C1-rigidity of circle maps with breaks for almost all rotation numbers
[La rigidité différentiable d'applications du cercle avec un point de singularité de type rupture pour presque tous les nombres de rotation]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 5, pp. 1163-1203.

Nous démontrons que pour presque tous les irrationnels ρ(0,1), deux difféomorphismes du cercle C2+α lisses, α(0,1), avec un point de singularité de type rupture où la dérivée a une discontinuité de saut, avec le même nombre de rotation ρ et la même taille de rupture c+{1}, sont C1-conjugués l'un à l'autre.

We prove that, for almost all irrational ρ(0,1), every two C2+α-smooth, α(0,1), circle diffeomorphisms with a break point, i.e., a singular point where the derivative has a jump discontinuity, with the same rotation number ρ and the same size of the break c+{1}, are C1-smoothly conjugate to each other.

Publié le :
DOI : 10.24033/asens.2342
Classification : 37E10, 37E20.
Keywords: Rigidity, conjugacy, circle maps, diffeomorphisms with a break
Mot clés : Rigidité, conjugaison, cartes de cercle, difféomorphismes avec des singularités de type rupture.
@article{ASENS_2017__50_5_1163_0,
     author = {Khanin, Konstantin and Koci\'c, Sa\v{s}a and Mazzeo, Elio},
     title = {$C^1$-rigidity of circle maps with breaks  for almost all rotation numbers},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1163--1203},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {5},
     year = {2017},
     doi = {10.24033/asens.2342},
     mrnumber = {3720027},
     zbl = {1388.37050},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2342/}
}
TY  - JOUR
AU  - Khanin, Konstantin
AU  - Kocić, Saša
AU  - Mazzeo, Elio
TI  - $C^1$-rigidity of circle maps with breaks  for almost all rotation numbers
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 1163
EP  - 1203
VL  - 50
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2342/
DO  - 10.24033/asens.2342
LA  - en
ID  - ASENS_2017__50_5_1163_0
ER  - 
%0 Journal Article
%A Khanin, Konstantin
%A Kocić, Saša
%A Mazzeo, Elio
%T $C^1$-rigidity of circle maps with breaks  for almost all rotation numbers
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 1163-1203
%V 50
%N 5
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2342/
%R 10.24033/asens.2342
%G en
%F ASENS_2017__50_5_1163_0
Khanin, Konstantin; Kocić, Saša; Mazzeo, Elio. $C^1$-rigidity of circle maps with breaks  for almost all rotation numbers. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 5, pp. 1163-1203. doi : 10.24033/asens.2342. https://www.numdam.org/articles/10.24033/asens.2342/

Arnol'd, V. I. Small denominators. I. Mapping the circle onto itself, Izv. Akad. Nauk SSSR Ser. Mat., Volume 25 (1961), pp. 21-86 ; translation: Transl. A.M.S. 46 (1965), 213–284 (ISSN: 0373-2436) | MR | Zbl

Cunha, K.; Smania, D. Renormalization for piecewise smooth homeomorphisms on the circle, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 30 (2013), pp. 441-462 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Cunha, K.; Smania, D. Rigidity for piecewise smooth homeomorphisms on the circle, Adv. Math., Volume 250 (2014), pp. 193-226 (ISSN: 0001-8708) | DOI | MR | Zbl

de Faria, E.; de Melo, W. Rigidity of critical circle mappings. II, J. Amer. Math. Soc., Volume 13 (2000), pp. 343-370 (ISSN: 0894-0347) | DOI | MR | Zbl

de Faria, E.; de Melo, W. Rigidity of critical circle mappings. I, J. Eur. Math. Soc. (JEMS), Volume 1 (1999), pp. 339-392 (ISSN: 1435-9855) | DOI | MR | Zbl

Herman, M.-R. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHÉS, Volume 49 (1979), pp. 5-233 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Khanin, K.; Khmelev, D. Renormalizations and rigidity theory for circle homeomorphisms with singularities of the break type, Comm. Math. Phys., Volume 235 (2003), pp. 69-124 (ISSN: 0010-3616) | DOI | MR | Zbl

Khanin, K.; Kocić, S. Absence of robust rigidity for circle maps with breaks, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 30 (2013), pp. 385-399 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Khanin, K.; Kocić, S. Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks, Geom. Funct. Anal., Volume 24 (2014), pp. 2002-2028 (ISSN: 1016-443X) | DOI | MR | Zbl

Katznelson, Y.; Ornstein, D. The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 643-680 (ISSN: 0143-3857) | DOI | MR | Zbl

Kocić, S. Generic rigidity for circle diffeomorphisms with breaks, Comm. Math. Phys., Volume 344 (2016), pp. 427-445 (ISSN: 0010-3616) | DOI | MR | Zbl

Khanin, K.; Sinaĭ, Y. G. A new proof of M. Herman's theorem, Comm. Math. Phys., Volume 112 (1987), pp. 89-101 http://projecteuclid.org/euclid.cmp/1104159810 (ISSN: 0010-3616) | DOI | MR | Zbl

Khanin, K.; Teplinsky, A. Robust rigidity for circle diffeomorphisms with singularities, Invent. math., Volume 169 (2007), pp. 193-218 (ISSN: 0020-9910) | DOI | MR | Zbl

Khanin, K.; Teplinsky, A. Herman's theory revisited, Invent. math., Volume 178 (2009), pp. 333-344 (ISSN: 0020-9910) | DOI | MR | Zbl

Khanin, K.; Teplinsky, A. Renormalization horseshoe and rigidity for circle diffeomorphisms with breaks, Comm. Math. Phys., Volume 320 (2013), pp. 347-377 (ISSN: 0010-3616) | DOI | MR | Zbl

Khanin, K.; Vul, E. B., Dynamical systems and statistical mechanics (Moscow, 1991) (Adv. Soviet Math.), Volume 3, Amer. Math. Soc., Providence, RI, 1991, pp. 57-98 | DOI | MR | Zbl

Marmi, S.; Moussa, P.; Yoccoz, J.-C. Linearization of generalized interval exchange maps, Ann. of Math., Volume 176 (2012), pp. 1583-1646 (ISSN: 0003-486X) | DOI | MR | Zbl

Sinaĭ, Y. G.; Khanin, K. Smoothness of conjugacies of diffeomorphisms of the circle with rotations, Uspekhi Mat. Nauk, Volume 44 (1989), pp. 57-82 (ISSN: 0042-1316) | DOI | MR | Zbl

Yampolsky, M. Hyperbolicity of renormalization of critical circle maps, Publ. Math. IHÉS, Volume 96 (2002), pp. 1-41 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Yoccoz, J.-C. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup., Volume 17 (1984), pp. 333-359 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

  • Smania, Daniel Deformation theory of one-dimensional systems, Journal of Modern Dynamics, Volume 21 (2025) no. 0, p. 1 | DOI:10.3934/jmd.2025001
  • Kocić, Saša Singular Continuous Phase for Schrödinger Operators Over Circle Maps with Breaks, Communications in Mathematical Physics, Volume 405 (2024) no. 8 | DOI:10.1007/s00220-024-05024-4
  • Kocić, Saša Singular continuous phase for Schrödinger operators over circle maps, Mathematische Annalen, Volume 389 (2024) no. 2, p. 1545 | DOI:10.1007/s00208-023-02646-2
  • Goncharuk, Nataliya; Khanin, Konstantin; Kudryashov, Yury Circle homeomorphisms with breaks with no C2ν conjugacy, Journal of Modern Dynamics, Volume 19 (2023) no. 0, p. 751 | DOI:10.3934/jmd.2023019
  • Ghazouani, Selim; Ulcigrai, Corinna A priori bounds for GIETs, affine shadows and rigidity of foliations in genus two, Publications mathématiques de l'IHÉS, Volume 138 (2023) no. 1, p. 229 | DOI:10.1007/s10240-023-00142-6
  • Ghazouani, S.; Khanin, K. The symplectic structure for renormalization of circle diffeomorphisms with breaks, Communications in Contemporary Mathematics, Volume 24 (2022) no. 01 | DOI:10.1142/s0219199721500164
  • Jitomirskaya, Svetlana; Kocić, Saša Spectral Theory of Schrödinger Operators over Circle Diffeomorphisms, International Mathematics Research Notices, Volume 2022 (2022) no. 13, p. 9810 | DOI:10.1093/imrn/rnaa362
  • Ghazouani, Selim Local rigidity for periodic generalised interval exchange transformations, Inventiones mathematicae, Volume 226 (2021) no. 2, p. 467 | DOI:10.1007/s00222-021-01051-3
  • Kumar, Rohit; Chandramouli, V. V. M. S. Renormalization of Symmetric Bimodal Maps with Low Smoothness, Journal of Statistical Physics, Volume 183 (2021) no. 2 | DOI:10.1007/s10955-021-02764-8
  • Kozlovski, Oleg; van Strien, Sebastian Asymmetric Unimodal Maps with Non-universal Period-Doubling Scaling Laws, Communications in Mathematical Physics, Volume 379 (2020) no. 1, p. 103 | DOI:10.1007/s00220-020-03835-9
  • KHANIN, KONSTANTIN; KOCIĆ, SAŠA Hausdorff dimension of invariant measure of circle diffeomorphisms with a break point, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 5, p. 1331 | DOI:10.1017/etds.2017.63
  • Khanin, Konstantin; Kocić, Saša Robust local Hölder rigidity of circle maps with breaks, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 7, p. 1827 | DOI:10.1016/j.anihpc.2018.03.003
  • Khanin, Konstantin; Kocić, Saša On the smoothness of the conjugacy between circle maps with a break, Proceedings of the Steklov Institute of Mathematics, Volume 297 (2017) no. 1, p. 200 | DOI:10.1134/s0081543817040125

Cité par 13 documents. Sources : Crossref