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C 1-RIGIDITY OF CIRCLE MAPS WITH BREAKS
FOR ALMOST ALL ROTATION NUMBERS

 K KHANIN, S KOCIĆ  E MAZZEO

A. – We prove that, for almost all irrational � 2 .0; 1/, every two C 2C˛-smooth,
˛ 2 .0; 1/, circle diffeomorphisms with a break point, i.e., a singular point where the derivative has a
jump discontinuity, with the same rotation number � and the same size of the break c 2 RCnf1g, are
C 1-smoothly conjugate to each other.

R. – Nous démontrons que pour presque tous les irrationnels � 2 .0; 1/, deux difféomor-
phismes du cercle C 2C˛ lisses, ˛ 2 .0; 1/, avec un point de singularité de type rupture où la dérivée a
une discontinuité de saut, avec le même nombre de rotation � et la même taille de rupture c 2 RCnf1g,
sont C 1-conjugués l’un à l’autre.

1. Introduction

This paper establishes generic C 1-rigidity for circle diffeomorphisms with breaks. The
result can viewed as a one-parameter extension of Herman’s theory on the linearization of
circle diffeomorphisms.

The problem of smoothness of a conjugacy to a linear rotation for smooth diffeomor-
phisms of a circle is a classic problem in dynamical systems. It was proven by Arnol0d [1],
using the methods of KAM (Kolmogorov-Arnol0d-Moser) theory, that every analytic circle
diffeomorphism with a Diophantine rotation number �, sufficiently close to the rigid rotation
R� W x 7! x C � mod 1, is analytically conjugate to R�. A number � is called Diophantine
if there exists C > 0 and ˇ � 0 such that j� � p=qj > C=q2Cˇ , for every p 2 Z and q 2 N.
Arnol0d also conjectured that the result remains true if the requirement of closeness to the
rigid rotation is removed. A version of this global rigidity result, for smooth circle diffeo-
morphisms, was proven by Herman [6], and is the subject of classical Herman’s theory. The
theory was further developed for C r -smooth maps, r � 3, by Yoccoz [20] who established
a dependence of the regularity of the conjugacy on the Diophantine properties of the rota-
tion numbers. For more recent work we refer the reader to [7, 11, 13, 18]. In a recent formu-
lation [13], every C 2C˛-smooth, ˛ 2 .0; 1/, circle diffeomorphism, with rotation number
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1164 K. KHANIN, S. KOCIĆ AND E. MAZZEO

� Diophantine with exponent ˇ < ˛, is C 1C˛�ˇ -smoothly conjugate to the rotation R�.
Arnol0d also proved that this result cannot be extended to all irrational rotation numbers [1].
He constructed examples of analytic circle diffeomorphisms with irrational rotation numbers
for which the invariant measure is singular, which implies that the conjugacy to the rigid rota-
tion is not absolutely continuous.

We use the term rigidity for the phenomenon that any two maps within a given equiv-
alence class determined by topological conjugacy are, in fact, C 1-smoothly conjugate to
each other. Herman’s theory establishes that, in the case of smooth circle diffeomorphisms,
rigidity is guaranteed when rotation numbers satisfy a Diophantine condition. Over the
last two decades, great effort has been made to understand the rigidity properties of circle
diffeomorphisms with a singular point where the diffeomorphism condition is violated.
The singular points refer either to points where the derivative vanishes (critical points)
or where it has a jump discontinuity (break points). In the case of critical circle maps,
i.e., circle maps with a single singular point where the derivative vanishes, the first rigidity
results were obtained by de Faria and de Melo [4, 5]. They established the convergence
of renormalizations — the main technical tool in proving rigidity results — and rigidity
for analytic critical circle maps with the same irrational rotation number of bounded type
(i.e., with bounded partial quotients) and the same (odd-integer) order of the critical point
(i.e., the exponent of the power law behavior of the map in a neighborhood of the critical
point). Renormalizations fn of a circle map T are obtained from the restriction of T qn to
a small interval, by an affine change of coordinates, where qn is the denominator of the
rational convergent pn=qn of the rotation number � (see next section). The convergence
of renormalizations for analytic critical circle maps and for all irrational rotation numbers
was later established by Yampolsky [19]. The results of de Faria and de Melo [4] show that
even stronger C 1C"-rigidity of analytic critical circle maps, for some " > 0, is generic, i.e., it
holds for almost all irrational rotation numbers. C 1-rigidity of analytic critical circle maps
holds for all irrational rotation numbers, as was shown by Khanin and Teplinsky [12]. This
phenomenon, when rigidity holds without any Diophantine-type conditions, is referred to
as robust rigidity. Rigidity theory of non-analytic critical circle maps, however, has remained
an open problem since, up to now, there is no proof of the convergence of renormalizations
in this case.

The above results for critical circle maps suggested [8] that the rigidity might also be robust
in the case of circle diffeomorphisms with a break point. In [8], rigidity was established for a
set of rotation numbers of zero Lebesgue measure. However, as was shown by two of us [9],
the above conjecture is false — robust rigidity does not hold for circle maps with breaks.
We proved in [9] that there are irrational rotation numbers �, and pairs of analytic circle
diffeomorphisms with breaks, with the same rotation number � and the same size of the break
(i.e., the square root of the ratio of the left and right derivatives at the break point), for which
any conjugacy between them is not even Lipschitz continuous. The question whether rigidity
holds for typical rotation numbers, however, remained open. The main result of this paper
provides an affirmative answer to this question.

Before we state our main result, let us define precisely the class of maps that we consider.
A C r -smooth circle diffeomorphism (map) with a break is a map T W T1 ! T1, T1 D R=Z,
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GENERIC C1-RIGIDITY OF CIRCLE MAPS WITH BREAKS 1165

for which there exists xbr 2 T1 such that T 2 C r .Œxbr; xbrC1�/; T 0.x/ is bounded from below
by a positive constant on Œxbr; xbrC1�; the one-sided derivatives of T at xbr are such that the
size of the break

(1.1) c WD

s
T 0�.xbr/

T 0C.xbr/
¤ 1:

The main result of this paper is based on the following theorem.

T 1.1 ([10]). – Let ˛ 2 .0; 1/ and let c 2 RCnf1g. There exists � 2 .0; 1/ such
that, for every two C 2C˛-smooth circle diffeomorphisms with a break T and eT , with the same
irrational rotation number � 2 .0; 1/, and the same size of the break c, there exists C > 0, such
that the renormalizations fn and efn of T and eT , respectively, satisfy kfn � efnkC2 � C�n, for
all n 2 N.

R 1. – This theorem establishes the exponential convergence of renormalizations
for circle diffeomorphisms with a break, with a uniform rate � for all irrational rotation
numbers. Moreover, there exists � 2 .0; 1/, independent of ˛, such that � D �˛. This result
is stronger than what is needed for our next theorem. Note that the statement of the theorem
remains true if c D 1. This essentially follows from Herman’s theory.

Let �1 2 .�; 1/ and C1 > 0. Let Se.C1; �1/ and So.C1; �1/ be the sets of all irrational
rotation numbers � D Œk1; k2; : : : � 2 .0; 1/ whose subsequence of partial quotients knC1
(see next section) for all n even or odd, respectively, satisfies the bound knC1 � C1�

�n
1 .

Let Se.�1/ WD
S
C1>0

Se.C1; �1/ and So.�1/ WD
S
C1>0

So.C1; �1/. We define S WD Se.�1/,
if 0 < c < 1, and S WD So.�1/, if c > 1. Theorem 1.1 and Theorem 2.2, proven in this paper,
imply the following strong rigidity statement for circle diffeomorphisms with a break.

T 1.2. – Any two C 2C˛-smooth, ˛ 2 .0; 1/, circle diffeomorphisms with a break
T and eT , with the same size of the break c 2 RCnf1g and the same rotation number
� 2 S , are C 1-smoothly conjugate to each other, i.e., there exists a C 1-smooth diffeomorphism
' W T1 ! T1, such that ' ı T ı '�1 D eT .

R 2. – Set S has full Lebesgue measure. One can also see that it contains some
strongly Liouville numbers. The difference between the cases of odd and even n is related to
a difference in the behavior of the renormalizations fn, which will be explained in detail in
the next section. If 0 < c < 1 and n is even and sufficiently large or if c > 1 and n is odd and
sufficiently large, the renormalizations fn are concave and the renormalization parameter
a.n/ D fn.0/ (see the next section) can be exponentially small in knC1. If 0 < c < 1

and n is odd and sufficiently large or if c > 1 and n is even and sufficiently large, the
renormalizations fn are convex and a.n/ is bounded away from zero. The imposed condition
on the rotation numbers controls the smallness of this parameter. It is not difficult to see
that even the set of rotation numbers

T
�12.0;1/

So.�1/\ Se.�1/, for which rigidity holds for
any ˛ 2 .0; 1/ and any c 2 RCnf1g, has full Lebesgue measure. On the other hand, it is
not obvious that the sets

S
�12.�;1/

So.�1/ and
S
�12.�;1/

Se.�1/, for which rigidity holds for
some ˛ 2 .0; 1/ and c 2 RCnf1g, can be extended.
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1166 K. KHANIN, S. KOCIĆ AND E. MAZZEO

R 3. – It was recently proven by Kocić [16] that the result of Theorem 1.2 cannot
be strengthened by requiring that the conjugacy ' is C 1C"-smooth, for some " > 0. Kocić
proved [16] that, for a set of full Lebesgue measure irrational � 2 .0; 1/, for every c 2 RCnf1g,
every r > 2, and every " > 0, there exists a pair of C r -smooth circle diffeomorphisms
with a break of size c, with the same rotation number �, which are not C 1C"-smoothly
conjugate to each other. In fact, he proved a stronger result: for a set of full Lebesgue
measure irrational � 2 .0; 1/, every c 2 RCnf1g and every r > 2, there exists a pair
of C r -smooth circle diffeomorphisms with a break of size c, with rotation number �, which
are not C 1C"-smoothly conjugate to each other, for any " > 0.

R 4. – The main difficulty in the proofs of Theorem 1.1 and Theorem 1.2 is
that the geometry is strongly unbounded in this case. This means that the ratio of two nearby
elements of dynamical partitions Pn (see next section) may be of the order of a.n/ which can
be exponentially small with knC1. This should be compared to algebraic decay with knC1 in
the case of circle diffeomorphisms, and the bounded geometry of critical circle maps. Since
this ratio plays an important role in analysis of circle diffeomorphisms with breaks with
typical rotation numbers, we must deal with quantities which are smaller than exponentially
small with n. This creates major difficulties since, in general, renormalizations of these
maps converge only exponentially fast [16]. Due to this difficulty, earlier rigidity results
on circle maps with breaks were restricted to rotation numbers for which the geometry
is bounded. Those include [8], where rigidity was established for a countable set of rota-
tion numbers and [14], where rigidity was established for a larger set of zero measure. The
strongly unbounded geometry is also the reason that one cannot obtain robust rigidity in
the case of circle diffeomorphisms with breaks [9]. The set of rotation numbers for which
C 1-rigidity holds includes those for which the geometry is super-exponentially bounded,
i.e., the logarithms of the ratios of nearby elements of dynamical partitions are bounded by
an exponential function. Finally, the strongly unbounded geometry is also the reason that
circle diffeomorphisms with breaks are, generically, not C 1C"-rigid, for any " > 0 [16] (see
Remark 3).

At the end of this introduction, let us mention that there is a close relationship between
circle maps with breaks and nonlinear (generalized) interval exchange transformations.
A nonlinear interval exchange transformation (IET) is obtained by replacing the branches
of a piecewise-linear map of an IET by smooth nonlinear homeomorphisms. It is well-known
that an IET of two intervals (subintervals of Œ0; 1�) can be viewed as a rigid rotation on a
circle, if the end points of the interval Œ0; 1� are identified. Since, in general, the derivatives
at the end points of the intervals do not match, a nonlinear IET of two intervals is a circle
map with two break points. As the points are on the same orbit of the map, the map can
be conjugated piecewise-smoothly to a circle map with one point of break. Theorem 1.2,
thus, corresponds to a non-linearizable case of two intervals. The linearizable case of general
nonlinear IET has been studied by Marmi, Moussa and Yoccoz in [17]. The case of cyclic
permutations, which corresponds to circle maps with more than one point of break, with
the product of the sizes of breaks being equal to 1, was studied in [2, 3]. Renormalizations
of such maps approach the space of piecewise-linear maps. We consider the general case

4 e SÉRIE – TOME 50 – 2017 – No 5



GENERIC C1-RIGIDITY OF CIRCLE MAPS WITH BREAKS 1167

when the renormalized maps are essentially nonlinear. The convergence of renormaliza-
tions Theorem 1.1 and the rigidity Theorem 1.2 are currently the only results in the general
non-affine case, for generic rotation numbers. They can also be considered a one-parameter
extension of Herman’s theory, with the parameter being the size of break c.

The paper is organized as follows. In Section 2, we introduce a general renormalization
setting for orientation-preserving circle homeomorphisms and formulate regularity condi-
tions and a rigidity theorem (Theorem 2.2) for maps whose renormalizations satisfy these
conditions. In Section 3, we formulate a criterion of smoothness of the conjugacy in terms
of ratios of the lengths of the corresponding intervals of dynamical partitions. In the same
section, we obtain necessary estimates on these ratios on a fundamental interval and prove
Theorem 2.2 by spreading them to the whole circle and using the criterion of smoothness. In
Section 4, Theorem 1.2 is proven by verifying that the conditions of Theorem 2.2 hold true
in the case of circle diffeomorphisms with breaks.

2. Renormalizations of circle homeomorphisms and a rigidity theorem

2.1. Renormalizations of circle homeomorphisms

It has been known since Poincaré that, for every orientation-preserving homeomorphism
T W T1 ! T1, there is a unique rotation number � 2 Œ0; 1/, which is given by the
x-independent limit � WD limn!1 T

n
.x/=n mod 1, where T is any lift of T to R. If the

rotation number � 2 .0; 1/, it can be expressed in the form of a continued fraction expansion

(2.1) � D
1

k1 C
1

k2 C
1

k3 C � � �

;

that we write as � D Œk1; k2; k3; : : : �. The sequence of integers kn, called partial quotients, is
infinite and defined uniquely if and only if � is irrational. Every infinite sequence of partial
quotients defines uniquely an irrational number � as the limit of the sequence of rational
convergents pn=qn D Œk1; k2; : : : ; kn�. It is well-known that this is a sequence of best rational
approximates of �, i.e., there are no rational numbers with denominators smaller or equal
to qn, that are closer to � thanpn=qn. The rational convergents can also be defined recursively
as pn D knpn�1 C pn�2 and qn D knqn�1 C qn�2, starting with p0 D 0, q0 D 1,
p�1 D 1, q�1 D 0.

To define the renormalizations, we start with a marked point x0 2 T1, and consider
the marked semi-orbit xi D T ix0, for i 2 N0, where N0 WD N [ f0g. The subsequence
.xqn/n2N0 , indexed by the denominators of the sequence of rational convergents pn=qn of
the rotation number �, will be called the sequence of dynamical convergents. Although xq�1
and x0 coincide on the circle, we formally set xq�1 WD x0�1. The combinatorial equivalence
of all circle homeomorphisms with the same irrational rotation number implies that the order
of the dynamical convergents of T is the same as the order of the dynamical convergents for
the rigid rotation R�. The well-known arithmetic properties of the rational convergents now
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1168 K. KHANIN, S. KOCIĆ AND E. MAZZEO

imply that dynamical convergents alternate their order in the following way:

(2.2) xq�1 < xq1 < xq3 < � � � < x0 < � � � < xq2 < xq0 :

The intervals Œxqn ; x0�, for n odd, and Œx0; xqn �, for n even, will be denoted by �.n/0 , and
called the n-th renormalization segments. The n-th renormalization segment associated to
the marked point xi will be denoted by �.n/i . We also define N�.n�1/0 WD �

.n�1/
0 [ �

.n/
0 ,

and L�.n�1/0 WD �
.n�1/
0 n�

.nC1/
0 . In addition to the property (2.2), we also have the following

important property: the only points of the orbit fxi W 0 < i � qnC1g that belong to �.n�1/0

are fxqn�1Ciqn W 0 � i � knC1g.

Certain images of�.n�1/0 and�.n/0 cover the whole circle without overlapping beyond the
end points, forming the n-th dynamical partition of T1,

(2.3) Pn WD fT
i .�

.n�1/
0 / W 0 � i < qng [ fT

i .�
.n/
0 / W 0 � i < qn�1g:

The endpoints of the intervals from Pn form the set

(2.4) „n WD fxi W 0 � i < qn�1 C qng:

We also define the extended partition P
�

n WD Pn [ fT
qn.�

.n�1/
0 /; T qn�1.�

.n/
0 /g and the

extended set „�n WD „n [ fxqn�1Cqng.

The following lemma follows directly from the properties of the continued fractions.

L 2.1. – For every m > n, we have the following decomposition

(2.5) „m \ L�
.n�1/
0 D

[
xl2„m\�

.n/
0
nfxqn g

[
0�i<knC1

fxlCqn�1Ciqng:

Furthermore, for every xl 2 „m\�
.n/
0 nfxqng, we have xlCqn�1CknC1qnDxlCqnC1 2 „

�
m\
N�
.n/
0 .

The n-th renormalization of an orientation-preserving homeomorphism of the circle T ,
with rotation number � D Œk1; k2; k3; : : : �, with respect to the marked point x0 2 T1, is a
function fn W Œ�1; 0� ! R obtained from the restriction of T qn to �.n�1/0 , by rescaling the
coordinates. More precisely, if �n is the affine change of coordinates from �

.n�1/
0 to Œ�1; 0�

that maps xqn�1 to �1 and x0 to 0, then

(2.6) fn WD �n ı T
qn ı ��1n :

If we identify x0 with zero, then �n is exactly a multiplication by .�1/n=j�.n�1/0 j. Here and
in what follows, we use j � j to denote the length of an interval. Definition (2.6) is valid for all
n 2 N0 if and only if � is irrational.

2.2. Renormalizations of circle diffeomorphisms with breaks

In the case of a circle diffeomorphism with a break, we will use the break point xbr D 0

as the marked point x0.

It was shown in [15] that the renormalizations fn ofC 2C˛-smooth circle diffeomorphisms
with a break of size c 2 RCnf1g approach, exponentially fast in the C 2-norm, a particular
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-1 z

-1

w
a)

z
g

(2)
z

g

(1)
0

K
3

K
3

f
n

-1 z

-1

w
b)

z
t

(2)
z

t

(1)
0

K
5

K
5

f
n

F 1. The graph of a renormalized map fn for sufficiently large n: a) Case
0 < c < 1 and n even, or c > 1 and n odd; b) Case 0 < c < 1 and n odd, or c > 1

and n even.

family of fractional linear transformations

(2.7) Fa.n/;b.n/;M .n/;c.n/ W z 7!
a.n/ C .a.n/ C b.n/M .n//z

1 � .M .n/ � 1/z
;

where c.n/ D c, if n is even, c.n/ D c�1, if n is odd, and
(2.8)

a.n/ D
j�
.n/
0 j

j�
.n�1/
0 j

; b.n/ D
j�
.n�1/
0 j � j�

.n/
qn�1 j

j�
.n�1/
0 j

; M .n/
D exp

0BB@.�1/n Z
�
.n�1/
0

.T qn/00.z/

2.T qn/0.z/
dz

1CCA :
The following estimates were also proven in [15]. For every C 2C˛-smooth, ˛ 2 .0; 1/, circle
diffeomorphism with a break T , with a break of size c 2 RCnf1g, there exist constants
V WD Varx2T1 ln T0 <1, C > 0 and � 2 .0; 1/, such that, for all n 2 N, we have

(A) j ln.T qn/0.x/j � V , for all x 2 T1 (at points where the derivative has a break, both left
and right derivatives are considered),

(B) kfn � Fa.n/;b.n/;M .n/;c.n/kC2 � C�n,
(C) ja.n/ C b.n/M .n/ � c.n/j � Ca.n/�n, and
(D) jM .nC1/ � c.nC1/.1C a.nC1/a.n/.M .n/ � 1//j � Ca.nC1/a.n/�n.

We will refer to (A) as the Denjoy estimate. As we showed in [10], the constant � 2 .0; 1/ can
be chosen uniformly for all T with the same size of the break c and Hölder exponent ˛.

As already mentioned in Remark 2, for maps with breaks, the graphs of the renormaliza-
tions fn look different in the cases of odd and even n (Figure 1).

The following behavior of renormalizations of circle maps with breaks will be verified
in the proof of Theorem 1.2. If c > 1, the map fn is concave for sufficiently large odd n.
Moreover, as knC1 !1, the graph of fn approaches the diagonal w D z at the end points
z D �1 and z D 0. Below, we call the small intervals containing these end points the
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1170 K. KHANIN, S. KOCIĆ AND E. MAZZEO

gates (the intervals Œ�1; z.1/g / and .z.2/g ; 0� on Figure 1 .a/). On the contrary, if n is even and
sufficiently large, the map fn is convex and its graph approaches the diagonal as knC1 !1
at a single point of almost-tangency, strictly between �1 and 0. We will later call an interval
containing this point of almost-tangency the tunnel (the interval .z.1/t ; z

.2/
t / on Figure 1 .b/).

The restriction on knC1 in the definition of the set S is related to the concave case. Inside
the gates, the distance between successive iterates of fn grows/decays exponentially, which
makes the smallest distance and a.n/ to be exponentially small with knC1. The restriction on
the growth rate of knC1 provides a restriction on the rate of decrease of a.n/. In the convex
case, a.n/ is bounded away from zero, and no restriction on knC1 is necessary.

If 0 < c < 1, the behavior of the renormalizations fn is the opposite.

This behavior of renormalizations serves as a motivation for the (more general) regularity
conditions introduced in the next section.

2.3. Regularity conditions and a rigidity theorem

Let n WD .n`/`2N be an increasing subsequence (infinite, finite or empty) of numbers in N0.
A sequence of functions gn W Œ�1; 0� ! R, with n 2 N0, will be called K-regular with
respect to n, for some vectorK D .K1; K2; K3; K4; K5; K6/ 2 R6C, if all gn satisfy the below
conditions (i) and (ii); each gn, such that n D n`, for some ` 2 N, satisfies (iii) and (iv); and
each gn, such that n ¤ n`, for any ` 2 N, satisfies (v) and (vi), where:

(i) kgnkC2 � K1 on Œ�1; 0�,
(ii) g0n.z/ > K2 for every z 2 Œ�1; 0�,

(iii) the set Bgn;K3 WD fz 2 Œ�1; 0� W gn.z/ � z < K3g is either empty or consists of one or
the union of two disjoint intervals each of which contains one end point, Œ�1; z.1/g / and
.z
.2/
g ; 0�, where z.1/g ; z

.2/
g 2 .�1; 0/ (we refer to these intervals as the gates),

(iv) g00n.z/ < �K4, for z 2 Bgn;K3 ,
(v) the setBgn;K5 is either an open interval or empty (we refer to this interval as the tunnel;

since the points �1 and 0 are outside of the tunnel, this implies gn.�1/ � K5 � 1 and
gn.0/ � K5),

(vi) g00n.z/ > K6, for z 2 Bgn;K5 .

Let �1 2 .0; 1/. For a given subsequence n of N, let S n D S n.�1/ be the set of
� 2 .0; 1/nQ for which there exists C1.�/ > 0 such that the partial quotients of � satisfy
kn`C1 � C1�

�n`
1 ; for every ` 2 N. In the following, C1 D C1.�/ is the constant associated

to � 2 S n.

A system of nested partitions Pn, i.e., a sequence of partitions such that each element of a
partition PnC1 is contained in an element of a partition Pn, is called refining if the maximal
length of elements of partition Pn approaches zero as n ! 1; it is called exponentially
refining if there exist Cref > 0 and �ref 2 .0; 1/, such that jImj � Cref�

m�n
ref jInj, for any

In 2 Pn and Im 2 Pm, with Im � In.

In the following, let x0 2 T1 be an arbitrary point on the circle.

T 2.2. – Let n WD .n`/`2N be an increasing subsequence of N0. Let T and eT be two
C 2C˛-smooth on .x0 � 1; x0/, ˛ 2 .0; 1/, orientation-preserving circle homeomorphisms that
satisfy the following conditions for some � 2 .0; 1/ and �1 2 .�; 1/:
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(a) �.T / D �.eT / D � 2 S n.�1/;
(b) there exists a vector K 2 R6C such that the sequences of renormalizations .fn/n2N0 and

. efn/n2N0 are K-regular with respect to n;
(c) the systems of dynamical partitions Pn and fPn are exponentially refining;
(d) kfn � QfnkC2 � C�

n, for some C > 0 and all n 2 N0.

Then, there exists a C 1-smooth orientation-preserving circle diffeomorphism ' such that

(2.9) ' ı T ı '�1 D eT :
R 5. – As we show in the proof of Theorem 1.2, in the case of circle maps with

breaks of size c 2 RCnf1g, condition (b) is satisfied, if x0 is the break point, for the
subsequence n consisting of even n, for 0 < c < 1, and odd n, for c > 1.

R 6. – Conditions (a) and (c) of Theorem 2.2 guarantee that T and eT are topo-
logically conjugate to each other. It is easy to see that, in the case of circle maps with breaks,
the conjugacy ' can be C 1-smooth only when it maps the break point x0 of T into the break
pointex0 of eT . This condition defines the topological conjugacy ' uniquely.

Under different regularity conditions, valid for renormalizations of critical circle maps, an
analogous theorem was proven in [12]. In that case, however, the geometry is bounded, and
it requires a much simpler analysis. At present, Theorem 2 in [12] can be viewed as a special
case of a more general Theorem 2.2 (with a slightly modified regularity condition (ii)), when
the subsequence n is empty.

3. A criterion of smoothness and the proof of the main theorem

3.1. A criterion of smoothness

To prove Theorem 2.2, we will use the following criterion of smoothness of '. It is inspired
by a similar criterion in [4] called the “coherence property”. For a segment I � T1 or R, we
define

(3.1) �.I / WD
j'.I /j

jI j
;

where j � j is the length of an interval on T1 or R.

P 3.1 ([12]). – Suppose that the system of partitions Pn of the circle is
refining, and that there exist constants NC > 0 and N� 2 .0; 1/ such that for any two segments
I; I 0 2 Pn, which are either adjacent or I; I 0 � J for some J 2 Pn�1, the following estimate
holds

(3.2) j ln �.I / � ln �.I 0/j � NC N�n:

Then, ' 2 C 1.T1/ and '0 > 0.

Proof. – We present the proof for completeness of the argument. Let 'n be a homeo-
morphism of T1 that equals ' on „n and is linear on each of the segments I � Pn. Let
further .'n/0C be the right derivative of 'n. It follows from (3.2) that the sequence of differ-
ences ln..'n/0C.x// is a Cauchy sequence, uniformly on T1, and thus converges to some h.x/.
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To see this, notice first that over each I � Pn without the right endpoint, .'n/0C.x/ D �.I /,
and that (3.2), for any two intervals I; I 0 � J for some J 2 Pn�1, implies that

(3.3) j ln �.I / � ln �.J /j � NC N�n:

Now, it is easy to show, using (3.2) for adjacent intervals I; I 0 2 Pn, that the function
h is continuous on T1. Taking the limit n ! 1 of 'n.x/ D

R x
0
.'n/

0
C.z/ dz; we get

'.x/ D
R x
0
eh.z/ dz. Thus, '0 D eh is continuous and positive on T1.

We will also use the ratios of the corresponding rescaled intervals:

(3.4) sn.I / WD
je�n.'.I //j
j�n.I /j

:

In addition, we will use the notation

(3.5) r�n .I / WD
je�n.e��/ � �n.��/j

j�n.I /j
; rCn .I / WD

je�n.e�C/ � �n.�C/j
j�n.I /j

;

where �� and �C are the end points of I such that �n.��/ < �n.�C/; ande�� D '.��/ ande�C D '.�C/ are the end points of '.I / such thate�n.e��/ <e�n.e�C/. Clearly,

(3.6) jsn.I / � 1j � r
�
n .I /C r

C
n .I /:

To simplify the notation, we will also use ri WDe�n.exqn�1Ciqn/ � �n.xqn�1Ciqn/.
3.2. Renormalization graphs concave inside the gates

In this section, we restrict our consideration to subsequences of renormalizations fn
and efn of T and eT , respectively, for n D n`, for some ` 2 N, which satisfy the regularity
conditions (i), (ii), (iii) and (iv). The graphs of these renormalizations are concave inside the
gates.

The following proposition summarizes the main result of this section. We emphasize that
the constants Ci that appear in this paper are all independent of n.

Let �2 2 .
p
�=�1; 1/ be a fixed number in the given interval.

P 3.2. – Assume that the conditions of Theorem 2.2 hold. There exists C2 > 0
such that for all n D n`, for some ` 2 N, and for 0 � j � knC1, we have

(3.7) sn.�
.n/
qn�1Cjqn

/; .sn.�
.n/
qn�1Cjqn

//�1 � 1C C2�
n
2 :

The proof of this proposition follows directly from Proposition 3.11 and Proposition 3.14
below. Proposition 3.11 establishes that the relative difference of lengths of the renormalized
intervals �n.�

.n/
qn�1/ ande�n.e�.n/qn�1/ is exponentially small, i.e, inequalities (3.7), for j D 0,

while Proposition 3.14 extends this estimate to j satisfying 1 � j � knC1. The proof of
Proposition 3.11 is based on Lemma 3.9 and Lemma 3.10. In the proofs of these lemmas, we
use Lemma 3.7 and Lemma 3.8, which provide estimates on the iterates of “long” intervals,
i.e., intervals whose length is at least of the order of�n3 , for some�3 2 .�=�2; �1�2/. Similarly,
in the proof of Proposition 3.14, we use Lemma 3.13, which provides the desired estimates
on the iterates of the long intervals. To prove Proposition 3.11 and Proposition 3.14, we also
use the topological conjugacy of the maps (implied by conditions (a) and (c) of Theorem 2.2)
and the exponential convergence of renormalizations (condition (d)). We also use the fact
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that, for n D n`, for some ` 2 N, the renormalizations fn and efn satisfy regularity
conditions (i), (ii), (iii) and (iv) (condition (b)). In particular, we use the fact that, due
to the concavity of renormalizations fn inside the gates, the intervals between successive
iterates of renormalizations, inside the "-neighborhoods of the end points, are either longer
than a constant or their iterates under fn grow exponentially, as implied by the following
proposition.

P 3.3. – Let T W T1 ! T1 be an orientation preserving homeomorphism and
let its sequence of renormalizationsfn beK-regular with respect ton. There existsB > 1CK3=4

and 0 < " < K3=2 such that, for all n D n`, for some ` 2 N, either fn.�1/ C 1 > K3=2 or
f 0n.z/ > B for z 2 Œ�1;�1C "� and either fn.0/ > K3=2 or f 0n.z/ < B

�1 for z 2 Œ�"; 0�.

Proof. – It follows from the continuity of fn and regularity condition (iii) (see Section 2.3)
that, for n D n`, for some ` 2 N, if fn.�1/ C 1 < K3, there is ~.n/1 2 .0; 1/ such that
fn.�1C ~

.n/
1 /C 1 � ~

.n/
1 D K3 and fn.z/ � z < K3 for z 2 Œ�1;�1C ~.n/1 /. Since,

(3.8) fn.z/ D fn.�1/C

Z z

�1

f 0n.�/ d� D fn.�1/C

Z z

�1

 
f 0n.�1/C

Z �

�1

f 00n .�
0/ d�0

!
d�;

using the regularity condition (iv), we obtain

(3.9) fn.z/ � fn.�1/C f
0
n.�1/.z C 1/ �

K4

2
.z C 1/2:

Evaluating this expression at z D �1C ~.n/1 , we obtain

(3.10) fn.�1/C 1C .f
0
n.�1/ � 1/~

.n/
1 � K3 C

K4

2
.~
.n/
1 /2 > K3:

Therefore, if fn.�1/C 1 � K3=2, then f 0n.�1/ > 1CK3=2. Similarly, if fn.0/ � K3=2, then
f 0n.0/ < 1�K3=2. Since the second derivative of fn is bounded (by regularity condition (i)),
in these cases, there exist " > 0 and B > 1CK3=4 such that f 0n.z/ > B, for z 2 Œ�1;�1C "�,
and f 0n.z/ < 2 � B � B�1, for z 2 Œ�"; 0�. The claim follows. In fact, one can choose any
" � K3=4K4.

The next proposition will be used repeatedly, without always mentioning it explicitly. It
implies that the length of the longest of the exponentially growing iterates of an interval is of
the order of the sum of their lengths.

P 3.4. – Let b0 > 0, bi > B > 1 for i 2 N, and

(3.11) sn D

nX
jD0

jY
iD0

bi :

Then, there exists A > 0 such that
Qn
iD0 bi > Asn, for all n 2 N.

Proof. – We can assume, without loss of generality, that b0 D 1. The claim is proven by
simple induction. For n D 1, the claim is, obviously, true, for any A < B

1CB
. Assume that the
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claim is true for some n 2 N, with A < 1 � 1
B

. Then,

(3.12)
nC1Y
iD0

bi > AsnbnC1 D AbnC1.snC1 �

nC1Y
iD0

bi /;

and, thus,

(3.13)
nC1Y
iD0

bi > A
bnC1

1C AbnC1
snC1 > AsnC1:

The claim follows.

P 3.5. – Under the assumptions of Proposition 3.3, there exists NA > 0, such
that, for all n D n`, for some ` 2 N, and, for 0 � j < knC1,
(3.14)

j�n.�
.n/
qn�1Cjqn

/j > NAmin

8<: jX
iD0

j�n.�
.n/
qn�1Ciqn

/j;

knC1�1X
iDj

j�n.�
.n/
qn�1Ciqn

/j C j�n.�
.nC1/
0 /j

9=; :
Proof. – By Proposition 3.3, there exist " > 0 and B > 1 C K3=4 such that either

fn.�1/C 1 > K3=2 or f 0n.z/ > B for z 2 Œ�1;�1 C "� and either fn.0/ > K3=2 or
f 0n.z/ < B

�1 for z 2 Œ�"; 0�. If fn.�1/ C 1 > K3=2, then j�n.�
.n/
qn�1Cjqn

/j > K3=2, for

any j such that �n.�
.n/
qn�1Cjqn

/ \ Œ�1;�1 C "/ ¤ ;, since, due to regularity conditions (iii)
and (iv), fn.z/ � z is monotone inside the gates and fn.z/ � z � K3 outside them;
consequently, for any such j , (3.14) holds for any NA � K3=2. If fn.�1/ C 1 � K3=2,
then f 0n.z/ > B, for z 2 Œ�1;�1 C "� and, by Proposition 3.4 applied to b0 D 1,
bi D j�n.�

.n/
qn�1Ciqn

/j=j�n.�
.n/

qn�1C.i�1/qn
/j, for i > 0, there existsA > 0 such that (3.14) holds

with NA � A, for any j such that �n.�
.n/
qn�1Cjqn

/\ Œ�1;�1C"/ ¤ ;. Similar arguments can be

used to show that for sufficiently small NA, (3.14) holds for any j such that �n.�
.n/
qn�1Cjqn

/ \

.�"; 0� ¤ ;. It remains to show that (3.14) holds, for sufficiently small NA, and all j such that
�n.�

.n/
qn�1Cjqn

/ � Œ�1C"; "�. This holds since fn.�1C"/C1; fn.�"/ > .1�B�1/" and since

fn.z/� z is monotonically increasing in Œ�1; z.1/g / and monotonically decreasing in .z.2/g ; 0�,
while fn.z/� z � K3, outside of these intervals. Therefore, the claim follows for sufficiently
small NA satisfying all the upper bounds.

C 3.6. – Under the assumptions of Proposition 3.3, there exists NNA > 0, such
that, for all n D n`, for some ` 2 N, and, for 0 � j < knC1,
(3.15)

j�n.�
.n/
qn�1Cjqn

/j > NNAmin

8<:jC1X
iD0

j�n.�
.n/
qn�1Ciqn

/j;

knC1�1X
iDj�1

j�n.�
.n/
qn�1Ciqn

/j C j�n.�
.nC1/
0 /j

9=; :
Proof. – It follows directly from Proposition 3.5, taking into account that, by regu-

larity conditions (i) and (ii), the lengths of the neighboring intervals �.n/qn�1Ciqn and

�
.n/

qn�1C.iC1/qn
D T qn.�

.n/
qn�1Ciqn

/ are of the same order, as .T qn/0.x/ D f 0n.�n.x//.
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The following two lemmas will be used in the proofs of Lemma 3.9 and Lemma 3.10,
respectively.

To simplify the notation ri WDe�n.exqn�1Ciqn/ � �n.xqn�1Ciqn/.
L 3.7. – Assume that the conditions of Theorem 2.2 hold. Let �4 2 .�; 1/, C3 > 0

and, for all n D n`, for some ` 2 N, let j .n/
l

be such that 0 � j .n/
l
� knC1. There exists C4 > 0

such that, for all n D n` and sufficiently large ` 2 N, if r
j
.n/

l

� C3�
n
4 then, for all j � j

.n/

l

satisfyinge�n.e�.n/qn�1C.j�1/qn/ \ Œ�1;�"� ¤ ;, we have

(3.16) rj � C4�
n
4 :

Proof. – It follows from the mean value theorem and condition (d) of Theorem 2.2 that

rj D efn.e�n.exqn�1C.j�1/qn// � fn.�n.xqn�1C.j�1/qn// � ef 0n.�j�1/rj�1 � C�n;(3.17)

where �j�1 is a point in the interval .�n.xqn�1C.j�1/qn/;e�n.exqn�1C.j�1/qn//. By Proposi-
tion 3.3, if e�n.e�.n/qn�1C.j�1/qn/ � Œ�1;�1 C "�, then ef 0n.�j�1/ > B > 1 C K3=4 and,
therefore,

rj � rj�1;(3.18)

if K3rj�1=4 � C�n. Since � < �4, then this condition is satisfied for j D j
.n/

l
C 1, if n is

large enough such thatK3C3�n4=4 � C�
n. The estimate (3.18) now implies that (3.16) holds

for all j � j .n/
l

satisfyinge�n.e�.n/qn�1C.j�1/qn/ � Œ�1;�1C "�.
Using the regularity condition (ii), from the inequality (3.17), we also have

(3.19) rj � K2rj�1 � C�
n:

This inequality can be iterated a number of times bounded by a constant, if � < �4, to obtain
(3.16), with some constant C4 > 0, and all j � j .n/

l
such thate�n.e�.n/qn�1C.j�1/qn/ \ .�1C ";�"� ¤ ;:

This follows from the fact that the number of such indices j is bounded by a constant,
independent of n. To see this, notice first that it follows from Corollary 3.6 that the length
of all intervalse�n.e�.n/qn�1Cjqn/, such thate�n.e�.n/qn�1C.j�1/qn/ \ .�1C ";�"� ¤ ;, is bounded
from below by a positive constant proportional to ". The claim follows.

Similarly, we have the following.

L 3.8. – Assume that the conditions of Theorem 2.2 hold. Let C5 > 0 and, for all
n D n`, for some ` 2 N, let j .n/r be such that 0 � j .n/r � knC1. There exists C6 > 0 such that,
for all n D n` and sufficiently large ` 2 N, if �r

j
.n/
r
� C5�

n
4 then, for all j � j .n/r satisfyinge�n.e�.n/qn�1Cjqn/ \ Œ�1C "; 0� ¤ ;, we have

(3.20) � rj � C6�
n
4 :

Proof. – The mean value theorem and condition (d) of Theorem 2.2 give us that

�rj � . ef 0n.�j //�1.�rjC1 � C�n/ � �1C K3

4

�
.�rjC1 � C�

n/ � �rjC1;(3.21)
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ifK3rjC1=4 � .1C
K3
4
/C�n. This condition clearly holds for sufficiently large n since �4 > �.

As before, �j is a point in the interval .�n.xqn�1Cjqn/;e�n.exqn�1Cjqn//. Here, we have used
that, by Proposition 3.3, . ef 0n.�j //�1 > B > 1CK3=4, as long as the intervalse�n.e�.n/qn�1Cjqn/
lie inside Œ�"; 0�.

Using the regularity condition (i), from the first inequality in (3.21), we have

(3.22) � rj � K
�1
1 .�rjC1 � C�

n/;

which can be iterated, a number of times bounded by a constant, to obtain (3.20) for some
C6 > 0, and all j such thate�n.e�.n/qn�1Cjqn/\ Œ�1C";�"/ ¤ ;. Here, we have used again that,
by Corollary 3.6, the number of such j is bounded, as explained in the proof of Lemma 3.7.
The claim follows.

Throughout the paper, �2 2 .
p
�=�1; 1/ and �3 2 .�=�2; �1�2/ are fixed numbers in the

given intervals.

L 3.9. – Assume that the conditions of Theorem 2.2 hold. Let C7 > 0. There exists
C8 > 0 such that, for n D n` and ` sufficiently large, if

(3.23) sn.�
.n/
qn�1

/ > 1C C7�
n
2;

then

(3.24) e�n.exqn�1Cjqn/ � �n.xqn�1Cjqn/ � C8�n2�n3;
for all j such thate�n.e�.n/qn�1Cjqn/ \ .�1C ";�"/ ¤ ;.

Proof. – Assume first that je�n.e�.n/qn�1/j � �n3 . Due to (3.23), j�n.�
.n/
qn�1/j � �n3 as well.

Using conditions (b) (regularity conditions (i) and (ii)) and (d) of Theorem 2.2, for 1 � j � knC1
such that �n.�

.n/

qn�1C.j�1/qn
/;e�n.e�.n/qn�1C.j�1/qn/ � Œ�1;�1C �n3�, we have

sn.�
.n/
qn�1Cjqn

/ D

j�1Y
iD0

 
1C

ef 0n.e�i / � f 0n.�i /
f 0n.�i /

!
sn.�

.n/
qn�1

/

�

j�1Y
iD0

 
1 �
j ef 0n.e�i / � f 0n.e�i /j C jf 0n.e�i / � f 0n.�i /j

jf 0n.�i /j

!
sn.�

.n/
qn�1

/

�
�
1 �K�12 .C�n CK1�

n
3/
�j
sn.�

.n/
qn�1

/:

(3.25)

Here, �i 2 �n.�
.n/
qn�1Ciqn

/ and e�i 2 e�n.e�.n/qn�1Ciqn/. Since, by condition (a), j � knC1 �

C1�
�n
1 , for every "1 > 0, if n is large enough, we have

(3.26) sn.�
.n/
qn�1Cjqn

/ > 1C .1 � "1/C7�
n
2 :

Here, we have used that � � �3 < �1�2.

Let j�3 be the index j of the last intervale�n.e�.n/qn�1Cjqn/ that is contained in Œ�1;�1C�n3�,

i.e., such thate�n.e�.n/qn�1Cj�3qn/ � Œ�1;�1C�n3� ande�n.e�.n/qn�1C.j�3C1/qn/\.�1C�n3; 0� ¤ ;.
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The previous estimate then implies that

e�n.exqn�1C.j�3C1/qn/ � �n.xqn�1C.j�3C1/qn/ D j�3X
jD0

�
je�n.e�.n/qn�1Cjqn/j � j�n.�.n/qn�1Cjqn/j�

>
.1 � "1/C7�

n
2

1C .1 � "1/C7�
n
2

j�3X
jD0

je�n.e�.n/qn�1Cjqn/j > C9�n2�n3;

(3.27)

for some C9 > 0, since
Pj�3
jD0 je�n.e�.n/qn�1Cjqn/j is of the order of �n3 , as follows from Corol-

lary 3.6. If je�n.e�.n/qn�1/j > �n3 , we formally define j�3 WD 0. In this case, the final estimate in
(3.27) follows directly from (3.23).

Since � < �2�3, Lemma 3.7, with �4 D �2�3, gives (3.24), with some constant C8 > 0,
for all j > j�3 such thate�n.e�.n/qn�1Cjqn/\Œ�1;�"/ ¤ ;. Since, for sufficiently large n, �n3 < ",

this interval of indices includes all j such thate�n.e�.n/qn�1Cjqn/\ .�1C ";�"/ ¤ ;. The claim
follows.

L 3.10. – Assume that the conditions of Theorem 2.2 hold. Let C10; C11 > 0. There
exists C12 > 0 such that, for n D n` and ` sufficiently large, if je�n.e�.n/qnC1/j � C10�n3 and

(3.28) sn.�
.n/
qnC1

/ > 1C C11�
n
2;

then

(3.29) �n.xqn�1Cjqn/ �e�n.exqn�1Cjqn/ � C12�n2�n3;
for all j such thate�n.e�.n/qn�1Cjqn/ \ .�1C ";�"/ ¤ ;.

Proof. – The estimates in the proof of this claim are similar to the estimates for forward
iterations that were used in the proof of the previous lemma. It follows from (3.28) that
j�n.�

.n/
qnC1/j � C10�

n
3 . The regularity condition (ii) guarantees that je�n.e�.n/qnC1�qn/j �

K�12 C10�
n
3 and j�n.�

.n/
qnC1�qn/j � K�12 C10�

n
3 . Since �.nC1/0 � �

.n/
qnC1 , there exists C > 0

such thate�n.e�.n/qnC1�qn/; �n.�.n/qnC1�qn/ � Œ�C�n3; 0�. For 0 � j < knC1 such that the intervals

�n.�
.n/
qn�1Cjqn

/;e�n.e�.n/qn�1Cjqn/ � Œ�C�n3; 0�, we have

sn.�
.n/
qn�1Cjqn

/ D

knC1�1Y
iDj

 
1C

f 0n.�i / �
ef 0n.e�i /ef 0n.e�i /

!
sn.�

.n/
qnC1

/

D

knC1�1Y
iDj

 
1C

f 0n.�i / �
ef 0n.�i /C ef 0n.�i / � ef 0n.e�i /ef 0n.e�i /

!
sn.�

.n/
qnC1

/

�

knC1�1Y
iDj

 
1 �
jf 0n.�i / �

ef 0n.�i /j C j ef 0n.�i / � ef 0n.e�i /j
j ef 0n.e�i /j

!
sn.�

.n/
qnC1

/

�
�
1 �K�12 .C�n CK1C�

n
3/
�knC1�j

sn.�
.n/
qnC1

/:

(3.30)
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As before, �i 2 �n.�
.n/
qn�1Ciqn

/ and e�i 2 e�n.e�.n/qn�1Ciqn/. Since, by condition (a) of
Theorem 2.2, j � knC1 � C1�

�n
1 and, since � � �3 < �1�2, using (3.28), for any

"2 > 0, if n is sufficiently large, we obtain

(3.31) sn.�
.n/
qn�1Cjqn

/ > 1C .1 � "2/C11�
n
2 :

Let j��3 be the smallest index j such thate�n.e�.n/qn�1Cjqn/ � Œ�C�n3; 0�. Then, we have

�n.xqn�1Cj��3qn/ �e�n.exqn�1Cj��3qn/ D je�n.e�.nC1/0 /j � j�n.�
.nC1/
0 /j

C

knC1�1X
jDj��3

je�n.e�.n/qn�1Cjqn/j � knC1�1X
jDj��3

j�n.�
.n/
qn�1Cjqn

/j

�

knC1�1X
jDj��3

je�n.e�.n/qn�1Cjqn/j � knC1�1X
jDj��3

j�n.�
.n/
qn�1Cjqn

/j � 2K1C�
n

�
.1 � "2/C11�

n
2

1C .1 � "2/C11�
n
2

knC1�1X
jDj��3

je�n.e�.n/qn�1Cjqn/j � 2K1C�n > C13�n2�n3;

(3.32)

for some C13 > 0, since � < �2�3 and, by regularity condition (i),
PknC1�1

jD��3
je�n.e�.n/qn�1Cjqn/j

is of the order of �n3 . In the first of these inequalities, we have also used that je�n.e�.nC1/0 /j �

j�n.�
.nC1/
0 /j � 2K1C�

n, as follows from the condition (d) and the regularity condition (i).

Using again that � < �2�3, Lemma 3.8, with �4 D �2�3, now gives (3.29), for some
C12 > 0, and all j � j��3 such that e�n.e�.n/qn�1Cjqn/ \ .�1 C "; 0� ¤ ;. Since, for a

sufficiently large n, C�n3 < ", this interval of indices includes all j such thate�n.e�.n/qn�1Cjqn/\
.�1C ";�"/ ¤ ; and the claim follows.

The following proposition shows that the ratio of lengths of the intervals e�n.e�.n/qn�1/
and �n.�

.n/
qn�1/ is exponentially close to 1. The proof is by contradiction. We will show

that if the first of these intervals were sufficiently longer, then the corresponding sumPknC1�1

jD0 je�n.e�.n/qn�1Cjqn/j would need to be significantly larger than
PknC1�1

jD0 j�n.�
.n/
qn�1Cjqn

/j

such that it would lead to a contradiction.

P 3.11. – Assume that the conditions of Theorem 2.2 hold. There exists
C14 > 0 such that, for all n D n`, for some ` 2 N, we have

(3.33) sn.�
.n/
qn�1

/; .sn.�
.n/
qn�1

//�1 � 1C C14�
n
2 :

Proof. – Notice that it is sufficient to prove the claim for sufficiently large `. If either
je�n.e�.n/qn�1/j � �n3 or j�n.�

.n/
qn�1/j � �n3 , then the claim follows directly from the closeness

of renormalizations (condition (d) of Theorem 2.2), since jje�n.e�.n/qn�1/j � j�n.�.n/qn�1/jj D
j efn.�1/ � fn.�1/j � C�n. In the case when je�n.e�.n/qn�1/j < �n3 and j�n.�

.n/
qn�1/j < �n3 , we

will prove the claim by contradiction. To prove the first inequality, let us assume that, for
every C14 > 0 and every n1 2 N, there exists n � n1 such that sn.�

.n/
qn�1/ > 1C C14�

n
2 . The
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proof of the second inequality is analogous, by exchanging the roles of fn and efn. Lemma 3.9
implies that

(3.34) e�n.exqn�1Cjqn/ � �n.xqn�1Cjqn/ � C15�n2�n3;
for some constant C15 > 0, and all j such thate�n.e�.n/qn�1Cjqn/ \ .�1C ";�"/ ¤ ;.

We will now prepare the setting to estimate the same difference starting from the other
end of the interval Œ�1; 0�. Notice that

sn.�
.n/
0 / D sn.�

.n/
qn�1

/
f 0n�1.�n�1 ı �

�1
n .�0//ef 0n�1.e�n�1 ıe��1n .e�0//

D sn.�
.n/
qn�1

/
f 0n�1.�fn�1.0/�0/ef 0n�1.� efn�1.0/e�0/

D sn.�
.n/
qn�1

/

 
1C

f 0n�1.�fn�1.0/�0/ �
ef 0n�1.� efn�1.0/e�0/ef 0n�1.� efn�1.0/e�0/

!
� sn.�

.n/
qn�1

/
�
1 �K�12 .C�n�1 CK21C�

n�1
CK21 j�0 �

e�0j/�
(3.35)

where �0 2 �n.�
.n/
0 / ande�0 2e�n.e�.n/0 /. We next estimate j�0 �e�0j. Since

(3.36) sn.�
.n/
qn�1

/ D
1C Qfn.�1/

1C fn.�1/
� 1C

C�n

j�n.�
.n/
qn�1/j

and, by assumption sn.�
.n/
qn�1/ > 1 C C14�

n
2 , we have C14j�n.�

.n/
qn�1/j < C�n3 , since

� < �3�2. Furthermore, since by the regularity conditions (i) and (ii), the length of the
interval �n.�

.n/
qn�1/, i.e., j�n.�

.n/
qn�1/j D f 0n�1.�n�1 ı �

�1
n .�0//j�n.�

.n/
0 /j, is of the same order

as j�n.�
.n/
0 /j D fn.0/, we have fn.0/ � C16�

n
3 , for some C16 > 0. This implies that

j�0 �e�0j � fn.0/ C C�
n � C16�

n
3 C C�

n. Using this estimate and the last inequality in
(3.35), we obtain that, for some "3 > 0, if n is large enough,

(3.37) sn.�
.n/
0 / � 1C .1 � "3/C14�

n
2 :

Notice, further, that

(3.38)
sn.�

.n/
qnC1/

sn.�
.n/
0 /

D

QfnC1.0/ � QfnC1.�1/

fnC1.0/ � fnC1.�1/
;

and that the right hand side is bounded from below by 1�C17�n, for someC17 > 0. Together
with (3.37), this implies that, if n is large enough,

(3.39) sn.�
.n/
qnC1

/ > 1C .1 � 2"3/C14�
n
2 :

Furthermore, since e�.n/qnC1 D eT qnC1.eT �qn�1.e�.n/qn�1//, by the regularity conditions (i) and

(ii), je�n.e�.n/qnC1/j is of the same order as je�n.e�.n/qn�1/j � �n3 . Conditions of Lemma 3.10 are,
therefore, satisfied. Applying Lemma 3.10, we obtain

(3.40) �n.xqn�1Cjqn/ �e�n.exqn�1Cjqn/ � C18�n2�n3;
for some C18 > 0 and all j such that e�n.e�.n/qn�1Cjqn/ \ .�1 C ";�"/ ¤ ;. Since, in
Proposition 3.3, " > 0 can be chosen arbitrarily small, due to the regularity condition (i),
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the set of such indices j is nonempty. By considering this estimate for any such j , we get a
contradiction with (3.34). The claim follows.

C 3.12. – Assume that the conditions of Theorem 2.2 hold. There existsC19 > 0
such that, for all n D n`, for some ` 2 N, we have

(3.41) sn.�
.n/
0 /; .sn.�

.n/
0 //�1 � 1C C19�

n
2 :

Proof. – We will prove the first inequality; the proof of the second is analogous. If
j�n.�

.n/
0 /j > �n3 , the claim follows directly from the convergence of renormalizations

(condition (d)). Assume that j�n.�
.n/
0 /j � �n3 . Using the first three equalities in (3.35), we

obtain

sn.�
.n/
0 / � sn.�

.n/
qn�1

/
�
1CK�12 .C�n�1 CK21C�

n�1
CK21 j�0 �

e�0j/� ;(3.42)

where �0 2 �n.�
.n/
0 / and e�0 2 e�n.e�.n/0 /. Since j�0 � e�0j � fn.0/ C C�n and fn.0/ D

j�n.�
.n/
0 /j � �n3 , the claim follows.

The next lemma deals with the iteration of “long” intervals, i.e., intervals whose lengths
are at least of the order of �n3 . In Proposition 3.14, it will be applied to long intervals
�n.�

.n/
qn�1Cjqn

/. The number of such intervals is at most of the order of n since, by Proposi-

tion 3.3, the length of the intervals �n.�
.n/
qn�1Cjqn

/ inside of Œ�1;�1 C "/ grows and inside
of .�"; 0� decays exponentially under the iteration of fn, and inside the gates the func-
tion fn.z/ � z is monotone and increasing or decreasing, respectively (see the regularity
conditions (iii) and (iv)). Lemma 3.13 provides the desired estimates for long intervals. The
analysis of “shorter” intervals is more subtle, since one has to deal with quantities that are
small on the exponential scale and the convergence of renormalizations (condition (d)) is
only exponential.

Let � ande� be two corresponding end points of the intervals I � �.n�1/0 and eI � e�.n�1/0 ,
respectively (either � D �� ande� De�� or � D �C ande� De�C), and let rn.I / WD

je�n.e�/��n.�/j
j�n.I /j

.
That is rn.I / stands for either r�n .I / or rCn .I / (see (3.5)). Let Ii WD ��1n .f in .�n.I /// andeIi WDe��1n . ef in .e�n.eI ///.

L 3.13. – Assume that the conditions of Theorem 2.2 hold. Assume that there exist
C20; C21; C22 > 0 such that, for all n D n`, for some ` 2 N, there exist intervals I and eI
satisfying Ii � �

.n�1/
0 ;eIi � e�.n�1/0 and j�n.Ii /j � C20�

n
3 , for all 0 � i � Nn, where

Nn � C21n. Assume further that rn.I / � C22�
n
2 . Then, there exists C23 > 0 such that, for

all n D n`, for some ` 2 N, rn.Ii / � C23�n2 , for 0 � i � Nn.

Proof. – Notice first that it is sufficient to prove that the claim holds for sufficiently
large `. We will assume that � and e� are the smaller end points. For the larger end points,
the proof is essentially the same. The lemma is proven by induction. For i D 0, the claim is
true. Assume that for all 0 � i � j , rn.Ii / � C23�n2 < 1, for some C23 > 0 specified below
and n large enough.
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Using the mean value theorem, condition (d) and regularity conditions (i) and (ii), we
obtain

rn.IiC1/ �
f 0n.�iC1/je�n.e�i / � �n.�i /j C C�n

f 0n.
N�iC1/j�n.Ii /j

�

 
1C
jf 0n.�iC1/ � f

0
n.
N�iC1/j

f 0n.
N�iC1/

!
rn.Ii /C

C�n

K2C20�
n
3

�
�
1CK1K

�1
2 .1C rn.Ii //j�n.Ii /j

�
rn.Ii /C

C�n

K2C20�
n
3

;

(3.43)

where �iC1 2 .�n.e�i /; �n.�i // and N�iC1 2 �n.Ii /. Here, we have also used that j�n.Ii /j �
C20�

n
3 . Applying this inequality recursively from i D j down to i D 0, we find

rn.IjC1/ �

jY
iD0

�
1C 2K1K

�1
2 j�n.Ii /j

�
rn.I /C CC

�1
20 K

�1
2 .�=�3/

n

�

 
1C

j�1X
kD1

kY
iD1

�
1C 2K1K

�1
2 j�n.Ii /j

�!
� e2K1K

�1
2 rn.I /C CC

�1
20 K

�1
2 .�=�3/

n.1C C21ne
2K1K

�1
2 /

� C23�
n
2;

(3.44)

if C23 � C22e2K1K
�1
2 CCC�120 K

�1
2 CCC

�1
20 K

�1
2 C21e

2K1K
�1
2 max

n2N

�
n
�

�
�3�2

�n�
. For n2 large

enough such that C23�
n2
2 < 1 and all ` such that n D n` � n2, we, thus, have rn.IjC1/ �

C23�
n
2 . The claim follows.

In the next proposition, we again use knC1 � C1�
�n
1 , for those n considered here. We

will show that, under this assumption, if the ratio of lengths of the intervalse�n.e�.n/qn�1/ and
�n.�

.n/
qn�1/ is exponentially (in n) close to 1 then, due to the convergence of renormalizations

(condition (d) in Theorem 2.2), for all j D 1; : : : ; knC1, the ratios of the lengths of the
intervalse�n.e�.n/qn�1Cjqn/ and �n.�

.n/
qn�1Cjqn

/ are exponentially close to 1.

P 3.14. – Assume that the conditions of Theorem 2.2 hold. Assume that there
exists C14 > 0 such that for all n D n`, ` 2 N, (3.33) is valid. Then, there exists C24 > 0 such
that for all 0 � j � knC1, we have

(3.45) sn.�
.n/
qn�1Cjqn

/; .sn.�
.n/
qn�1Cjqn

//�1 � 1C C24�
n
2 :

Proof. – It suffices to prove that the claim holds for large enough `. Recall that �2 and
�3 have been chosen such that � < �2�3 < �3 < �1�2 < 1. We will assume first that
je�n.e�.n/qn�1/j � �n3 and j�n.�

.n/
qn�1/j � �n3 . For 1 � j � knC1 such that both intervals
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�n.�
.n/

qn�1C.j�1/qn
/;e�n.e�.n/qn�1C.j�1/qn/ � Œ�1;�1C �n3�, we have

sn.�
.n/
qn�1Cjqn

/ D

j�1Y
iD0

 
1C

ef 0n.e�i / � f 0n.�i /
f 0n.�i /

!
sn.�

.n/
qn�1

/

�

j�1Y
iD0

 
1C
j ef 0n.e�i / � f 0n.e�i /j C jf 0n.e�i / � f 0n.�i /j

jf 0n.�i /j

!
sn.�

.n/
qn�1

/

�
�
1CK�12 .C�n CK1�

n
3/
�j
sn.�

.n/
qn�1

/:

(3.46)

Here, �i 2 �n.�
.n/
qn�1Ciqn

/ ande�i 2e�n.e�.n/qn�1Ciqn/. We have used condition (d) and regularity
conditions (i) and (ii).

Let j�3 be the largest index j such that both intervals �n.�
.n/
qn�1Cjqn

/ ande�n.e�.n/qn�1Cjqn/
are contained inside the interval Œ�1;�1C �n3�. Since, by condition (a), j � knC1 � C1��n1 ,
and since � < �3 < �1�2, by using estimate (3.46) and Proposition 3.11, we obtain the first
inequality in (3.45), for 1 � j � j�3C1. By exchanging the roles of fn and efn, we can obtain
the second inequality in (3.45), for the specified indices j .

Using the estimates (3.45) for 0 � j � j�3 , we obtain that, for some C25 > 0,

(3.47) je�n.exqn�1C.jC1/qn/ � �n.xqn�1C.jC1/qn/j D
ˇ̌̌̌
ˇsn

 
j[
iD0

�
.n/
qn�1Ciqn

!
� 1

ˇ̌̌̌
ˇ

�

jX
iD0

j�n.�
.n/
qn�1Ciqn

/j � max
0�i�j

ˇ̌̌
sn.�

.n/
qn�1Ciqn

/ � 1
ˇ̌̌ jX
iD0

j�n.�
.n/
qn�1Ciqn

/j � C25�
n
2�
n
3 :

Corollary 3.6 implies that maxfje�n.e�.n/qn�1Cj�3qn/j; j�n.�.n/qn�1Cj�3qn/jg � C26�n3 , for some

C26 > 0, and the length of the longer of the intervalse�n.e�.n/qn�1Cj�3qn/ and �n.�
.n/
qn�1Cj�3qn

/ is,
thus, of the order of �n3 . Together with the estimates (3.45) for j D j�3 , this gives that
minfje�n.e�.n/qn�1Cj�3qn/j; j�n.�.n/qn�1Cj�3qn/jg � C27�

n
3 , for some C27 > 0, and the length of

the shorter of these intervals is, thus, also of the same order.

We will now prepare the setting to extend these estimates to j such that, for some C > 0,
both intervals �n.�

.n/
qn�1Cjqn

/;e�n.e�.n/qn�1Cjqn/ � Œ�C�n3; 0�. It follows from (3.38) and Corol-
lary 3.12 that, for some C28; C29 > 0,

(3.48) jsn.�
.n/
qnC1

/ � 1j � jsn.�
.n/
0 / � 1j C C28�

n
� C29�

n
2 :

In particular, this implies (3.45) for j D knC1.

We can now perform backward iterations of fn and efn, starting from the intervals
�n.�

.n/
qnC1/ and e�n.e�.n/qnC1/, respectively. For 1 � j < knC1 such that both intervals
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�n.�
.n/
qn�1Cjqn

/;e�n.e�.n/qn�1Cjqn/ � Œ�C�n3; 0�, we have

sn.�
.n/
qn�1Cjqn

/ D

knC1�1Y
iDj

 
1C

f 0n.�i / �
ef 0n.e�i /ef 0n.e�i /

!
sn.�

.n/
qnC1

/

�

knC1�1Y
iDj

 
1C
jf 0n.�i / �

ef 0n.�i /j C j ef 0n.�i / � ef 0n.e�i /j
j ef 0n.e�i /j

!
sn.�

.n/
qnC1

/

�
�
1CK�12 .C�n CK1C�

n
3/
�knC1�j

sn.�
.n/
qnC1

/:

(3.49)

Here, we have used again condition (d) and regularity conditions (i) and (ii). Since, by
condition (a), j � knC1 � C1�

�n
1 , and since � < �3 < �1�2, by using (3.48) and (3.49),

we obtain the first inequality in (3.45), for the considered indices j . By exchanging the roles
of fn and efn, we can obtain the second inequality in (3.45), for the these indices j .

Let j��3 be the smallest index j satisfying 1 � j < knC1 such that both intervals
�n.�

.n/
qn�1Cjqn

/ and e�n.e�.n/qn�1Cjqn/ are subsets of Œ�C�n3; 0�. Since �.n/qn�1 D T qn�1.�
.n/
0 /,

�
.n/
qnC1 D T qnC1.�

.n/
0 / and �

.n/
qnC1 D T qn.�

.n/
qnC1�qn/, using regularity conditions (i)

and (ii) (these conditions imply that .T qn/0.x/ D f 0n.�n.x// is uniformly bounded and
bounded away from zero on�.n�1/0 ), one can easily see that the lengths of the intervals�.n/qn�1 ,
�
.n/
0 , �.n/qnC1 and �.n/qnC1�qn are all of the same order. Therefore, if je�n.e�.n/qn�1/j � �n3 and

j�n.�
.n/
qn�1/j � �n3 , there exists C > 0 such that e�.n/qnC1�qn ; �.n/qnC1�qn � Œ�C�n3; 0� (one can

choose C D .K1 CK21 /K
�1
2 ) and j��3 � knC1 � 1. As before, Proposition 3.5 implies that

there exists C30 > 0 such that j�n.�
.n/
qn�1Cj��3qn

/j; je�n.e�.n/qn�1Cj��3qn/j � C30�
n
3 and, thus,

the lengths of both of the intervals �n.�
.n/
qn�1Cj��3qn

/ ande�n.e�.n/qn�1Cj��3qn/ are of the order
of �n3 .

So far, we have established (3.45) for 0 � j � j�3 and j��3 � j � knC1. In order to prove
the desired estimates (3.45) for j�3 < j < j��3 , we use Lemma 3.13. We will now verify the
assumptions of this lemma. First, for all such j , the lengths of the corresponding intervals
�n.�

.n/
qn�1Cjqn

/ are at least of the order of �n3 . This follows from the fact that the lengths

of �n.�
.n/
qn�1Cj�3qn

/ and �n.�
.n/
qn�1Cj��3qn

/ are of the order of �n3 , and that, due to regularity

conditions (iii) and (iv), inside the gates Œ�1; z.1/g / and .z.2/g ; 0�, the function fn.z/ � z is
monotone, increasing and decreasing, respectively, while fn.z/� z � K3, for z 2 Œz.1/g ; z

.2/
g �.

To see this, notice that fn.zj / � zj D j�n.�
.n/
qn�1Cjqn

/j, where zj D �n.xqn�1Cjqn/, and that,
inside the gates, the derivative f 0n.z/ � 1 is of definite sign.

We will now show that the number of indices j satisfying j�3 < j < j��3 is of the order
of n. Proposition 3.3 establishes that (since fn.�1/C1 � K3=2, for sufficiently large `) inside
Œ�1;�1 C "/ the length of these intervals �n.�

.n/
qn�1Cjqn

/ grows while (since fn.0/ � K3=2)
inside .�"; 0� it decreases exponentially with j . If j" and j�" are the smallest and largest
index j such that the intersection �n.�

.n/
qn�1Cjqn

/\ Œ�1C ";�"� ¤ ;, it follows from Corol-

lary 3.6 that there exists "1 > 0, of order ", such that j�n.�
.n/
qn�1Cj"qn

/j; j�n.�
.n/
qn�1Cj�"qn

/j >

"1. Furthermore, since, for j�3 < j � j", the length of the intervals �n.�
.n/
qn�1Cjqn

/

grows exponentially from j�n.�
.n/
qn�1Cj�3qn

/j, which is of order �n3 , to j�n.�
.n/
qn�1Cj"qn

/j,
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which is of order 1, the number of such indices, denoted by N .l/
n , is of the order of n.

Namely, since the rate of this exponential growth is bounded by B > 1 (by Proposi-
tion 3.3) from below, and K1 from above (by regularity condition (i)), we have BN

.l/
n �

j�n.�
.n/
qn�1Cj"qn

/j=j�n.�
.n/
qn�1Cj�3qn

/j � K
N
.l/
n

1 ; and, thus,

(3.50) C�131 n <

ln
j�n.�

.n/

qn�1Cj"qn
/j

j�n.�
.n/

qn�1Cj�3
qn
/j

lnK1
� N .l/

n �

ln
j�n.�

.n/

qn�1Cj"qn
/j

j�n.�
.n/

qn�1Cj�3
qn
/j

lnB
< C31n;

for some C31 > 1. Similarly, the number N .r/
n of indices satisfying j�" � j < j�3 is of

order n as well. Finally, the number N .c/
n of indices satisfying j" < j < j�" is bounded

by a constant since, due to the above mentioned monotonicity of fn.z/ � z inside the gates,
the length of all corresponding intervals �n.�

.n/
qn�1Cjqn

/ is bounded from below by a positive
constant. Therefore, the number Nn of indices j that satisfy j�3 < j < j��3 is of the order
of n and, in particular, there exists C32 > 0 such that Nn D N

.l/
n CN

.c/
n CN

.r/
n � C32n.

The inequality (3.47) implies that r�n .�
.n/
qn�1Cj�3qn

/ and rCn .�
.n/
qn�1Cj�3qn

/ are at most of

the order of �n2 (since the length of �n.�
.n/
qn�1Cj�3qn

/ is of the order of �n3), i.e., we have

r�n .�
.n/
qn�1Cj�3qn

/ � C33�
n
2 and rCn .�

.n/
qn�1Cj�3qn

/ � C33�
n
2 , for some C33 > 0. This verifies

the assumptions of Lemma 3.13 which implies that, for j satisfying j�3 < j � j��3 , we have
r�n .�

.n/
qn�1Cjqn

/ � C34�
n
2 and rCn .�

.n/
qn�1Cjqn

/ � C34�
n
2 , for some C34 > 0. The estimates

(3.45) now also follow for j�3 < j < j��3 since, by inequality (3.6), jsn.�
.n/
qn�1Cjqn

/ � 1j �

C35�
n
2 , where C35 D 2C34.

To complete the proof, we need to consider the case when either je�n.e�.n/qn�1/j > �n3 or
j�n.�

.n/
qn�1/j > �n3 . If either of the intervals e�n.e�.n/qn�1/ and �n.�

.n/
qn�1/ has a length larger

than �n3 , then the other one has a length which is at least of the order of �n3 as well. This
follows from the estimate jje�n.e�.n/qn�1/j � j�n.�.n/qn�1/jj D j efn.�1/ � fn.�1/j � C�n. The
same lower bound on the lengths of the intervalse�n.e�.n/qnC1/ and �n.�

.n/
qnC1/ holds true since,

as explained earlier in this proof, due to regularity conditions (i) and (ii), the lengths of these
intervals are of the same order ase�n.e�.n/qn�1/ and �n.�

.n/
qn�1/, respectively. We will now verify

that the intervals �n.�
.n/
qn�1/ satisfy the conditions of Lemma 3.13, in this case, and apply this

lemma to obtain estimates (3.45) for all j satisfying 0 < j � knC1. If fn.�1/C 1 � K3=2,
using the same arguments as above for j�3 < j � j��3 , we obtain that there exists C36 > 0
such that j�n.�

.n/
qn�1Cjqn

/j � C36�
n
3 , for 0 � j � knC1, and that there exists C37 > 0 such

that knC1 � C37n. If fn.�1/ C 1 > K3=2, we obtain, using, as above, the monotonicity
of fn.z/�z inside the gates, that the length of all intervals �n.�

.n/
qn�1Cjqn

/, for 0 � j � knC1,
is bounded from below by a positive constant, independent of n, and that, in this case,
knC1 is bounded from above, uniformly in n. Since jje�n.e�.n/qn�1/j � j�n.�.n/qn�1/jj � C�n and
j�n.�

.n/
qn�1/j is at least of the order of �n3 , we have rCn .�

.n/
qn�1/ � C38�

n
2 , for some C38 > 0.

Therefore, the assumptions of Lemma 3.13 are satisfied with I D �.n/qn�1 andNn D knC1, and
we can conclude that rCn .�

.n/
qn�1Cjqn

/ � C39�
n
2 , for some C39 > 0 and 0 � j � knC1. The

estimates (3.45), in this case, follow directly from this lemma, by using inequality (3.6).
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3.3. Renormalization graphs that are convex inside the tunnels

In this section, we consider the subsequences of renormalizations fn and efn of maps T
and eT , respectively, for all n such that n ¤ n`, for any ` 2 N. These renormalizations satisfy
the regularity conditions (i), (ii), (v) and (vi). The graphs of these renormalizations are convex
inside the tunnels. The same holds in the case of critical circle maps and some estimates in
this section have already been proven in [12]. We include their proofs for completeness of the
presentation.

If Bfn;K5 is not empty, let ��n be a point such that f 0n.�
�
n / D 1 (such a point, that we

will refer to as the center of the tunnel, exists due to regularity conditions (v) and (vi)).
Similarly, if eB efn;K5 is not empty, lete��n be a point such that ef 0n.e��n / D 1. If knC1 > 1=K5,
the tunnelBfn;K5 is nonempty and ��n is defined. The affine orientation-preserving change of
variables

(3.51) y D h.z/ D
1

2
f 00n .�

�
n /.z � �

�
n /

maps ��n into 0 and normalizes the second derivative of fn there. Under this change of
variables fn is transformed into gn D h ı fn ı h�1 which satisfies g0n.0/ D 1 and g00n.0/ D 2.
We refer to � D gn.0/ D minyfgn.y/�yg as the size of the tunnel. Since fn.��n /��

�
n � k

�1
nC1,

by regularity condition (vi), we have 0 < � � 2
K6
k�1nC1. Since fn is C 2C˛-smooth, it follows

from the Definition (3.51) that

(3.52) jgn.y/ � .� C y C y
2/j � C40jyj

2C˛; y 2 hŒ�1; 0�;

where C40 > 0. Similarly, taking into account that .f �1n /0.��n / D 1 and .f �1n /00.��n / D

�f 00n .�
�
n /, we have that, for some C41 > 0,

(3.53) jg�1n .y/C .� � y C y2/j � C41jyj
2C˛; y 2 hŒfn.�1/; fn.0/�:

To estimate the distance of the iterates of the point �1, under fn, to the center of the
tunnel, as well as the distance between its successive iterates, we will use the following
two lemmas that were proven in [12]. Namely, it follows from (3.52) and (3.53) that, if
� < const jyj2C˛, the � term does not influence the asymptotic behavior of gn while, in
the opposite case, it does. The following two lemmas will allow us to obtain two different
asymptotic formulas, one for jyj > const �

1
2C˛ and the other for jyj < const �

1
2C˛ .

L 3.15 ([12]). – Suppose that, for a sequence of real numbers fsigi�0, there exist
C42 > 0 and ˛ 2 .0; 1/ such that jsiC1 � .si � s2i /j � C42jsi j

2C˛, for every i � 0. Then,
there exist constants D1 > 0 and d1 2 .0; 1/ such that, as long as s0 2 .0; d1�, the estimate

(3.54)

ˇ̌̌̌
si �

1

i C s�10

ˇ̌̌̌
�

D1

.i C s�10 /1C˛

holds, for every i � 0. Moreover, there exists D2 > 0 such that

(3.55) si � siC1 D
1

.i C s�10 /2
.1C ıi /;

where jıi j � D2s˛0 , for all i � 0, as long as s0 2 .0; d1�.

L 3.16 ([12]). – Suppose that, for a sequence of real numbers fsigi�0, there exist
C43; C44 > 0 and �; ˛ 2 .0; 1/ such that
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1. js0j � C43�,
2. jsiC1 � .� C si C s2i /j � C44jsi j

2C˛, for every i � 0.

Fix arbitrary C45 > 0 and define N D ��1=2 tan�1.C45�
� ˛
2.2C˛/ /. Then, there exist constants

D3 > 0 and d2 2 .0; 1/ such that, as long as � 2 .0; d2�, the following estimate holds for every
0 � i � N ,

(3.56) jsi �
p
� tan.

p
�i C a0/j � D3.

p
� tan

p
�i/1C

˛.˛C1/
2 ;

where a0 D tan�1.s0=
p
�/. Moreover, there exists D4 > 0 such that

(3.57) siC1 � si D
�

.cos
p
�i/2

.1C ıi /;

where jıi j � D4�
˛.˛C1/
2.2C˛/ , for all 0 � i < N , as long as � 2 .0; d2�.

Lemma 3.15 allows us to establish an upper bound on the distance of the points f in .�1/,
for 0 � i � knC1, to the center of the tunnel.

Let t0 D h.�1/ and ti D gin.t0/, i.e., ti D h.f in .�1//.

L 3.17. – Let knC1 > 1=K5. Let 0 < Ln � knC1 and let f in .�1/ � �
�
n < 0,

for 0 � i � Ln. There exists C46 > 0 such that jf in .�1/ � �
�
n j � C46L

�1
n .

Proof. – As long as ti < 0, from (3.52), we have �tiC1 � �� � ti � t2i C C40jti j
2C˛ �

�ti � t
2
i C C40jti j

2C˛. It is easy to show by induction that if siC1 D si � s
2
i C C40jsi j

2C˛,
s0 D �tj and j is large enough such that �tj � 1=2, then �tiCj � si , for all i 2 N. It is not
difficult to see that there exists C47 > 0 such that, if j � C47, then �tj � 1=2. We will prove
the latter claim by contradiction. Namely, since h�1.tj /� ��n D 2tj =f

00
n .�
�
n /, if tj > 1=2, then

jh�1.tj / � �
�
n j � K�11 , by the regularity condition (i). By the regularity conditions (v) and

(vi), we find fn.h�1.tj // � h�1.tj / � minfK5; K6.h�1.tj / � ��n /
2=2g � minfK5; K6K�11 g.

It follows, using again the regularity conditions (v) and (vi), that, for 0 � i � j , we have
fn.h

�1.ti // � h
�1.ti / � minfK5; K6K�11 g. If C47 > 1=minfK5; K6K�11 g, this leads to a

contradiction. Therefore, for j � C47, we have �tj � 1=2 and we can apply Lemma 3.15,
with si specified above. The claim follows.

L 3.18. – Let knC1 > 1=K5. Let 0 < Ln � knC1 and let f knC1�in .�1/ � ��n > 0,
for 0 � i � Ln. There exists C48 > 0 such that jf knC1�in .�1/ � ��n j � C48L

�1
n .

Proof. – The proof of this claim is analogous to the proof of Lemma 3.17.

We will now estimate some important parameters of the tunnel. Since � D gn.0/, there
exists a unique number ic satisfying 0 < ic < knC1 such that tic 2 Œ0; �/. Let il D
ic � Œ�

�1=2 tan�1 ��
˛

2.2C˛/ � and ir D ic C Œ�
�1=2 tan�1 ��

˛
2.2C˛/ �. The analogous quantities

associated toegn will be denoted bye�,eic ,eil andeir . Combining tan�1 1
x
D

�
2
� tan�1 x with

the asymptotic formula tan�1 x D x C O.x3/, x ! 0, it is easy to derive

(3.58) ��
1
2 tan�1 ��

˛
2.2C˛/ D

�

2
��

1
2 � ��

1
2C˛ C O.�

�1C˛
2C˛ /; � ! 0:
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L 3.19 ([12]). – There exist constants C49; C50 > 0 such that if knC1 � C49, then

jknC1 � ��
� 12 j � C50�

�1C˛
2 ;(3.59)

and ˇ̌̌̌
ic �

knC1

2

ˇ̌̌̌
� C50�

�1C˛
2 :(3.60)

Proof. – We include the proof for completeness of the presentation. It follows from
Lemma 3.15, together with (3.52) and (3.53), that there exists i0 � 1 such that,ˇ̌̌̌

ˇti0Ci C 1

i � t�1i0

ˇ̌̌̌
ˇ � C51

.i � t�1i0 /
1C˛

; 0 � i � il � i0;ˇ̌̌̌
ˇtknC1�i0�i � 1

i C t�1
knC1�i0

ˇ̌̌̌
ˇ � C51

.i C t�1
knC1�i0

/1C˛
; 0 � i � knC1 � i0 � ir ;

(3.61)

respectively, for some C51 > 0. Lemma 3.16, applied to si D �g�in .tic / and si D gin.tic / (the
assumptions of the lemma are satisfied due to (3.53) and (3.52)), respectively, implies that,
for some C52 > 0, ˇ̌̌

til C �
1

2C˛

ˇ̌̌
� C52�

1
2C˛
C
˛.˛C1/
2.2C˛/ ;ˇ̌̌

tir � �
1

2C˛

ˇ̌̌
� C52�

1
2C˛
C
˛.˛C1/
2.2C˛/ :

(3.62)

It follows from (3.61), for i D il � i0 and i D knC1� i0� ir , respectively, and (3.62) that, for
small enough �, ˇ̌̌

il � i0 � t
�1
i0
� ��

1
2C˛

ˇ̌̌
� C53�

�1C˛
2 ;ˇ̌̌

knC1 � i0 � ir C t
�1
knC1�i0

� ��
1

2C˛

ˇ̌̌
� C53�

�1C˛
2 ;

(3.63)

where C53 > 0. Since knC1 D .knC1 � i0 � ir /C .ir � ic/C .ic � il /C .il � i0/C 2i0, from

(3.63), using the asymptotic (3.58) and �
�1C˛
2 > �

�1C˛
2C˛ , we obtain (3.59). Since knC1�2ic D

knC1� i0� ir � .il � i0/ and both t�1i0 and t�1
knC1�i0

are bounded, from (3.63), we also obtain
(3.60).

C 3.20. – There exist C54; C55 > 0 such that, if knC1 � C54, then

(3.64)

ˇ̌̌̌e�
�
� 1

ˇ̌̌̌
� C55�

˛
2 :

Proof. – It follows from Lemma 3.19, by using the corresponding inequalities (3.59) fore�
and �, and the fact that, for x close to 1, x2 � 1 is of the same order as x � 1.

C 3.21. – There exist C56; C57 > 0 such that, if knC1 � C56, then

(3.65) jeic � ic j; jeir � ir j; jeil � il j � C57� �1C˛2 :

Proof. – It follows from Lemma 3.19, using estimate (3.60) for ic andeic , and the asymp-
totic formula (3.58).
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C 3.22. – There exist C58; C59 > 0 such that, if knC1 � C58, then

(3.66)

ˇ̌̌̌
ˇ� � �2

k2nC1

ˇ̌̌̌
ˇ � C59�1C˛2 :

Proof. – It follows directly from estimate (3.59) of Lemma 3.19.

The next lemma gives a lower bound on the distance between the successive iterates
of f in .�1/, for 0 � i � knC1. To simplify the notation, let zi D f in .�1/ D �n.xqn�1Ciqn/.

L 3.23. – There exists C60 > 0 such that, for all n ¤ n`, for any ` 2 N,

j�n.�
.n/
qn�1Ciqn

/j � C60i
�2; 0 < i � ic ;

j�n.�
.n/
qn�1Ciqn

/j � C60.knC1 � i/
�2; ic � 1 � i < knC1:

(3.67)

Proof. – We will prove the first inequality only. The proof of the second inequality is
similar. It follows from the regularity conditions (v) that there exists C61 > 0 such that
j�n.�

.n/
qn�1/j � C61. Let J WD Œ1=K5� C 1. It follows from the regularity condition (ii) that

(3.67) holds for 0 < i � minfJ; icg. If J � ic , the claim is proven. In the following, we
assume J < ic . The regularity condition (v) implies that, for all the remaining i , satisfying
J < i � ic , zi 2 Bfn;K5 . It follows from (3.62) that, there exists C62 > 0 such that,
� < C62jti j

2C˛, for J < i � il , and we may apply Lemma 3.15 to si D �tiCJ (the
assumptions of the lemma are satisfied due to (3.52)) to obtain the first inequality in (3.67),
for J < i � il . To compare the length of the intervals �n.�

.n/
qn�1Ciqn

/ and h.�n.�
.n/
qn�1Ciqn

//,

we have also used the fact that, due to regularity condition (i), jh0.z/j � K1
2

. To complete
the proof, we need to verify (3.67) for il < i � ic . To do that, we apply Lemma 3.16
with si D �ticC1�i (the assumptions of the lemma are satisfied due to (3.53)). In particular,
for il � i � ic , Lemma 3.16 implies

(3.68) tiC1 � ti D sicC1�i � sic�i D
�

.cos.
p
�.ic � i///2

.1C ıic�i /:

We will now prove that there exists C63 > 0 such that, for il � i � ic ,

(3.69) tiC1 � ti � C63i
�2:

To prove this, we will first verify that the function �.
p
�i/ D

p
�i

cos.
p
�.ic�i//

is monotonically

increasing. This follows from the fact that the function
p
�i tan.

p
�.ic�i// has the maximum

when
p
�i D

tan.
p
�.ic�i//

1Ctan2.
p
�.ic�i//

and, therefore,

�0.
p
�i/ D

1 �
p
�i tan.

p
�.ic � i//

cos.
p
�.ic � i//

� .cos.
p
�.ic � i///

�1.1C tan2.
p
�.ic � i///

�1 > 0;

for il � i � ic . Thus,

(3.70) tiC1� ti D .tilC1� til /
.cos.

p
�.ic � il ///

2

.cos.
p
�.ic � i///2

.1C ıic�i /

.1C ıic�il /
� .tilC1� til /

i2
l

i2
.1C ıic�i /

.1C ıic�il /
:

Taking into account that, by the previously established inequality (3.67) for i D il ,
.tilC1 � til /i

2
l

is bounded from below by a positive constant and that, by Lemma 3.16,

jıic�i j � C64�
˛.˛C1/
2.2C˛/ , for some C64 > 0, this proves (3.69). The claim follows.
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The next proposition gives an estimate on the distance between points Q�n. Qxqn�1Cjqn/ and
�n.xqn�1Cjqn/, for 0 � j � knC1.

P 3.24. – Assume that the conditions of Theorem 2.2 hold. There exists
C65 > 0 such that, for all n ¤ n`, for any ` 2 N, and for 0 � j � knC1, we have

(3.71) j Q�n. Qxqn�1Cjqn/ � �n.xqn�1Cjqn/j � C65�
n=2:

Proof. – It suffices to prove the claim for sufficiently large n ¤ n`. To simplify the
notation, let zi D �n.xqn�1Ciqn/ and Qzi D Q�n. Qxqn�1Ciqn/. Notice that the “first” pair of
points satisfies the desired bound since, by condition (d) of Theorem 2.2,

(3.72) j Qz1 � z1j D j Qfn.�1/ � fn.�1/j � C�
n:

The same is true for the “last” pair since

(3.73) j QzknC1 � zknC1 j D j
QfnC1.0/ Qfn.0/ � fnC1.0/fn.0/j � K1C.1C �/�

n:

Let �i be a point between zi and Qzi such that jfn. Qzi / � fn.zi /j D f 0n.�i /j Qzi � zi j. Then,

j QziC1 � ziC1j � f
0
n.�i /j Qzi � zi j C C�

n;

j Qzi�1 � zi�1j � .f
0
n.�i�1//

�1.j Qzi � zi j C C�
n/:

(3.74)

By iterating these two inequalities we obtain

j Qzj � zj j � jQz1 � z1j

j�1Y
iD1

f 0n.�i /C C�
n

 
1C

j�1X
kD2

j�1Y
iDk

f 0n.�i /

!
;(3.75)

j QzknC1�j � zknC1�j j � jQzknC1 � zknC1 j

knC1�1Y
iDknC1�j

.f 0n.�i //
�1
C C�n

knC1�1X
kDknC1�j

knC1�1Y
iDk

.f 0n.�i //
�1:

We can now apply these estimates for all 1 � j � J , where J WD Œ1=K5� C 1, obtaining
j Qzj � zj j � C66�

n, and j QzknC1�j � zknC1�j j � C66�
n, for some C66 > 0. If knC1 � 2J , then

the claim is proven. Otherwise, all the remaining points zi and Qzi belong to Bfn;K5 \B Qfn;K5 ,

��n ande��n are well-defined and je��n ���n j < CK�16 �n, as follows from the regularity condition
(vi) and condition (d).

The objective now is to apply the inequalities (3.75) to obtain the desired estimate for all of
the remaining points. We will first make at mostLn WD Œ��n=2�C1 steps from both ends. More
precisely, we will make at most Ln steps from the left end, but stop when maxfzj ; Qzj g > ��n .
From the first of the inequalities (3.75), we obtain j Qzj �zj j � C67�n=2, for someC67 > 0, and
all J < j � Ll , where Ll WD minfLn;minfk 2 N W maxfzk ; Qzkg > ��ngg. Here, we have used
the fact that the products of derivatives in (3.75) are smaller than 1, since all points �i now
belong toBfn;K5\B Qfn;K5 , and satisfy �i � ��n . The same estimate is obtained for knC1�Lr <
j < knC1�J , such thatLr WD minfLn; knC1�maxfk 2 N W minfzk ; Qzkg < ��ngg, by applying
the second inequality in (3.75).

If an early stop did not occur in the previous iterations, i.e., if Ll D Lr D Ln, then, for
the rest of the points, by Lemma 3.17 and Lemma 3.18, we have jzj � ��n j � C68L

�1
n �

C68�
n=2; and j Qzj �e��n j � C68�n=2, for some C68 > 0. Together with je��n � ��n j < CK�16 �n,

this completes the proof, in this case. If both the forward and the backward iterations were
stopped earlier at Ll < Ln and Lr < Ln, respectively, then all the remaining points zj and
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Qzj are contained in the interval between the leftmost and the rightmost of the points (i.e., the
smallest and largest values of) zLl ; QzLl ; zknC1�Lr ; QzknC1�Lr . The length of this interval, d WD
maxfzLl ; QzLl ; zknC1�Lr ; QzknC1�Lr g � minfzLl ; QzLl ; zknC1�Lr ; QzknC1�Lr g; is bounded from
above by 2C67�n=2. If the iteration in one direction was stopped earlier, while in the other was
not, then the two arguments above can be easily combined to complete the proof. Namely, if
Ll < Ln and Lr D Ln or Ll D Ln and Lr < Ln, then d � C67�n=2 C CK�16 �n C C68�

n=2.
The claim follows.

C 3.25. – Under the assumptions of Proposition 3.24, there exists C69 > 0 such
that, for all n ¤ n`, for any ` 2 N, and for all 1 � j � Œ��n=8�C 1 and knC1 � Œ��n=8� � j �
knC1, we have

(3.76) j Q�n. Qxqn�1Cjqn/ � �n.xqn�1Cjqn/j � C69�
n=4
j�n.�

.n/
qn�1Cjqn

/j:

Proof. – For 1 � j � minfic ; Œ��n=8� C 1g and maxfic � 1; knC1 � Œ��n=8�g �

j � knC1, the claim follows directly from Proposition 3.24, taking into account that, by
Lemma 3.23, there exists C70 > 0 such that j�n.�

.n/
qn�1Cjqn

/j � C70�
n=4. These estimates

can be extended to ic < j � Œ��n=8� C 1 or knC1 � Œ��n=8� � j < ic � 1 since,
by the regularity condition (vi), in these two cases j�n.�

.n/
qn�1Cjqn

/j � j�n.�
.n/
qn�1Cicqn

/jg

and j�n.�
.n/
qn�1Cjqn

/j � j�n.�
.n/

qn�1C.ic�1/qn
/j, respectively, for sufficiently large n. The claim

follows.

The following lemma shows that, for the values of n considered (corresponding to the
renormalization graphs that are convex inside the tunnels), the ratios of lengths of the
renormalized intervalse�n.e�.n/qn�1Cjqn/ and �n.�

.n/
qn�1Cjqn

/ are exponentially (in n) close to 1.

P 3.26. – Assume that the conditions of Theorem 2.2 hold. There existsC70 >
0, such that for all n ¤ n`, for any ` 2 N, and 0 � j � knC1, we have

(3.77)
ˇ̌̌
sn.�

.n/
qn�1Cjqn

/ � 1
ˇ̌̌
� C70�

n
5;

with �5 WD �
.1C˛/˛
8.2C˛/ .

Proof. – It suffices to prove the claim for sufficiently large n. For 0 � j � Œ��n=8� and
knC1 � Œ�

�n=8� � j < knC1, it follows directly from Corollary 3.25, by using (3.6), that

(3.78) jsn.�
.n/
qn�1Cjqn

/ � 1j � C71�
n=4;

for some C71 > 0. If this constant has been chosen sufficiently large, inequality (3.78) also
holds for j D knC1 since, as follows from (3.73) and (3.74), using that jf 0n.z/j � K1 by
the regularity condition (i), j Q�n. QxqnC1Cqn/ � �n.xqnC1Cqn/j � C72�

n, for some C72 > 0;

and by the regularity conditions (v) and (ii), j�n.�
.n/
qnC1/j D j�n.T

qnC1.�
.n/
0 //j � K5K2,

as .T qnC1/0.x/ D f 0nC1.�nC1.x//.

If knC1 � Œ��n=8�, the claim is proven. In the following, we assume knC1 > Œ��n=8�

and that n is sufficiently large such that Œ��n=8� > 1=K5. This latter condition guaran-
tees that for all the remaining indices j , for which (3.77) remains to be proven, we have
zi ;ezi 2 Bfn;K5 \ B efn;K5 .
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To prove (3.77) for Œ��n=8� < j � minfil ;eilg, we apply Lemma 3.15 to si D �tiCŒ��n=8�
and si D �etiCŒ��n=8�, where i D j � Œ��n=8�. The assumptions of this lemma are satisfied
due to (3.52), since it follows from (3.62) that there exists C73 > 0 such that, � < C73jtj j2C˛,
for Œ��n=8� < j � il . We obtain

(3.79) sn.�
.n/
qn�1Cjqn

/ D
.j � Œ��n=8� � t�1

Œ��n=8�
/2

.j � Œ��n=8� �et�1
Œ��n=8�

/2
.1Ceıj /
.1C ıj /

ef 00n .e��n /
f 00n .�

�
n /
;

for Œ��n=8� � j � minfil ;eilg. Since j .1Ca/
2

.1Cb/2
�1j � ja

2

b2
�1j, for a; b > 0, from the last equality,

we find
(3.80)ˇ̌̌̌
ˇsn.�.n/qn�1Cjqn/ .1C ıj /.1Ceıj / f

00
n .�
�
n /ef 00n .e��n / � 1

ˇ̌̌̌
ˇ �

ˇ̌̌̌
ˇsn.�.n/qn�1CŒ��n=8�qn/ .1C ıŒ��n=8�/.1CeıŒ��n=8�/ f

00
n .�
�
n /ef 00n .e��n / � 1

ˇ̌̌̌
ˇ :

Since, by Lemma 3.15, for the considered indices j , jıj j � C74t
˛
Œ��n=8�

, jeıj j � C74et˛Œ��n=8�,
with C74 > 0, by Lemma 3.17, jıj j; jeıj j � C75�n˛=8, for some C75 > 0. Using this estimate,
condition (d), je��n � ��n j < CK�16 �n and that, by regularity condition (vi), ef 00n .e��n / > K6,
inequality (3.80), together with (3.78) for j D Œ��n=8�, implies that, for Œ��n=8� � j �

minfil ;eilg,
(3.81)

ˇ̌̌
sn.�

.n/
qn�1Cjqn

/ � 1
ˇ̌̌
� C76�

n˛=8;

where C76 > 0. One can similarly obtain the same estimate for maxfir ;eirg � j � knC1.

It remains to prove (3.77) for minfil ;eilg � j � maxfir ;eirg. To estimate the ratio of lengths
of the intervalse�n.e�.n/qn�1Cjqn/ and �n.�

.n/
qn�1Cjqn

/, we will apply Lemma 3.16. Since,eic may
be different from ic , we will use the following factorization

(3.82) sn.�
.n/
qn�1Cjqn

/ D
je�n.e�.n/qn�1C.jCeic�ic/qn/j
j�n.�

.n/
qn�1Cjqn

/j

je�n.e�.n/qn�1Cjqn/j
je�n.e�.n/qn�1C.jCeic�ic/qn/j :

The second of the ratios in (3.82) can be estimated as follows. To be specific let us assume
thateic < ic (in the opposite case, the proof is similar). We have that

(3.83)

ˇ̌̌̌
ˇ̌ je�n.e�.n/qn�1Cjqn/j
je�n.e�.n/qn�1C.jCeic�ic/qn/j � 1

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌ j�1Y
iDjCeic�ic

ef 0n.e�i / � 1
ˇ̌̌̌
ˇ̌ � C77e� ˛.1C˛/2.2C˛/ ;

for some C77 > 0. Here, �i 2 e�n.e�.n/qn�1Ciqn/ and we have used Corollary 3.21 and that, by

(3.62), j ef 0n.e�i /� 1j � C78e� 1
2C˛ , where C78 > 0. We will now estimate the first ratio in (3.82).

To estimate the lengths of the intervals in the numerator and the denominator, for j � ic ,
we apply Lemma 3.16 to si D �eteicC1�i and si D �ticC1�i , respectively. The assumptions
of this lemma are satisfied due to (3.53) (condition 2) and the facts that tic 2 Œ0; �/ and
g00n is bounded, due to the regularity condition (i) (condition 1). Similarly, one can verify the
assumptions of this lemma for j � ic , using (3.52). By Lemma 3.16,

(3.84)
je�n.e�.n/qn�1C.jCeic�ic/qn/j
j�n.�

.n/
qn�1Cjqn

/j
D
e�
�

.cos.
p
�.ic � j ///

2

.cos.
pe�.ic � j ///2 .1C

eıjCeic�ic /
.1C ıj /

ef 00n .e��n /
f 00n .�

�
n /
:
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Notice that this holds for minfil ;eilg � j � maxfir ;eirg since, by Corollary 3.20, we have
jŒe��1=2 tan�1e�� ˛

2.2C˛/ � � Œ��1=2 tan�1 ��
˛

2.2C˛/ �j � Œ��1=2 tan�1.C79�
� ˛
2.2C˛/ /�, for some

C79 > 0, if � is small enough (which holds for knC1 > Œ��n=8� and sufficiently large n, by
Corollary 3.22).

Using Corollary 3.20, jıi j; jeıiCeic�ic j � C80�
˛.1C˛/
2.2C˛/ (see Lemma 3.16), where C80 > 0,

condition (d) and the estimate j��n��
�
n j < CK6�

n (that follows from the regularity condition
(vi)), it follows from (3.82), (3.83) and (3.84) that

(3.85)

ˇ̌̌̌
sn.�

.n/
qn�1Cjqn

/ �
.cos.

p
�.ic � j ///

2

.cos.
pe�.ic � j ///2

ˇ̌̌̌
� C81�

n˛.1C˛/
8.2C˛/ ;

where C81 > 0, since, by Corollary 3.22, � and e� are at most of the order of �n=4, due
to knC1 > Œ��n=8�. Using the elementary inequalities (that can be easily verified by taking
the derivative with respect to j )

(3.86)

ˇ̌̌̌
ln

cos.
p
�.ic � j � 1//

cos.
pe�.ic � j � 1//

ˇ̌̌̌
�

ˇ̌̌̌
ln

cos.
p
�.ic � j //

cos.
pe�.ic � j //

ˇ̌̌̌
;

for minfil ;eilg � j < ic , and

(3.87)

ˇ̌̌̌
ln

cos.
p
�.j � ic � 1//

cos.
pe�.j � ic � 1//

ˇ̌̌̌
�

ˇ̌̌̌
ln

cos.
p
�.j � ic//

cos.
pe�.j � ic//

ˇ̌̌̌
;

for ic < j � maxfir ;eirg, together with the estimates (3.81) and (3.85) for j D minfil ;eilg
and j D maxfir ;eirg, and the asymptotic formula ln.1C x/ D xC O.x2/; x ! 0, we obtain
(3.77), for minfil ;eilg � j � maxfir ;eirg.
3.4. The estimates on the fundamental intervals

In this section, we first show that the ratio of lengths of the renormalized fundamental
intervals e�n.e�.n/0 / and �n.�

.n/
0 / is exponentially in n close to 1. Then, we show that, after

an arbitrarily smooth conjugation of one of the maps, the ratio of lengths of the actual
fundamental intervals e�.n/0 and �.n/0 is exponentially close to 1.

L 3.27. – Assume that the conditions of Theorem 2.2 hold. There existsC82 > 0 such
that, for all n D n`, for some ` 2 N,

(3.88)
ˇ̌̌
sn.�

.n/
0 / � 1

ˇ̌̌
� C82�

n
2;

and for all n ¤ n`, for any ` 2 N,

(3.89)
ˇ̌̌
sn.�

.n/
0 / � 1

ˇ̌̌
� C82�

n:

Proof. – For all n D n`, for some ` 2 N, the claim follows directly from Corollary 3.12.
The improved estimate for n ¤ n`, for any ` 2 N, follows from the equality

(3.90)
ˇ̌̌
sn.�

.n/
0 / � 1

ˇ̌̌
D

ˇ̌̌̌
ˇ Qfn.0/ � fn.0/fn.0/

ˇ̌̌̌
ˇ ;

taking into account the convergence of renormalizations (condition (d)) and that, for such n,
the regularity condition (v) implies fn.0/ � K5.
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L 3.28. – Assume that the conditions of Theorem 2.2 hold. There exists �1 > 0 and
C83 > 0 such that, for all n 2 N, we have

(3.91)

ˇ̌̌̌
ˇ je�.n/0 jj�

.n/
0 j

� �1

ˇ̌̌̌
ˇ � C83�n2 :

Proof. – Let �n D
je�.n/
0
j

j�
.n/
0
j
. It follows from Lemma 3.27, that

(3.92)

ˇ̌̌̌
�n

�n�1
� 1

ˇ̌̌̌
� C82�

n
2;

and, thus, j ln �n � ln �n�1j D "n�1, where 0 � "n�1 � C84�
n
2 , for some C84 > 0. Since

the sequence of non-negative numbers "n decreases at least exponentially fast with n, the
sequence .ln �n/n2N is a Cauchy sequence and converges to some `1 WD limn!1 ln �n. The
sequence �n, thus, converges to �1 D e`1 > 0.

Furthermore, since

(3.93) jln �1 � ln �nj �
1X
mDn

"m � C84
�n2

1 � �2
;

we have

(3.94)

ˇ̌̌̌
�1

�n
� 1

ˇ̌̌̌
� C85�

n
2;

for some C85 > 0. The claim follows.

Without loss of generality, we may assume that �1 D 1. This follows from the following
simple lemma.

L 3.29. – Assume that the conditions of Theorem 2.2 hold. There exists an arbitrarily
smooth conjugation OT of eT and C86 > 0 such that, for all n 2 N, we have �1. OT / D 1 and, thus,
the length of the fundamental interval O�.n/0 of OT satisfies

(3.95)

ˇ̌̌̌
ˇ j O�.n/0 jj�

.n/
0 j

� 1

ˇ̌̌̌
ˇ � C86�n2 :

Proof. – It is enough to rescale the intervals ofe�.n/0 by means of a smooth change of coor-
dinates affine in a neighborhood ofex0 D '.x0/. Assume that �1 > 1. Let be aC1-smooth
orientation-preserving diffeomorphism of T1, which is affine on e�.1/0 [e�.2/0 , with derivative
��11 . Let OT D  ıeT ı �1. This change of eT will not affect the renormalizations Qfn, for n � 2,
and they will stay regular uniformly with respect to n, but �1 corresponding to OT and T will
be equal to 1. A similar argument works in the case �1 < 1.

In this paper, we assume that T and eT have already been adjusted such that (3.91) holds
with �1 D 1.
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3.5. Estimates on the intervals of the partition Pm, inside�.n�1/0 , with n a constant fraction
of m

In the previous sections, we have obtained the necessary estimates on the ratios of lengths
of the rescaled intervals of partition PnC1 inside N�.n�1/0 . We would like to extend these
estimates to the whole circle. In order to do that, we need to consider the intervals of
higher-level partitions Pm, for m > n C 1, inside this interval. For I � �

.n/
qn�1 andeI D '.I / � e�.n/qn�1 , we define, as before, Ii WD ��1n .f in .�n.I /// and eIi WDe��1n . ef in .e�n.eI ///.

The following lemma will be used in the case when n ¤ n`, for any ` 2 N, and knC1 >
Œ��n=8�. It concerns “small” intervals inside the tunnel of the convex renormalization graphs.

L 3.30. – There exists C87 > 0 such that for all n ¤ n`, for any ` 2 N, and
Œ��n=8� < j � knC1 � Œ�

�n=8�, we have

(3.96) j ln sn.Ij /j � j ln sn.IŒ��n=8�/j C C87�
n
5 :

Proof. – Notice first that there exist �1 2 �n.Ii /,e�1 2e�n.eIi /, �2; �3 2 �n.�.n/qn�1Ciqn/ ande�2;e�3 2e�n.e�.n/qn�1Ciqn/ such that

ˇ̌̌̌
ˇ̌ln
0@sn.IiC1/
sn.Ii /

sn.�
.n/
qn�1Ciqn

/

sn.�
.n/

qn�1C.iC1/qn
/

1Aˇ̌̌̌ˇ̌ D j ln ef 0n.e�1/ � lnf 0n.�1/ � ln ef 0n.e�2/C lnf 0n.�2/j

D j.ln ef 0n/0.e�3/.e�2 �e�1/ � .lnf 0n/0.�3/.�2 � �1/j � K1

K2
je�2 �e�1j C K1

K2
j�2 � �1j:

(3.97)

Summing up these inequalities from i D Œ��n=8� to j � 1, for some Œ��n=8� < j �

knC1 � Œ�
�n=8�, we obtain thatˇ̌̌̌
ˇ̌ln
0@ sn.Ij /

sn.IŒ��n=8�/

sn.�
.n/

qn�1CŒ��n=8�qn
/

sn.�
.n/
qn�1Cjqn

/

1Aˇ̌̌̌ˇ̌ � K1

K2

0@ j�1X
iDŒ��n=8�

je�n.e�.n/qn�1Ciqn/j
C

j�1X
iDŒ��n=8�

j�n.�
.n/
qn�1Ciqn

/j

1A � C88K1
K2
�n=8;

(3.98)

for someC88 > 0. The last inequality follows from Lemma 3.17 and Lemma 3.18. Therefore,
(3.99)

j ln sn.Ij /j � j ln sn.IŒ��n=8�/jCj ln sn.�
.n/

qn�1CŒ��n=8�qn
/jCj ln sn.�

.n/
qn�1Cjqn

/jCC88
K1

K2
�n=8;

and the claim follows from this inequality, by using Proposition 3.26.

We recall that, for the set of rotation numbers considered here, we have a constraint
kn`C1 � C1�

�n`
1 , for all ` 2 N (by condition (a)). Let �6 WD maxf�2; �5g, and let

S1 WD maxfC2; C70g.

P 3.31. – Assume that the conditions of Theorem 2.2 hold. There existsS2 > 1
such that the following holds. Assume that there exists C89 > 1 such that for any sufficiently
large n 2 N, any m > n, and all intervals I , with Pm 3 I � �

.n/
qn�1 and the corresponding
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intervals eI , with fPm 3
eI � e�.n/qn�1 , we have jsn.I /� 1j � C89�n6 . Then, for all 0 � i � knC1,

we have jsn.Ii / � 1j � S2C89�n6 .

Proof. – Let yi and zi be the left (i.e., smaller) and right (i.e., larger) end point of the
interval �n.Ii /, respectively. Analogously, let eyi andezi be the left and right end point of the
intervale�n.eIi /, respectively. If zi � yi � maxfjeyi � yi j; jezi � zi jg, then

jsn.IiC1/ � 1j D

ˇ̌̌̌
ˇ ef 0n.e�i /jezi � eyi jf 0n.�i /jzi � yi j

� 1

ˇ̌̌̌
ˇ

�
�
C�nK�12 C 3K1K

�1
2 maxfjeyi � yi j; jezi � zi jg� jezi � eyi j

jzi � yi j
C

ˇ̌̌̌
jezi � eyi j
jzi � yi j

� 1

ˇ̌̌̌
�
�
2C�nK�12 C 6K1K

�1
2 maxfjeyi � yi j; jezi � zi jg�C jsn.Ii / � 1j;

(3.100)

if jsn.Ii /j < 2. If zi � yi > maxfjeyi � yi j; jezi � zi jg, then

jsn.IiC1/ � 1j D

ˇ̌̌̌
ˇ
Rezieyi ef 0n.�/d�R zi
yi
f 0n.�/d�

� 1

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ ef 0n.ezi /.ezi � eyi / �

Rezieyi ef 00n .�/.� � eyi /d�
f 0n.zi /.zi � yi / �

R zi
yi
f 00n .�/.� � yi /d�

� 1

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ̌
ef 0n.ezi /
f 0n.zi /

ezi�eyi
zi�yi

� 1 � 1
f 0n.zi /.zi�yi /

�Rezieyi ef 00n .�/.� � eyi /d� � R ziyi f 00n .�/.� � yi /d��
1 � 1

f 0n.zi /.zi�yi /

R zi
yi
f 00n .�/.� � yi /d�

ˇ̌̌̌
ˇ̌ ;

(3.101)

and, thus,

jsn.IiC1/ � 1j �

"
2CK�12 �n

�
1C

zi � yi

4

�
C
3

2
K1K

�1
2 jeyi � yi j

C 4K1K
�1
2 jezi � zi j C jsn.Ii / � 1j#.1CK1K�12 jzi � yi j/:(3.102)

Here, we have used that

(3.103)

ˇ̌̌̌
ˇ ef 0n.ezi /f 0n.zi /

ezi � eyi
zi � yi

� 1

ˇ̌̌̌
ˇ � 2.CK�12 �n CK1K

�1
2 jezi � zi j/C jsn.Ii / � 1j ;

if jsn.Ii /j < 2,

1

f 0n.zi /.zi � yi /

ˇ̌̌̌Z ezi
eyi ef 00n .�/.� � eyi /d� � Z zi

yi

f 00n .�/.� � yi /d�

ˇ̌̌̌
�

1

K2.zi � yi /

�
C�n

.zi � yi /
2

2
CK1jeyi � yi jjzi � yi j

C K1
.eyi � yi /2

2
C 2K1jzi � yi jjezi � zi j�

�
1

K2

�
C�n

.zi � yi /

2
C
3

2
K1jeyi � yi j C 2K1jezi � zi j� ;

(3.104)
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and

(3.105)
1

f 0n.zi /.zi � yi /

Z zi

yi

jf 00n .�/j.� � yi /d� �
1

2
K1K

�1
2 jzi � yi j:

We have also used that .1�x/�1 � 1C 2jxj, for x < 1=2, and assumedK1K�12 jzi �yi j < 1.

Therefore, in either case, we have

jsn.IiC1/ � 1j �

"
2CK�12 �n

�
1C

zi � yi

4

�
C 6K1K

�1
2 maxfjeyi � yi j; jezi � zi jg

Cjsn.Ii / � 1j

#
.1CK1K

�1
2 jzi � yi j/:

(3.106)

Using the estimate
(3.107)

maxfjeyi � yi j; jezi � zi jg �
0@C90S1�n6 C max

Pm3I
0
i
��

.n/

qn�1Ciqn

jsn.I
0
i / � 1j

1A j�n.�.n/qn�1Ciqn/j;
with C90 > 0, which holds for n D n`, for any ` 2 N and 0 � i � knC1, and for n ¤ n`,
` 2 N, and 0 � i � Œ��n=8� or knC1 � Œ��n=8� � i � knC1, we obtain

jsn.IiC1/ � 1j �

244CK�12 �n C 6K1K
�1
2

0@C90S1�n6 C max
Pm3I

0
i
��

.n/

qn�1Ciqn

jsn.I
0
i / � 1j

1A
�j�n.�

.n/
qn�1Ciqn

/j C max
Pm3I

0
i
��

.n/

qn�1Ciqn

jsn.I
0
i / � 1j

35 .1CK1K�12 j�n.�.n/qn�1Ciqn/j/:

(3.108)

In the estimate (3.107), we have used the fact that for all n D n`, for some ` 2 N
(corresponding to renormalization graphs concave inside the gates), the distance of the
corresponding endpoints of the intervals �n.�

.n/
qn�1Ciqn

/ ande�n.e�.n/qn�1Ciqn/ is bounded from

above by C90S1�n6j�n.�
.n/
qn�1Ciqn

/j. This follows from Proposition 3.2 and the fact that, by

Corollary 3.6, the sum of the lengths of the intervals �n.�
.n/
qn�1Ciqn

/ inside the gates is of the
order of the longest of them. Since �1=4 < �5 � �6, by Corollary 3.25, estimate (3.107) is
valid for n ¤ n`, for any ` 2 N (corresponding to renormalization graphs convex inside the
tunnels), if 0 � i � Œ��n=8� or knC1 � Œ��n=8� � i � knC1.

Taking the maximum of the left hand side of (3.108) over all IiC1, such that Pm 3 IiC1 �

�
.n/

qn�1C.iC1/qn
, we obtain the inequality

(3.109) MiC1 � Pi CQiMi ;

where Mi WD max
Pm3Ii��

.n/

qn�1Ciqn

jsn.Ii / � 1j, and

Pi WD
�
4CK�12 �n C 6K1K

�1
2 C90S1�

n
6j�n.�

.n/
qn�1Ciqn

/j
�
.1CK1K

�1
2 j�n.�

.n/
qn�1Ciqn

/j/;

Qi WD
�
1C 6K1K

�1
2 j�n.�

.n/
qn�1Ciqn

/j
�
.1CK1K

�1
2 j�n.�

.n/
qn�1Ciqn

/j/:

(3.110)
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By iterating this inequality from i D j down to i D 0, we obtain

(3.111) MjC1 � Pj C

j�1X
kD0

Pk

jY
lDkC1

Ql CM0

jY
lD0

Ql ;

and, thus,
(3.112)

jsn.IjC1/ � 1j � e
8K1K

�1
2

"
4CK�12 �n.j C 1/C 6K1K

�1
2 C90S1�

n
6 C max

Pm3I 0��
.n/
qn�1

jsn.I
0/ � 1j

#
:

Here, we have used that
Pj
iD0 j�n.�

.n/
qn�1Ciqn

/j < 1 and the inequality 1 C x < ex ,
for x > 0. Using (3.112), we can prove the claim for n D n`, and ` 2 N sufficiently
large, corresponding to the case of renormalization graphs concave inside the gates, with our
standing assumption kn`C1 � C1�

�n`
1 , and for n ¤ n`, ` 2 N, corresponding to the case

of renormalization graphs convex inside the tunnels, if knC1 � Œ��n=8� and n is sufficiently
large. From (3.112), we obtain jsn.Ij / � 1j < C91C89�

n
6 , for all 0 � j � knC1, where

C91 D e8K1K
�1
2 .4CK�12 C1C

�1
89 C 6K1K

�1
2 C90S1C

�1
89 C 1/: If n ¤ n`, for any ` 2 N,

and knC1 > Œ��n=8�, the same analysis leads to the bound jsn.Ij / � 1j < C91C89�
n
6 ,

for 0 � j � Œ��n=8�. The latter bound for j D Œ��n=8� and the estimate

(3.113) jsn.Ij / � 1j < jsn.IŒ��n=8�/ � 1j C C92C87�
n
5;

where C92 > 0, which follows from Lemma 3.30, give jsn.Ij / � 1j < C93C89�
n
6 , where

C93 D C91 C C92C87C
�1
89 , for Œ��n=8� < j � knC1 � Œ�

�n=8�. Finally, by iterating the
inequality (3.109) from i D j � 1 down to i D knC1 � Œ�

�n=8�, we obtain an estimate
analogous to (3.112) and jsn.Ij / � 1j < C94C89�n6 , where

C94 D e
8K1K

�1
2 .4CK�12 C1C

�1
89 C 6K1K

�1
2 C90S1C

�1
89 C C93/;

for knC1 � Œ��n=8� � j � knC1. The claim is proven.

In the following, let I 0 WD T qn�1.I /.

L 3.32. – Assume that the conditions of Theorem 2.2 hold. There exists S3 > 1 such
that the following holds. Assume that there existsC95 > 1 such that for any n 2 N large enough,
any m > n, and all intervals I , with Pm 3 I � �

.n/
0 and the corresponding intervals eI , withfPm 3

eI � e�.n/0 , we have jsnC1.I / � 1j � C95�n6 . Then, jsn.I 0/ � 1j � S3C95�n6 .

Proof. – It follows from Lemma 3.27 that, there exists C96 > 0, such that

(3.114) jsn�1.I / � 1j D jsnC1.I /sn.�
.n/
0 /sn�1.�

.n�1/
0 / � 1j � C96C95�

n
6 :

Let y;ey and z;ez be the left (i.e., smaller) and right (i.e., larger) end points of the intervals
�n�1.I / ate�n�1.eI /. Since (3.114) holds for all intervals I such that Pm 3 I � �

.n/
0 , we have

(3.115) maxfjey � yj; jez � zjg � C96C95�n6 :
Since I 0 D ��1n�1.fn�1.�n�1.I /// and eI 0 D e��1n�1. efn�1.e�n�1.eI ///, we can derive, completely
analogously to (3.106) (in other words, for I � �.n/0 , we can apply (3.106) with n�1 instead
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of n and kn instead of i ),

jsn�1.I
0/ � 1j �

"
2CK�12 �n�1

�
1C

z � y

4

�
C 6K1K

�1
2 maxfjey � yj; jez � zjg

Cjsn�1.I / � 1j

#
.1CK1K

�1
2 jz � yj/:

(3.116)

Taking into account that jz�yj < 1, this inequality, together with (3.114) and (3.115), gives
that, for some C97 > 0,

(3.117) jsn�1.I
0/ � 1j � C97C95�

n
6 :

Since sn.I 0/ D sn�1.I 0/=sn�1.�
.n�1/
0 /, together with Lemma 3.27, this proves the claim.

P 3.33. – Assume that the conditions of Theorem 2.2 hold. For every
�7 2 .�6; 1/, there exists � > 0 and C98 > 0, such that

(3.118) j�.I / � 1j � C98�
m
7 ;

for all I 2 Pm, such that I � N�.m�Œ�m�/0 , and all m 2 N0.

Proof. – It suffices to prove the claim for sufficiently large m. It follows from Proposi-
tion 3.2, Proposition 3.26 and Lemma 3.27 that there exists C99 > 1 such that, for all inter-
vals I 2 Pm such that I � N�.m�2/0 , we have

(3.119) jsm�1.I / � 1j � C99�
m
6 :

There exist S4 > 1 and n3 2 N, such that, if all intervals I 2 Pm, with I � N�.n/0 , where
n3 � n � m � 2, satisfy jsnC1.I / � 1j � C100�

n
6 , for some C100 > 1, then all intervals

I 00 2 Pm, such that I 00 � N�.n�1/0 , satisfy jsn.I 00/ � 1j � S4C100�n6 . To see this, notice that
every interval I 00 2 Pm, such that I 00 � N�.n�1/0 , is either a subset of L�.n�1/0 or a subset
of N�.n/0 . If I 00 � L�.n�1/0 then there exist i , such that 0 � i < knC1, and intervals I � �

.n/
0

and I 0 � �
.n/
qn�1 , such that I 00 D T iqn.I 0/ and I 0 D T qn�1.I /, and the claim follows,

with S4 � S2S3, if n3 is large enough, by applying Lemma 3.32 and Proposition 3.31. If
I 00 � N�

.n/
0 , since sn.I 00/ D snC1.I 00/sn.�

.n/
0 /, using Lemma 3.27, we have

(3.120) jsn.I
00/ � 1j � jsnC1.I

00/ � 1j C snC1.I
00/jsn.�

.n/
0 / � 1j;

and the claim follows with S4 � 1C 2C82.

Applying this spreading of estimates from the intervals of partition Pm inside N�.n/0 to
intervals of partition Pm inside N�.n�1/0 recursively, from n D m � 2 down to n D n0 � n3,

and using estimate (3.119), for all I 2 Pm such that I � N�.n
0/

0 , we have

(3.121) jsn0C1.I / � 1j � S
m�n0

4 C99�
n0

6 :

The claim follows from the latter inequality, after we set n0 D m� Œ�m�, choose � > 0 small
enough such that S�4�

1��
6 � �7, and rescale the intervals, using �.I / D snC1.I /�.�

.n/
0 / and

(3.91) with �1 D 1.
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At the end of this section, let us summarize the relations among the various rates �i
that are used in this paper. ��11 is the maximal rate of the exponential growth of the partial
quotients. �1 can be chosen to be an arbitrary number in .�; 1/, where � is the minimal
rate of convergence of renormalizations. The established rate of convergence of the ratios
of lengths of the renormalized intervals sn.�

.n/
qn�1Cjqn

/, for n D n`, for some ` 2 N, is

�2 2 .
p
�=�1; 1/. To prove this, we use a natural separation of length scales given by the

exponential rate �3 2 .�=�2; �1�2/. The distance between the corresponding end points of
the intervals �n.�

.n/
qn�1Cjqn

/ and e�n.e�.n/qn�1Cjqn/ is controlled by the rate �4 D �2�3. The

established rate of convergence of ratios sn.�
.n/
qn�1Cjqn

/, for n ¤ n`, for any ` 2 N, is

�5 D �
.1C˛/˛
8.2C˛/ . The established rate of convergence of these ratios, for any n 2 N, is therefore

�6 D maxf�2; �5g. Any �7 2 .�6; 1/ is the established rate of convergence of ratios �.I / for
intervals of partition I 2 Pn inside N�.n�Œ�n�/0 , for some � 2 .0; 1/. Finally, as we will see in
the next section, the rate N� in Proposition 3.1 can be taken to be N� D maxf�7; ��refg.

3.6. Spreading the estimates to the whole circle

Theorem 2.2. – In order to prove the claim, we will use Proposition 3.1. To verify
the assumptions of Proposition 3.1, we need to verify the estimates (3.2) for all intervals
I; I 0 � Pm which are either adjacent or belong to the same element of partition Pm�1.
Proposition 3.33 implies the estimate

(3.122) j ln �.I / � ln �.I 0/j � C101�m7 ;

where C101 > 0, for all pairs of such intervals I; I 0 which are both contained in N�.m�Œ�m�/0 .
We will now spread such an estimate from N�.n/0 to N�.n�1/0 in m � Œ�m� steps, starting with
n D m � Œ�m�, and counting down to n D 0. In each step, the new intervals for which
we need to show such an estimate appear in threads Ii D T iqn.I0/ and I 0i D T iqn.I 00/,
for 0 � i < knC1. Let us fix the order of the pairs in such a way that I 00 is closer to x0 than I0.
This implies that I0 � T qn�1.�

.n/
0 / and that either I 00 belongs to T qn�1.�.n/0 / as well or is

adjacent to it.

We will now show that there exists C102 > 0 such that, for any two intervals I0; I 00 2 Pm,
with I0 � T qn�1.�

.n/
0 /, n 2 N0, m > n, that are either adjacent to each other or belong to

the same element of partition Pm�1, and for all 0 � j < knC1, we have

(3.123) j ln �.Ij / � ln �.I 0j /j � j ln �.IknC1/ � ln �.I 0knC1/j C C102�
m�n
ref :

Let

(3.124) ıi WD j ln j�n.IiC1/j � ln j�n.Ii /j � ln j�n.I 0iC1/j C ln j�n.I 0i /jj;

and leteıi be the corresponding quantity associated to eT .

Clearly, there exist N�i 2 �n.Ii /, N�0i 2 �n.I
0
i / and �i 2 . N�i ; N�0i /, such that

(3.125) ıi D

ˇ̌̌̌
f 00n .�i /

f 0n.�i /

ˇ̌̌̌
j N�0i �

N�i j:

If I0 and I 00 belong to the same element J0 of Pm�1, then there is a thread Ji D

T iqn.J0/ 2 Pm�1, with 0 � i < knC1, such that Ii [ I 0i � Ji � T qn�1Ciqn.�
.n/
0 /.
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1200 K. KHANIN, S. KOCIĆ AND E. MAZZEO

Using the estimate (3.125), regularity conditions (i) and (ii), and condition (c), we find that
ıi � K1K

�1
2 j�n.Ji /j � K1K

�1
2 Cref�

m�n�2
ref j�n.�

.n/
qn�1Ciqn

/j. Since
PknC1�1

iDj j�n.�
.n/
qn�1Ciqn

/j < 1,
the bound (3.123) follows by summing up the inequalities

(3.126) j ln sn.Ii / � ln sn.I 0i /j � j ln sn.IiC1/ � ln sn.I 0iC1/j � ıi Ceıi ;
from i D j to i D knC1 � 1, we obtain

(3.127) j ln sn.Ij / � ln sn.I 0j /j � j ln sn.IknC1/ � ln sn.I 0knC1/j C C102�
m�n
ref ;

where C102 > 0. If I0 and I 00 are adjacent to each other, belong to different elements
of Pm�1, but I0; I 00 � �

.n/
qn�1 , then we similarly have ıi � 2K1K�12 Cref�

m�n�1
ref j�n.�

.n/
qn�1Ciqn

/j,

and the bound (3.127) follows, using the same estimates. If I0 � �
.n/
qn�1 and I 00 � �

.n/
qn�1Cqn

,

then we have ıi � K1K�12 Cref�
m�n�1
ref .j�n.�

.n/
qn�1Ciqn

/j C j�n.�
.n/

qn�1C.iC1/qn
/j/, for 0 � i <

knC1 � 1 and ıknC1�1 � K1K
�1
2 Cref�

m�n�1
ref .j�n.�

.n/

qn�1C.knC1�1/qn
/j C j�n.�

.nC1/
0 /j/.

In the last estimate, we have used that Pm 3 I 0
knC1�1

� �
.nC1/
0 2 PnC1. SincePknC1�1

iDjC1 j�n.�
.n/
qn�1Ciqn

/j C j�n.�
.nC1/
0 /j < 1, we obtain again estimate (3.127).

Inequality (3.123) follows directly from (3.127), taking into account that �.I / D

sn.I /�.�
.n�1/
0 /.

Applying (3.123) recursively, from n D m � Œ�m� � 1 to n D 0, and using the estimate
(3.122) for intervals of partition Pm inside N�.m�Œ�m�/0 , we obtain

(3.128) j ln �.I / � ln �.I 0/j � C101�m7 C C102

m�Œ�m��1X
nD0

�m�nref � C103.�
m
7 C �

�m
ref /;

where C103 > 0, for all pairs of I; I 0 2 Pm, as in Proposition 3.1. Hence, (3.2) holds with
N� D maxf�7; ��refg, and Theorem 2.2 is proven.

4. Proof of the main theorem

In the proof of Theorem 1.2, we will use the following properties of renormalizations of
circle diffeomorphisms with a break that were proven in [10]. Let T be a C 2C˛-smooth circle
diffeomorphisms with a break of size c 2 RCnf1g at xbr D x0 and an irrational rotation
number � 2 .0; 1/.

L 4.1 ([10]). – For sufficiently large n 2 N, f 00n is uniformly bounded away from zero
and positive if c.n/ > 1 and negative if c.n/ < 1.

We can now show that the renormalizations of circle diffeomorphisms with a break are
K-regular.

L 4.2. – There exists K 2 R6C such that the sequence of its renormalization
.fn/n2N0 is K-regular with respect to the sequence n consisting of all odd numbers in N0, if
c > 1, and all even numbers in N0, if 0 < c < 1.
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Proof. – The regularity condition (i) holds, with large enoughK1 > 0, by the Denjoy esti-
mate (A) (which implies that the derivative of renormalizations f 0n.z/ D .T qn/0.��1n .z// is
uniformly bounded) and the fact that the second derivative of renormalizations f 00n is
uniformly bounded. This fact follows from estimate (B) and the explicit form of the second
derivative

(4.1) F 00
a.n/;b.n/;M .n/;c.n/

.z/ D 2.M .n/
� 1/

.a.n/ C b.n//M .n/

.1 � .M .n/ � 1/z/3
;

taking into account that a.n/ D j�.n/0 j=j�
.n�1/
0 j � jT qn.�

.n�1/
0 /j=j�

.n�1/
0 j � eV (due to

(A)), b.n/ < 1 and that

(4.2) M .n/
D exp

0BB@.�1/n qn�1X
iD0

Z
�
.n�1/

i

T 00.z/

2T 0.z/
dz

1CCA
is bounded and bounded away from zero, as can be easily seen from the fact that T 00 is
bounded and T 0 is bounded from below by a positive constant.

The regularity condition (ii) holds, ifK2 > 0 is small enough, by the Denjoy estimate (A).

Lemma 4.1 implies that, for sufficiently large n 2 N, there can be at most one point
��n 2 Œ�1; 0�, such that f 0n.�

�
n / D 1. Due to the continuity of f 0n, fn.z/ � z is monotone

in each of the intervals Œ�1; ��n � and Œ��n ; 0�. If n is odd and c > 1, or n is even and c < 1,
then c.n/ < 1 and, by Lemma 4.1, f 00n .z/ < �K4, for some K4 > 0, all z 2 Œ�1; 0�, and
sufficiently large n 2 N. Thus, we either have f 0n.z/ > 1, for z 2 Œ�1;�1

2
/ or f 0n.z/ < 1,

for z 2 .�1
2
; 0�. In either case, fn.�12 /C

1
2

can be, uniformly in n, bounded from below by a
positive constant. Since,

fn.z/ D fn

�
�
1

2

�
C

Z z

�1=2

 
f 0n.�1=2/C

Z �

�1=2

f 00n .�
0/ d�0

!
d�;(4.3)

if f 0n.z/ < 1, for z 2 .�1
2
; 0�, we obtain fn.�12 /C

1
2
� fn.0/C

K4
8
�

K4
8

. In the other case,
the proof is similar. This ensures that point �1

2
does not belong to any of the gates and the

regularity condition (iii) holds, if K3 > 0 is small enough.

The regularity condition (iv) follows immediately from Lemma 4.1, for small enough
K3 > 0 and K4 > 0. Notice that by choosing K3 > 0 small enough, we can always achieve
that finitely many renormalizations fn, for which Lemma 4.1 does not guarantee concavity,
have no gates, i.e., satisfy fn.z/ � z � K3, for all z 2 Œ�1; 0�.

If n is even and c > 1, or n is odd and c < 1, then c.n/ > 1 and, by Lemma 4.1,
f 00n .z/ > K6, for some K6 > 0, and sufficiently large n 2 N. Together with the fact that,
by the Denjoy estimate (A), fn.�1/ C 1 D j�n.�

.n/
qn�1/j is of the same order as fn.0/ D

j�n.�
.n/
0 /j, this implies that the renormalizations fn satisfy the regularity condition (v) as

well, ifK5 > 0 is small enough. To see this, notice that, if c.n/ > 1, we either have f 0n.z/ < 1,
for z 2 Œ�1;�1

2
/ or f 0n.z/ > 1, for z 2 .�1

2
; 0�. In either case, both fn.�1/ C 1 and fn.0/

are, uniformly in n, bounded away from zero. It follows from (4.3) that in the second case,
fn.0/ >

K6
8

; in the other case, the proof is similar. We can choose the constantK5 > 0 small
enough such that fn.�1/ � K5 � 1 and fn.0/ � K5, for sufficiently large n.
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The regularity condition (vi) follows immediately, for small enough K5 > 0 and K6 > 0,
from Lemma 4.1. We choose K5 > 0 small enough such that finitely many renormaliza-
tions fn, for which Lemma 4.1 does not guarantee convexity, have no tunnels.

Theorem 1.2. – To prove Theorem 1.2, we need to verify that the conditions of Theorem 2.2
hold true in the case of circle diffeomorphisms with a break point. Condition (a) is an
assumption of Theorem 1.2. To verify condition (b), we will show that the renormalization
sequences fn and efn of C 2C˛-smooth circle diffeomorphisms with breaks T and eT are
K-regular, for some K 2 R6C, with respect to the sequence n consisting of all odd numbers
in N0, if c > 1, and all even numbers in N0, if 0 < c < 1. This follows from Lemma 4.2.
Condition (c) follows from the Denjoy estimate (A) (see Lemma 2 in [18]). Condition (d)
follows from Theorem 1.1, proven in [10].
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