Soit une collection finie de courbes et de tubes fermés, disjoints deux à deux mais pouvant être noués et entrelacés, dans la sphère ronde ou dans le tore plat . Dans le cas du tore, on suppose davantage que est contenu dans un sous-ensemble contractile de . Dans cet article on montre que, pour tout entier impair suffisamment grand, il existe un champ de Beltrami dans ou satisfaisant et qui a une collection de lignes et tubes de vorticité donnés par , modulo un difféomorphisme ambiant.
Let be a finite union of (pairwise disjoint but possibly knotted and linked) closed curves and tubes in the round sphere or in the flat torus . In the case of the torus, is further assumed to be contained in a contractible subset of . In this paper we show that for any sufficiently large odd integer there exists a Beltrami field on or satisfying and with a collection of vortex lines and vortex tubes given by , up to an ambient diffeomorphism.
Keywords: Beltrami fields, high energy spectrum, vortex lines, knots and links.
Mot clés : Champs de Beltrami, spectre aux hautes énergies, lignes de tourbillons, nœuds et entrelacs.
@article{ASENS_2017__50_4_995_0, author = {Enciso, Alberto and Peralta-Salas, Daniel and Torres de Lizaur, Francisco}, title = {Knotted structures in high-energy {Beltrami} fields on the torus and the sphere}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {995--1016}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {4}, year = {2017}, doi = {10.24033/asens.2337}, mrnumber = {3679619}, zbl = {1379.35226}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2337/} }
TY - JOUR AU - Enciso, Alberto AU - Peralta-Salas, Daniel AU - Torres de Lizaur, Francisco TI - Knotted structures in high-energy Beltrami fields on the torus and the sphere JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 995 EP - 1016 VL - 50 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2337/ DO - 10.24033/asens.2337 LA - en ID - ASENS_2017__50_4_995_0 ER -
%0 Journal Article %A Enciso, Alberto %A Peralta-Salas, Daniel %A Torres de Lizaur, Francisco %T Knotted structures in high-energy Beltrami fields on the torus and the sphere %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 995-1016 %V 50 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2337/ %R 10.24033/asens.2337 %G en %F ASENS_2017__50_4_995_0
Enciso, Alberto; Peralta-Salas, Daniel; Torres de Lizaur, Francisco. Knotted structures in high-energy Beltrami fields on the torus and the sphere. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 995-1016. doi : 10.24033/asens.2337. http://www.numdam.org/articles/10.24033/asens.2337/
, Applied Mathematical Sciences, 125, Springer, New York, 1998, 374 pages (ISBN: 0-387-94947-X) | MR | Zbl
Sur la topologie des écoulements stationnaires des fluides parfaits, C. R. Acad. Sci. Paris, Volume 261 (1965), pp. 17-20 | MR | Zbl
Remarks on a Liouville-type theorem for Beltrami flows, Int. Math. Res. Not., Volume 2015 (2015), pp. 10012-10016 (ISSN: 1073-7928) | DOI | MR | Zbl
Local structure of the set of steady-state solutions to the 2D incompressible Euler equations, Geom. Funct. Anal., Volume 22 (2012), pp. 136-201 (ISSN: 1016-443X) | DOI | MR | Zbl
Rational points on the sphere, Ramanujan J., Volume 7 (2003), pp. 235-239 (ISSN: 1382-4090) | DOI | MR | Zbl
Hyperbolic distribution problems and half-integral weight Maass forms, Invent. math., Volume 92 (1988), pp. 73-90 (ISSN: 0020-9910) | DOI | MR | Zbl
Contact topology and hydrodynamics. III. Knotted orbits, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5781-5794 (ISSN: 0002-9947) | DOI | MR | Zbl
Knots and links in steady solutions of the Euler equation, Ann. of Math., Volume 175 (2012), pp. 345-367 (ISSN: 0003-486X) | DOI | MR | Zbl
Existence of knotted vortex tubes in steady Euler flows, Acta Math., Volume 214 (2015), pp. 61-134 (ISSN: 0001-5962) | DOI | MR | Zbl
Knotted vortex lines and vortex tubes in stationary fluid flows, Eur. Math. Soc. Newsl., Volume 96 (2015), pp. 26-33 (ISSN: 1027-488X) | MR | Zbl
Harmonic analysis of the de Rham complex on the sphere, J. reine angew. Math., Volume 398 (1989), pp. 130-143 (ISSN: 0075-4102) | DOI | MR | Zbl
, Classics in Mathematics, Springer, Berlin, 2003, 440 pages (ISBN: 3-540-00662-1) | DOI | MR | Zbl
Topological fluid dynamics, Notices Amer. Math. Soc., Volume 52 (2005), pp. 9-19 (ISSN: 0002-9920) | MR | Zbl
Helicity and singular structures in fluid dynamics, Proc. Natl. Acad. Sci., Volume 111 (2014), pp. 3663-3670 | DOI
The degree of knottedness of tangled vortex lines, J. Fluid Mech., Volume 35 (1969), pp. 117-129 | DOI | Zbl
, Courant Lecture Notes in Math., 12, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2005, 256 pages (ISBN: 0-8218-3577-7) | DOI | MR | Zbl
On stationary solutions of two-dimensional Euler equation, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 729-745 (ISSN: 0003-9527) | DOI | MR | Zbl
Liouville theorem for Beltrami flow, Geom. Funct. Anal., Volume 24 (2014), pp. 916-921 (ISSN: 1016-443X) | DOI | MR | Zbl
, Amer. Math. Soc., Providence, R.I., 1975, 432 pages (American Mathematical Society, Colloquium Publications, Vol. XXIII) |On vortex atoms, Proc. Roy. Soc. Edin., Volume 6 (1867), pp. 94-105 (reprinted in: Mathematical and physical papers IV, Cambridge University Press, Cambridge, 2011) | DOI
Cité par Sources :