BBBB@ X
a2Zr0>0W
n.a/D1

˛h0.p
a1 ; : : : ; par0 /

r 0Y
jD1

C aj .aj C 1/
C

1CCCCA
D 1CO

0@X
Q>1

p�QCQ.QC 1/CC4

1A
D 1CO.p�1/:

This completes the proof of the estimateX
d;q;e;e0

˛h0
�
Q�1; : : : Q�r 0

�
J1 : : : Jr 0 D .1C o.1//

X0

d;q;e;e0

˛h0
�
Q�1; : : : Q�r 0

�
J1 : : : Jr 0

D .1C o.1//
X0

d;q;e;e0

r 0Y
jD1

Jj
Q�j
:

To complete the proof of the lemma, we need to show that in factX0

d;q;e;e0

r 0Y
jD1

Jj
Q�j
D .1C o.1//

X
d;q;e;e0

r 0Y
jD1

Jj
Q�j
:

This follows by arguing as above when �.d;q; e; e0/ is redefined to equal
Qr 0

jD1 Jj =
Q�j , and

when taking into account that the product .pa1 : : : par0 /�1, which replaces˛h0.p
a1 ; : : : ; par0 /,

trivially satisfies the bounds (5.6).
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Proof of Proposition 9.2. – A slight adaptation of [17, Lemma 9.9] yields the following.
Let � W Z! Z denote the polynomial

�.m/ D
Y

16j<j 06d

.W mC Aij � Aij 0 /:

Suppose � W f�T 0; : : : ; T 0g ! R satisfies the two conditions �.0/ D O.T 01=q/ and

�.m/ D exp

0@ X
p>w.T /; pj�.m/

OT .p
�1=2/

1A
for m 6D 0. Then E06m6 QT �

q.m/�q 1.

Whenever the collection of aj contains two identical elements, then �.0/ appears in the
bound we seek to establish. Following [16, 17] closely, we use the fact that �.0/ may be
chosen to be rather large in order to handle this case. More precisely, it follows from Hölder’s
inequality and the fact that ri;res satisfies part (b) of Definition 7.1, that

1

T 0

X
m2I

dY
jD1

'ij .T IAij /�
.T /
ij
.W.mC aj /C Aij /�

0.T /
ij ;sieve.W.mC aj /C Aij /�c;d T

cd :

See [16, §9] and [25, §7] for details. Choosing c D 1=.2qd/ ensures that the value on the right
hand side is of order o..T=W /1=q/, so that we may set �.0/ D T 1=2q .

In the remaining case where the aj are pairwise distinct, the system of linear forms is less
degenerate and we may employ the same techniques used to prove Proposition 9.1. The key
observation is that whenever a prime p divides two distinct polynomials W.m C aj / C Aij
and W.m C aj 0/ C Aij 0 at m, then it divides W.aj � aj 0/ C Aij � Aij 0 . This provides
sufficient information to handle the divisor densities ˛.pa1 ; : : : ; pad / that occur. See [25, §7]
for details.

10. Conclusion of the proof

We have now everything in place in order to complete the proof of Theorem 5.2. Recall
from (5.1) that

N.T / D
X

u2Zs\TK
u�a .modM/

rY
iD1

Ri .fi .u//;

where Ri .m/ D Ri .mIXi ;bi IM/ is given by Definition 5.1 for non-zero m 2 Z. Here,
M 2 Z>0, a 2 .Z=MZ/s and bi 2 .Z=MZ/ni for 1 6 i 6 r . Moreover, Xi � Di;C is a cone
for which the bounded set Xi \D�i;C.1/ has an .ni � 1/-Lipschitz parametrisable boundary,
unless it is empty. Finally, K � Rs is a convex bounded set.

Recall the Definition (6.2) of A i , for each 1 6 i 6 r . Let

W D

(
u0 2 .Z=W Z/s W

fi .u0/ 2 A i for i D 1; : : : ; r

u0 � a .modM/

)
;
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where W is given by (6.1) and is divisible by M . For each p < w.T / we define the corre-
sponding set

Wp D

8̂̂<̂
:̂u0 2 .Z=pvp.W /Z/s W

vp.fi .u0// < vp.W /=3 for i D 1; : : : ; r

u0 � a .modpvp.M//

%i .p
vp.W /; fi .u0/Ipvp.M// > 0

9>>=>>; ;
where we recall that %i .pvp.W /; fi .u0/Ipvp.M// also depends on bi . Define the functions R0i
as in (8.1) and recall the exceptional set S C1;T from Definition 7.5. We note that

R0i .m/ D
X
A2A i

1m�A.modW /R
0
i .m/;

for 1 6 i 6 r . Indeed, suppose jmj 62 S C1;T with R0i .m/ ¤ 0. Then it is clear that the
reduction of m modulo W must belong to A i . By Proposition 8.2, it therefore suffices to
obtain an asymptotic for

(10.1) N 0.T / D
X

u02W

X
u12Zs

W u1Cu02TK

rY
iD1

R0i .fi .W u1 C u0//:

Next, let i 2 f1; : : : ; rg. We have fi .W u1 C u0/ D Wfi .u1/ C fi .u0/, since each fi is a
linear form. Let 0 < A0i .u0/ < W be such that A0i .u0/ � fi .u0/ .modW /. We proceed to
define a linear polynomial hi 2 ZŒu� via

Wfi .u/C fi .u0/ D W hi .u/C A0i .u0/:

Note that hi may be inhomogeneous.

For any fixed residue u0 2 W, let Ku0;T be the set of u1 2 Rs for which W u1 C u0 2 TK.
Thus, W Ku0;T C u0 D TK. We proceed to split Ku0;T into regions on which the sign
of W hi .u1/C A0i is constant for 1 6 i 6 r . Thus, for � D .�1; : : : ; �r / 2 f˙gr let

Ku0;T .�/ D fu1 2 Ku0;T W f.W u1 C u0/ 2 R�1 � � � � � R�r g;

where R� D fx 2 R W �x > 0g. Note that this is a finite union of convex subsets
of Œ�CT=W;CT=W �s for some absolute constant C > 0. Furthermore

vol
�
Ku0;1.�/

�
D

vol.K \ f�1.R�1 � � � � � R�r //
W s

:

Since jf.TK/j 6 T , it follows that jW hi .Ku0;T /C A
0
i .u0/j 6 T for each u0 2 W.

The existence of a simultaneous pseudorandom majorant for each collection of functions

eRi W m 7!
�%i .W; fi .u0/IM/

W ni�1

��1
R0i .W�imC A

0
i .u0//

defined on the range fm W 0 < Wm C �iA
0
i .u0/ 6 T g was established in Sections 8 and 9.

This existence allows us to employ the generalized von Neumann theorem [17, Prop. 7.1] to
deduce that the sum over u1 in (10.1) is equal to

T s
X
�2f˙gr

vol.Ku0;1.�//

rY
iD1

%i .W; fi .u0/IM/

W ni�1
�
�i
i .Xi /C o

�
T s

W s

�
;
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provided that for each u0 2 W the normalized representation function eRi .m/ satisfies

max
16i6r

keRi � ��ii .Xi /kU r�1 D o.1/:
The latter, however, follows from the inverse theorem [20] for the Gowers uniformity norms
from Proposition 6.3 and the bound

Ejmj<T=W Ri .W mC A/1WmCA2SC1;T
� .logT /�C1=4;

provided by (8.2).
Let

S.T / D
1

W s

X
u02W

rY
iD1

Y
p6w.T /

%i .p
˛.p/; fi .u0/Ipvp.M//

p˛.p/.ni�1/
;

with ˛.p/ D vp.W /. We conclude that

N 0.T / D ˇ1S.T /T
s
C o.T s/;

with ˇ1 as in the statement of Theorem 5.2. It therefore remains to analyze S.T /. An
application of the Chinese remainder theorem yields

S.T / D
Y

p6w.T /

1

ps˛.p/

X
u02Wp

rY
iD1

%i .p
˛.p/; fi .u0/Ipvp.M//

p˛.p/.ni�1/
:

Let us define "p via

p̌ D
1

ps˛.p/

X
u02Wp

rY
iD1

%i .p
˛.p/; fi .u0/Ipvp.M//

p˛.p/.ni�1/
C "p;

where p̌ is as in the statement of Theorem 5.2. In order to complete the proof, it remains to
check that "p is sufficiently small to be able to conclude thatY

p<w.T /

. p̌ � "p/ D
Y

p<w.T /

p̌ C o.1/;

as T !1. This will certainly suffice, since Proposition 5.5 implies thatY
p>w.T /

p̌ D 1C o.1/;

as T !1. Recalling that w.T / D log logT , it will be enough to show that "p � .logT /�C

for some absolute constant C > 0.
For this we shall apply Lemma 3.4 to .pm; AIp`/ D %i .p

m; fi .u0/Ipvp.M// for
m > ˛.p/. This yields

"p D lim
m!1

1

pms

X
u2U�m

u�a .modM/

rY
iD1

%i .p
m; fi .u/Ipvp.M//

pm.ni�1/

6 lim
m!1

1

pms

X
u2U�m

rY
iD1

%i .p
m; fi .u//

pm.ni�1/
;

where

U�m D

�
u 2 .Z=pmZ/s W max

16i6r
vp.fi .u// > minf˛.p/=3;mg

�
:
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Proceeding as in the analysis of p̌ for large p in the proof of Proposition 5.5, we obtain
for m > ˛.p/ the bound

1

pms

X
u2U�m

rY
iD1

%i .p
m; fi .u//

pm.ni�1/
�

1

pms

X
u2U�m

rY
iD1

minfvp.fi .u//C 1;mgni

6
X

k2Zr>0
maxi ki>˛.p/=3

˛f.p
k1 ; : : : ; pkr /

rY
iD1

k
ni
i

� p�˛.p/=3

6 .logT /�C1=4:

This completes the proof of Theorem 5.2.
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