Knotted structures in high-energy Beltrami fields on the torus and the sphere
[Structures nouées dans les champs de Beltrami à hautes énergies sur le tore et la sphère]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 995-1016.

Soit 𝒮 une collection finie de courbes et de tubes fermés, disjoints deux à deux mais pouvant être noués et entrelacés, dans la sphère ronde 𝕊3 ou dans le tore plat 𝕋3. Dans le cas du tore, on suppose davantage que 𝒮 est contenu dans un sous-ensemble contractile de 𝕋3. Dans cet article on montre que, pour tout entier impair λ suffisamment grand, il existe un champ de Beltrami dans 𝕊3 ou 𝕋3 satisfaisant curlu=λu et qui a une collection de lignes et tubes de vorticité donnés par 𝒮, modulo un difféomorphisme ambiant.

Let 𝒮 be a finite union of (pairwise disjoint but possibly knotted and linked) closed curves and tubes in the round sphere 𝕊3 or in the flat torus 𝕋3. In the case of the torus, 𝒮 is further assumed to be contained in a contractible subset of 𝕋3. In this paper we show that for any sufficiently large odd integer λ there exists a Beltrami field on 𝕊3 or 𝕋3 satisfying curlu=λu and with a collection of vortex lines and vortex tubes given by 𝒮, up to an ambient diffeomorphism.

DOI : 10.24033/asens.2337
Classification : 58J50; 34K19; 35Q35
Keywords: Beltrami fields, high energy spectrum, vortex lines, knots and links.
Mot clés : Champs de Beltrami, spectre aux hautes énergies, lignes de tourbillons, nœuds et entrelacs.
@article{ASENS_2017__50_4_995_0,
     author = {Enciso, Alberto and Peralta-Salas, Daniel and Torres de Lizaur, Francisco},
     title = {Knotted structures  in high-energy {Beltrami} fields  on the torus and the sphere},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {995--1016},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {4},
     year = {2017},
     doi = {10.24033/asens.2337},
     mrnumber = {3679619},
     zbl = {1379.35226},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2337/}
}
TY  - JOUR
AU  - Enciso, Alberto
AU  - Peralta-Salas, Daniel
AU  - Torres de Lizaur, Francisco
TI  - Knotted structures  in high-energy Beltrami fields  on the torus and the sphere
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 995
EP  - 1016
VL  - 50
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2337/
DO  - 10.24033/asens.2337
LA  - en
ID  - ASENS_2017__50_4_995_0
ER  - 
%0 Journal Article
%A Enciso, Alberto
%A Peralta-Salas, Daniel
%A Torres de Lizaur, Francisco
%T Knotted structures  in high-energy Beltrami fields  on the torus and the sphere
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 995-1016
%V 50
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2337/
%R 10.24033/asens.2337
%G en
%F ASENS_2017__50_4_995_0
Enciso, Alberto; Peralta-Salas, Daniel; Torres de Lizaur, Francisco. Knotted structures  in high-energy Beltrami fields  on the torus and the sphere. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 995-1016. doi : 10.24033/asens.2337. http://www.numdam.org/articles/10.24033/asens.2337/

Arnold, V. I.; Khesin, B. A., Applied Mathematical Sciences, 125, Springer, New York, 1998, 374 pages (ISBN: 0-387-94947-X) | MR | Zbl

Arnol'd, V. Sur la topologie des écoulements stationnaires des fluides parfaits, C. R. Acad. Sci. Paris, Volume 261 (1965), pp. 17-20 | MR | Zbl

Chae, D.; Constantin, P. Remarks on a Liouville-type theorem for Beltrami flows, Int. Math. Res. Not., Volume 2015 (2015), pp. 10012-10016 (ISSN: 1073-7928) | DOI | MR | Zbl

Choffrut, A.; Šverák, V. Local structure of the set of steady-state solutions to the 2D incompressible Euler equations, Geom. Funct. Anal., Volume 22 (2012), pp. 136-201 (ISSN: 1016-443X) | DOI | MR | Zbl

Duke, W. Rational points on the sphere, Ramanujan J., Volume 7 (2003), pp. 235-239 (ISSN: 1382-4090) | DOI | MR | Zbl

Duke, W. Hyperbolic distribution problems and half-integral weight Maass forms, Invent. math., Volume 92 (1988), pp. 73-90 (ISSN: 0020-9910) | DOI | MR | Zbl

Etnyre, J.; Ghrist, R. Contact topology and hydrodynamics. III. Knotted orbits, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5781-5794 (ISSN: 0002-9947) | DOI | MR | Zbl

Enciso, A.; Peralta-Salas, D. Knots and links in steady solutions of the Euler equation, Ann. of Math., Volume 175 (2012), pp. 345-367 (ISSN: 0003-486X) | DOI | MR | Zbl

Enciso, A.; Peralta-Salas, D. Existence of knotted vortex tubes in steady Euler flows, Acta Math., Volume 214 (2015), pp. 61-134 (ISSN: 0001-5962) | DOI | MR | Zbl

Enciso, A.; Peralta-Salas, D. Knotted vortex lines and vortex tubes in stationary fluid flows, Eur. Math. Soc. Newsl., Volume 96 (2015), pp. 26-33 (ISSN: 1027-488X) | MR | Zbl

Folland, G. B. Harmonic analysis of the de Rham complex on the sphere, J. reine angew. Math., Volume 398 (1989), pp. 130-143 (ISSN: 0075-4102) | DOI | MR | Zbl

Hörmander, L., Classics in Mathematics, Springer, Berlin, 2003, 440 pages (ISBN: 3-540-00662-1) | DOI | MR | Zbl

Khesin, B. Topological fluid dynamics, Notices Amer. Math. Soc., Volume 52 (2005), pp. 9-19 (ISSN: 0002-9920) | MR | Zbl

Moffatt, H. Helicity and singular structures in fluid dynamics, Proc. Natl. Acad. Sci., Volume 111 (2014), pp. 3663-3670 | DOI

Moffatt, H. The degree of knottedness of tangled vortex lines, J. Fluid Mech., Volume 35 (1969), pp. 117-129 | DOI | Zbl

Moser, J.; Zehnder, E. J., Courant Lecture Notes in Math., 12, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2005, 256 pages (ISBN: 0-8218-3577-7) | DOI | MR | Zbl

Nadirashvili, N. On stationary solutions of two-dimensional Euler equation, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 729-745 (ISSN: 0003-9527) | DOI | MR | Zbl

Nadirashvili, N. Liouville theorem for Beltrami flow, Geom. Funct. Anal., Volume 24 (2014), pp. 916-921 (ISSN: 1016-443X) | DOI | MR | Zbl

Szegő, G., Amer. Math. Soc., Providence, R.I., 1975, 432 pages (American Mathematical Society, Colloquium Publications, Vol. XXIII) | MR | Zbl

Thomson, W. K. On vortex atoms, Proc. Roy. Soc. Edin., Volume 6 (1867), pp. 94-105 (reprinted in: Mathematical and physical papers IV, Cambridge University Press, Cambridge, 2011) | DOI

Cité par Sources :