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KNOTTED STRUCTURES
IN HIGH-ENERGY BELTRAMI FIELDS

ON THE TORUS AND THE SPHERE

 A ENCISO, D PERALTA-SALAS
 F TORRES  LIZAUR

A. – Let S be a finite union of (pairwise disjoint but possibly knotted and linked) closed
curves and tubes in the round sphere S3 or in the flat torus T3. In the case of the torus, S is further
assumed to be contained in a contractible subset of T3. In this paper we show that for any sufficiently
large odd integer � there exists a Beltrami field on S3 or T3 satisfying curlu D �u and with a collection
of vortex lines and vortex tubes given by S , up to an ambient diffeomorphism.

R. – Soit S une collection finie de courbes et de tubes fermés, disjoints deux à deux mais
pouvant être noués et entrelacés, dans la sphère ronde S3 ou dans le tore plat T3. Dans le cas du tore,
on suppose davantage que S est contenu dans un sous-ensemble contractile de T3. Dans cet article
on montre que, pour tout entier impair � suffisamment grand, il existe un champ de Beltrami dans S3

ou T3 satisfaisant curlu D �u et qui a une collection de lignes et tubes de vorticité donnés par S ,
modulo un difféomorphisme ambiant.

1. Introduction

An incompressible fluid flow in R3 is described by its velocity field u.x; t/, which is a time-
dependent vector field satisfying the Euler equations

@tuC .u � r/u D �rP ; divu D 0

for some pressure function P.x; t/. When the velocity field does not depend on time, the
fluid is said to be stationary. This paper concerns stationary solutions of the Euler equations,
which describe equilibrium configurations of the fluid.

A central topic in topological fluid mechanics, which can be traced back to Lord Kelvin
in the 19th century [20], concerns the existence of knotted stream and vortex structures in
stationary fluid flows. The most relevant of these structures are the stream lines, vortex lines
and vortex tubes of the fluid. We recall that a stream line and a vortex line are simply a
trajectory (or integral curve) of the velocity field u and the vorticity ! WD curlu, respectively,
while a vortex tube is the interior domain bounded by an invariant torus of the vorticity.
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996 A. ENCISO, D. PERALTA-SALAS AND F. TORRES DE LIZAUR

The existence of topologically complicated stream and vortex lines is a central topic in
the Lagrangian theory of turbulence and in magnetohydrodynamics, and has been studied
extensively in the last decades (see e.g., [13, 15] for recent accounts of the subject).

Our understanding of the set of stationary states of the Euler equations in three dimen-
sions is much more limited than in the two-dimensional situation [4, 17]. This is due to the
fact that, in two dimensions, the vorticity is a scalar quantity, whereas in the three dimen-
sional case it is a vector field, which can exhibit a much richer behavior. In particular, the exis-
tence of stationary solutions in R3 having stream lines, vortex lines and vortex tubes that are
knotted and linked in arbitrarily complicated ways has been established only very recently [7,
8, 9]. Following a suggestion of Arnold [2, 1] related to his celebrated structure theorem, to
prove these results one does not consider just any kind of solutions to the stationary Euler
equations, but a very particular class that are called Beltrami fields. A Beltrami field in R3 is
a vector field satisfying the equation

(1.1) curlu D �u

for some nonzero constant �. Notice that stream lines and vortex lines coincide in the case
of a Beltrami field, and that a Beltrami field is automatically smooth (even real analytic) by
the elliptic regularity theory.

The stationary solutions in R3 that one can construct using the techniques in [7, 8] fall
off at infinity as 1=jxj, this decay being sharp for Beltrami fields but not fast enough for the
velocity to be in the energy space L2.R3/. In fact, the incompressibility condition ensures
that there are no Beltrami fields in R3 with finite energy even if the proportionality factor �
is allowed to be nonconstant, as has been recently shown in [18, 3].

On the contrary, Beltrami fields in a closed Riemannian 3-manifold M (or a bounded
domain of R3) are stationary solutions to the Euler equations that do have finite energy.
If S is a union of (possibly knotted and linked) closed curves and embedded tori in the
3-sphere, in this setting one can use contact topology to show [10] that there is a Riemannian
metric g on the sphere with an associated Beltrami field u having a collection of vortex lines
and vortex tubes given precisely by S . The main ideas of the proof are that the Reeb field of
a contact form is in fact a Beltrami field in some adapted metric and that one can indeed
construct contact forms on the sphere whose Reeb fields have the collection of periodic
trajectories and invariant tori given by S . Notice that, as it is a Reeb vector field, a Beltrami
field obtained in this fashion does not vanish. Conversely, any nonvanishing Beltrami field
on the sphere is the Reeb vector field of some contact form.

Our goal in this paper is to establish the existence of knotted and linked vortex structures
in Beltrami fields on compact manifolds with a fixed Riemannian metric. Specifically, we will
consider Beltrami fields in the flat 3-torus T3 and in the unit 3-sphere S3; in fact, the former
is the most fundamental space considered in the fluid mechanics literature other than R3

and the latter is perhaps the simplest example of a closed Riemannian 3-manifold from a
geometric point of view.

It is worth emphasizing that, for a fixed Riemannian structure, the problem is much
more rigid than when one can freely choose a metric adapted to the geometry of the set
of lines and tubes that one aims to recover from the trajectories of a Beltrami field. An
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obvious reason is that, analytically, Beltrami fields in a closed Riemannian manifold arise as
eigenfields of the curl operator, which defines a self-adjoint operator with discrete spectrum
and a dense domain in the space of divergence-freeL2 fields. In the context of spectral theory,
the proportionality constant �, or rather its absolute value, can be thought of as the energy
of the Beltrami field, although of course it is in no way related to the L2 norm of the latter.

Our main theorem asserts that there are “many” Beltrami fields u in the sphere and in
the torus with vortex lines and vortex tubes of any link type. Furthermore, these structures
are structurally stable in the sense that any vector field on the torus or the sphere which is
sufficiently close to u in theC 4 norm and which preserves some smooth volume measure will
also have this collection of periodic trajectories and invariant tori, up to a diffeomorphism.
To state this result precisely, let us call a tube the closure of a domain (in S3 or T3) whose
boundary is an embedded torus. Throughout, diffeomorphisms are of class C1, curves are
all assumed to be non-self-intersecting, and we will agree to say that an integer is large when
it is large in absolute value.

T 1.1. – Let S be a finite union of (pairwise disjoint, but possibly knotted and
linked) closed curves and tubes in S3 or T3. In the case of the torus, we also assume that S is
contained in a contractible subset of T3. Then for any large enough odd integer � there exists a
Beltrami field u satisfying the equation curlu D �u and a diffeomorphism ˆ of S3 or T3 such
that ˆ.S / is a union of vortex lines and vortex tubes of u. Furthermore, this set is structurally
stable.

An important observation is that the proof of this theorem yields a reasonably complete
understanding of the behavior of the diffeomorphism ˆ, which is, in particular, connected
with the identity. Oversimplifying a little, the effect ofˆ is to uniformly rescale a contractible
subset of the manifold that contains S to have a diameter of order 1=j�j. In particular, the
control that we have over the diffeomorphism ˆ allows us to prove an analog of this result
for quotients of the sphere by finite groups of isometries (lens spaces). Notice that ˆ.S / is
not guaranteed to contain all vortex lines and vortex tubes of the Beltrami field. It is also
worth mentioning that, if S only consists of curves, the condition that the perturbation of
the Beltrami field be volume-preserving is not necessary for the structural stability ofˆ.S /,
and the smallness in C 4 can be replaced by a C 1 condition.

In S3 and T3, Theorem 1.1 proves a conjecture of Arnold [2] asserting that there should
be Beltrami fields having stream lines with complicated topology. Furthermore, it should be
noticed that the helicity of the vorticity, that is, the quantity [14]

H .curlu/ WD
Z
M

u � curlu ;

is proportional to its eigenvalue �, so the Beltrami fields constructed in the main theorem
have very large helicity. More precisely, the quantity

H .curlu/

kuk2
L2

;
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which is given by � in the case of a Beltrami field, becomes arbitrarily large. This is fully
consistent with Moffatt’s interpretation [14, 15] of helicity as a measure of the degree of
knottedness of the vortex lines in the fluid flow.

The proof of the theorem involves an interplay between rigid and flexible properties of
high-energy Beltrami fields. Indeed, rigidity appears because high-energy Beltrami fields in
any 3-manifold behave, locally in sets of diameter 1=�, as Beltrami fields inR3 with parameter
� D 1 do in balls of diameter 1. The catch here is that, in general, one cannot check whether
a given Beltrami field in R3 actually corresponds to a high-energy Beltrami field on the
compact manifold. To prove a partial converse implication in this direction (Theorem 2.1),
it is key to exploit some flexibility that arises in the problem as a consequence of the fact
that large eigenvalues of the curl operator in the torus or in the sphere have increasingly high
multiplicities. For this reason the proof does not work in a general Riemannian 3-manifold.

One should notice that the techniques introduced in [7, 8] to prove the existence of
Beltrami fields in R3 with a prescribed set S of closed vortex lines and vortex tubes do not
work for compact manifolds. The reason is that the proof is based on the construction of a
local Beltrami field in a neighborhood of S , which is then approximated by a global Beltrami
field in R3 using a Runge-type global approximation theorem. For compact manifolds the
complement of the set S is precompact, so we cannot apply the global approximation
theorem obtained in [7, 8]. In fact, as is well known, this is not just a technical issue, but
a fundamental obstruction in any approximation theorem of this sort. This invalidates the
whole strategy followed in [7, 8] and makes it apparent that new tools are needed to prove
the existence of Beltrami fields with geometrically complex vortex lines and vortex tubes in
compact manifolds.

The paper is organized as follows. In Section 2 we will prove the main theorem assuming
that Theorem 2.1 holds. Theorem 2.1 will be proved in Section 3 in the case of the sphere,
with the proof of some technical results relegated to Sections 4–6, and in Section 7 in the case
of the torus. The paper concludes with some remarks that we present in Section 8, where in
particular we prove an analog of the main theorem for lens spaces.

2. Proof of the main theorem

For the ease of notation, we shall write M3 to denote either T3 (the standard flat 3-torus,
.R=2�Z/3) or S3 (the unit sphere in R4). A Beltrami field u in M3 is an eigenfield of the curl
operator, which satisfies

curlu D �u ;

for some nonzero constant �. It is known (see e.g., [11]) that the spectrum of curl in the sphere
consists of the integers of absolute value greater than or equal to 2. In the case of T3 it is easy
to check using Fourier series that the spectrum consists of the real numbers of the form

� D ˙jkj

for some k 2 Z3. In particular, the spectrum of curl in T3 contains the set of integers. Here
and in what follows, j � j denotes the usual Euclidean norm of a vector.
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The following theorem, whose proof is presented in Section 3, shows that a Beltrami field v
inR3 can be approximated, up to a suitable rescaling, by a high-energy Beltrami fieldu inM3.
This fact is key to the proof of Theorem 1.1 as it implies that the dynamics of any Beltrami
field of R3 in compact sets can be reproduced in a small ball of M3 by a high-energy Beltrami
field on the manifold, provided that the dynamical properties under consideration are robust
under suitably small perturbations. For concreteness, we will henceforth assume that � is
positive; the case of negative � is completely analogous.

For the precise statement of the theorem, let us fix an arbitrary point p0 2M3 and take a
patch of normal geodesic coordinates ‰ W B! B centered at p0. Here and in what follows,
B� (resp. B�) denotes the ball in R3 (resp. the geodesic ball in M3) centered at the origin (resp.
at p0) and of radius �, and we shall drop the subscript when � D 1. The theorem will be
then stated in terms of the vector field‰�u onB, which is just the expression of the Beltrami
field u in local normal coordinates. If ui .x/ are the three components of‰�u in the Cartesian
basis feig3iD1 of R3, i.e.,

‰�u.x/ D

3X
iD1

ui .x/ ei ;

we will make use of the rescaled vector field

‰�u
�
�

�

�
WD

3X
iD1

ui
�
�

�

�
ei :

T 2.1. – Let v be a Beltrami field in R3, satisfying curl v D v. Let us fix any
positive numbers " and m. Then for any large enough odd integer � there is a Beltrami field u,
satisfying curlu D �u in M3, such that

(2.1)

‰�u� ��� � v

Cm.B/

< " :

Let us now show how this result can be exploited to prove the main theorem. For this,
let ˆ0 be a diffeomorphism of M3 mapping the set S into the ball B1=2, and the ball B1=2
into itself. (In S3, the existence of such a diffeomorphism is trivial, while in the case of T3 it
follows from the assumption that S is contained in a contractible set.) We can now define a
set S 0 of finitely many closed curves and tubes in the ball B1=2 as

S 0 WD .‰ ıˆ0/.S / :

The following result is a straightforward consequence of the main theorem in [8]:

T 2.2. – There is a Beltrami field v in R3 satisfying curl v D v and an orientation-
preserving diffeomorphism ˆ0 of R3, which coincides with the identity in the complement
of B1=2, such that ˆ0.S 0/ is a union of vortex lines and vortex tubes of v. Furthermore, this
set is structurally stable.

Proof. – It was shown in [8] that there is a Beltrami field Qv in R3, satisfying

curl Qv D Q� Qv

for some small positive constant Q� < 1, and an orientation-preserving diffeomorphism ê
of R3 that is the identity in the complement of B1=2 such that ê.S 0/ is a set of closed
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1000 A. ENCISO, D. PERALTA-SALAS AND F. TORRES DE LIZAUR

vortex lines and vortex tubes of Qv. The closed vortex lines are elliptic trajectories of Qv and
the boundaries of the vortex tubes are KAM-nondegenerate invariant tori of Qv. Given a
positive number ƒ let us denote the rescaling with factor ƒ by ‚ƒ.x/ WD ƒx. The theorem
follows setting v.x/ WD Qv.x= Q�/, which satisfies the equation curl v D v in R3, and noticing
that .‚Q� ı

ê/.S 0/ is a set of closed vortex lines and vortex tubes of v. Since this set is
contained in B1=2 because Q� < 1, it is standard that there exists a diffeomorphism ˆ0 of R3

mapping S 0 onto ‚Q� ı
ê.S 0/ which is the identity in the complement of B1=2. The closed

vortex lines in the set ˆ0.S 0/ are structurally stable under C 1-small perturbations because
they are elliptic [16, Section 2.1], while the vortex tubes are structurally stable underC 4-small
volume-preserving perturbations by the KAM theorem.

Let us now combine Theorems 2.1 and 2.2 to conclude the proof of Theorem 1.1.
Theorem 2.1 guarantees that, for any large enough odd integer �, the Beltrami field v

constructed in Theorem 2.2 can be approximated in the sense of Eq. (2.1) by a Beltrami
field u defined on M3. Then it is not hard to see that the structural stability of the setˆ0.S 0/

of closed vortex lines and vortex tubes of v implies the existence of a diffeomorphism ˆ1
of R3, which is the identity in the complement of B1=2, such that ˆ1.S 0/ � B1=2 is a set of
structurally stable closed vortex lines and vortex tubes of the rescaled field

(2.2) ‰�u
�
�

�

�
:

Indeed, because of the ellipticity of the trajectories, this claim is immediate in the case of
closed vortex lines provided that the numberm appearing in the approximation estimate (2.1)
is at least 1. For the case of vortex tubes one can use that the Beltrami field u is divergence-
free in M3, which ensures that the field (2.2) preserves a smooth volume 3-form in B that is
a small perturbation of the Euclidean one, namely

.‰��/
�
�

�

�
D �0 CO.�

�1/ :

Here � and �0 respectively denote the canonical volume 3-forms of M3 and R3. Hence,
taking m > 4 in the approximation estimate (2.1), this enables us to apply the KAM
theorem for volume-preserving fields in R3, which ensures the existence of the aforemen-
tioned diffeomorphism ˆ1 yielding the desired set of vortex tubes of the rescaled field (2.2).
(For the benefit of the reader let us recall that, in order to prove this KAM result, one takes
a Poincaré section transversal to the tube of v under consideration, thereby reducing the
problem to perturbations of a nondegenerate twist map of the annulus with the intersection
property. It is then standard that one can apply a Moser-type twist theorem to guarantee the
preservation of the invariant tori. The details, which go as in [8, Section 7.4], are omitted.)

It follows from the above discussion that the diffeomorphismˆ of M3 can be then defined
as

ˆ.x/ WD

(
ˆ0.x/ if x 62 ˆ0�1.B/ ;
.‰�1 ı e‚1=� ıˆ1 ı‰ ıˆ0/.x/ if x 2 ˆ0�1.B/ ;

where e‚1=� is a smooth diffeomorphism of R3 which is equal to the rescaling ‚1=� in the
ball B1=2 and is the identity in the complement of the ball B3=4. This ensures that ˆ is a
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smooth diffeomorphism of M3 such that the set ˆ.S / is the union of structurally stable
closed vortex lines and vortex tubes of the Beltrami field u, so the main theorem follows.

3. Proof of Theorem 2.1 in the sphere

In this section we show that for any Beltrami field v in R3 satisfying curl v D v there exists
a Beltrami field u in S3 satisfying curlu D �u whose dynamics in a ball of radius ��1 is very
close to the dynamics of v in the unit ball. The proof is divided in three steps. In the first step
we show that the Beltrami field v can be approximated inB by a fieldw that is a finite sum of
spherical Bessel functions j0.jx�xnj/ centered at different points xn 2 R3 (Proposition 3.1).
The field w is not generally a Beltrami field, however. In the second step we show that one
can take three spherical harmonics Y1; Y2; Y3 in S3 of energy �.� � 2/ whose behaviors in
a ball of radius 1=� respectively correspond to those of the three components of the field w
in a ball of radius 1, provided that � is large enough (Proposition 3.2). Finally, in the third
step we construct a Beltrami field u in S3 of energy �, using as key ingredients the spherical
harmonics Yk and a basis of Hopf fields, so that u approximates the field v in the sense of
Eq. (8.1) (Proposition 3.3).

For notational convenience, in this section we will writeƒ WD ��2. Notice thatƒ is then
a large integer.

Step 1: Approximating the Beltrami field v by sums of shifted spherical Bessel functions. –
The first step of the proof of Theorem 2.1 consists in showing that there is a finite sum w

of spherical Bessel functions j0 centered at different points that approximates the Beltrami
field v in the unit ball of R3. The field w is not a Beltrami field but, just as v, it satisfies the
Helmholtz equation

�w C w D 0 :

P 3.1. – For any ı > 0, there is a finite radius R and finitely many constants
fcng

N
nD1 � R3 and fxngNnD1 � BR such that the field

w WD

NX
nD1

cn j0.jx � xnj/

approximates the Beltrami field v in the ball B as

kv � wkCmC2.B/ < ı :

The proof of this proposition will be presented in Section 4.

Step 2: Approximating the field w by high-energy spherical harmonics. – Let us write the
vector field w in terms of its components wi in the Cartesian basis feig3iD1 of R3:

w D

3X
iD1

wiei :

Each component wi is a solution of the Helmholtz equation �wi C wi D 0 in R3. We now
show that for any large enough integer ƒ, there exists a spherical harmonic Yi on S3 with
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energy ƒ.ƒ C 2/ that behaves in the ball B1=ƒ as wi does in the unit ball. The proof of
this result is based on the asymptotic expressions for the ultraspherical polynomials, which
are the building blocks for any spherical harmonic on S3, and exploits in a crucial way the
expression for w as a finite sum of spherical Bessel functions that we obtained in Step 1:

P 3.2. – Given any positive constant ı, for any large enough integerƒ there is
a spherical harmonic Yi on S3 with energy ƒ.ƒC 2/ such thatwi � Yi ı‰�1� �ƒ�


CmC2.B/

< ı :

The proof of this proposition is given in Section 5.

Step 3: Construction of the Beltrami field on S3 using spherical harmonics and Hopf fields. –
Let us consider the three positively oriented orthonormal Hopf vector fields in S3 that, in
terms of the Cartesian coordinates of R4, are explicitly given by

h1 WD .�x4; x3;�x2; x1/ ;

h2 WD .�x3;�x4; x1; x2/ ;

h3 WD .�x2; x1; x4;�x3/ :

It is well known that they are curl eigenfields with eigenvalue 2, that is,

curl hi D 2hi :

We have taken the Cartesian basis ei of R3 so that ‰�hi .0/ D ei .

In the following proposition we show how to construct a Beltrami field on S3 using
the spherical harmonics Yi obtained in Proposition 3.2 and the Hopf fields hi so that it
approximates the Beltrami field v in a suitable sense.

P 3.3. – The vector field on the sphere

u WD
1

2ƒ2
curl.curlCƒ/ .Y1h1 C Y2h2 C Y3h3/

is a Beltrami field satisfying curlu D .ƒC 2/u and approximates v as‰�u� �ƒ� � v

Cm.B/

< Cı ;

provided that ƒ is sufficiently large.

Here C is a constant depending onm but not on ı. Since rescaling‰�u byƒ is essentially
equivalent to rescaling it by � because

1

ƒ
D
1

�

�
1C

2

ƒ

�
;

Theorem 2.1 then follows from Proposition 3.3 providedƒ is sufficiently large and ı is chosen
small enough for Cı not to be larger than "=2. The proof of Proposition 3.3 is given in
Section 6.
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4. Proof of Proposition 3.1

Since the Beltrami field v satisfies the Helmholtz equation �v C v D 0, upon expanding
the components of v in a series of spherical harmonics it is elementary to realize that v can
be written in the ball B2 as a Fourier-Bessel series of the form

(4.1) v D

1X
lD0

lX
mD�l

blm jl .r/ Ylm.!/

that converges in L2.B2/. Here r WD jxj 2 RC and ! WD x=r 2 S2 are spherical coordinates,
jl is the spherical Bessel function, Ylm are the spherical harmonics and blm 2 R3 are constant
vectors.

Since the series (4.1) converges in L2.B2/, for any ı0 there is an integer l0 such that the
finite sum

v1 WD

l0X
lD0

lX
mD�l

blm jl .r/ Ylm.!/

approximates the field v in an L2 sense, that is,

(4.2) kv1 � vkL2.B2/ < ı
0 :

Next, let us observe that the properties of the spherical Bessel functions imply that the
field v1 falls off at infinity as jv1.x/j < C=jxj. In particular, it then follows from Herglotz’s
theorem (see e.g., [12, Theorem 7.1.27]) that v1 can be written as the Fourier transform of a
distribution supported on the unit sphere of the form

(4.3) v1.x/ D

Z
S2
f1.�/ e

ix�� d�.�/ ;

where d� is the area measure induced on the unit sphere S2 WD f� 2 R3 W j�j D 1g and f1 is
an R3-valued function in L2.S2/.

By the density of smooth functions in L2.S2/, we can approximate f1 by a smooth
function f2 W S2 ! R3 so that their difference is bounded as

kf1 � f2kL2.S2/ < ı
0 :

Therefore the field

(4.4) v2.x/ WD

Z
S2
f2.�/ e

ix�� d�.�/ ;

approximates v1 uniformly, as for any x 2 R3 the Cauchy-Schwarz inequality yields

jv2.x/ � v1.x/j D

ˇ̌̌̌ Z
S2
.f2.�/ � f1.�// e

ix�� d�.�/

ˇ̌̌̌
6 Ckf2 � f1kL2.S2/ < Cı

0 :(4.5)

Our next objective is to show that for any ı0 there is a radius R > 0 and finitely many
constants fcngNnD1 � R3 and fxngNnD1 � BR such that the restriction to the unit sphere of the
smooth field in R3

f .�/ WD

NX
nD1

cn e
�ixn�
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approximates the field f2 in the C 0 norm, that is,

(4.6) kf � f2kC0.S2/ < ı
0 :

To prove this claim, we first extend f2 to a smooth vector field g W R3 ! R3 with compact
support. This can be done by setting

g.�/ WD �.j�j/ f2

�
�

j�j

�
;

with �.s/ a smooth function which is equal to 1, say, if js�1j < 1
4

and vanishes for js�1j > 1
2

.
Since the Fourier transform bg of g is Schwartz, we easily infer that there is a radius R such
that the L1 norm ofbg is essentially contained in BR in the sense thatZ

R3nBR
jbg.x/j dx < ı0 :

It then follows that the Fourier integral representation of g can be essentially truncated to
an integral over the ball BR, i.e., one has the uniform bound

(4.7) sup
�2R3

ˇ̌̌̌
g.�/ �

Z
BR

bg.x/ e�ix�� dx ˇ̌̌̌ < ı0 :
Now, an easy continuity argument allows us to uniformly approximate the integralZ

BR

bg.x/ e�ix�� dx
by a finite sum

(4.8) f .�/ WD

NX
nD1

cn e
�ixn��

with constants cn 2 R3 and xn 2 BR in such a way that the error introduced in the
approximation is bounded by

(4.9) sup
�2S2

ˇ̌̌̌ Z
BR

bg.x/ e�ix�� dx � f .�/ˇ̌̌̌ < ı0 :
Indeed, let us cover the ballBR by finitely many closed sets fUngNnD1 with piecewise smooth

boundaries and pairwise disjoint interiors such that the diameter of each set is at most ı00. The
function e�ix�� bg.x/ being smooth, it then follows that for each x; y 2 Un one has

sup
�2S2

ˇ̌bg.x/ e�ix�� �bg.y/ e�iy�� j < Cı00 ;
where the constant C depends on bg (and therefore on ı0) but not on ı00. It is then straight-
forward that if xn is any point in Un and we set cn WD bg.xn/ jUnj in (4.8), one has

sup
�2S2

ˇ̌̌̌ Z
BR

bg.x/ e�ix�� dx � f .�/ˇ̌̌̌ 6 NX
nD1

Z
Un

sup
�2S2

ˇ̌bg.x/ e�ix�� �bg.xn/ e�ixn�� ˇ̌ dx
6 Cı00 ;

where again C depends on ı0 andR but not on ı00 orN . Hence one can take ı00 small enough
so that Cı00 < ı0, thereby proving the estimate (4.9).
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Putting together the estimates (4.7) and (4.9) we infer that

kf � gkC0.S2/ < Cı
0 ;

with a constant independent of ı0. Since the restriction to S2 of the function g is precisely f2,
the estimate (4.6) then follows.

Finally, if we define the vector field

w.x/ WD

Z
S2
f .�/ eix�� d�.�/ D

NX
nD1

cn

Z
S2
ei.x�xn/�� d�.�/ D

NX
nD1

cn j0.jx � xnj/ ;

we conclude from Eq. (4.6) that

kw � v2kC0.R3/ 6
Z
S2
jf .�/ � f2.�/j d�.�/ < Cı

0 ;

so we readily infer from Eqs. (4.2) and (4.5) the L2 bound

kv � wkL2.B2/ 6 Ckw � v2kC0.R3/ C Ckv2 � v1kC0.R3/ C kv1 � vkL2.B2/ < Cı
0 :(4.10)

Furthermore, as the Fourier transform of w is supported on S2, w satisfies the Helmholtz
equation

�w C w D 0

in R3. Since the Beltrami field v also satisfies the Helmholtz equation�vC v D 0, standard
elliptic estimates enable us to promote the L2 bound (4.10) to the CmC2 estimate

kv � wkCmC2.B/ 6 Ckv � wkL2.B2/ < Cı
0 ;

so the proposition follows upon choosing Cı0 < ı.

5. Proof of Proposition 3.2

For any positive integerƒ, let Cƒ.t/ be the ultraspherical (also called Gegenbauer) poly-
nomial of dimension 4 and degree ƒ, which can be defined in terms of the Jacobi polyno-
mials P .˛; ˇ/ƒ as

(5.1) Cƒ.t/ WD

p
�

2

�.ƒC 1/

�.ƒC 3
2
/
P
. 12 ;

1
2 /

ƒ .t/ ;

where we are using the normalization Cƒ.1/ D 1 for all ƒ (see e.g [19, Chapter IV,
Section 4.7]).

If p; q 2 S3 are two points in the 3-sphere, understood as the subset fjpj D 1g of R4, the
addition theorem for ultraspherical polynomials shows that Cƒ.p � q/ can be written as a
linear combination of spherical harmonics. Specifically,

(5.2) Cƒ.p � q/ D
2�2

.ƒC 1/2

.ƒC1/2X
jD1

Yƒj .p/ Yƒj .q/ ;

where fYƒj g
.ƒC1/2

jD1 is an arbitrary orthonormal basis of spherical harmonics of energy ƒ.ƒC 2/
and p � q denotes the scalar product in R4 of the unit vectors p; q. Notice that .ƒ C 1/2 is
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precisely the multiplicity of the eigenvalueƒ.ƒC2/ of the Laplacian on S3 (or, equivalently,
the dimension of the space of spherical harmonics of energy ƒ.ƒC 2/).

Let us write the i -th Cartesian component of the vector field w as

wi .x/ D

NX
nD1

cin j0.jx � xnj/ ;

where cin is the i -th component of the constant cn 2 R3 and the points xn are contained in
the ball BR. Let us set, for any p 2 S3,

Yi .p/ WD

NX
nD1

cin Cƒ.p � pn/ ;

with

pn WD ‰
�1

�
xn

ƒ

�
:

Note that pn is well defined provided ƒ is bigger than R. It is obvious from Eq. (5.2) that
Yi is a spherical harmonic of energy ƒ.ƒC 2/.

In order to study the asymptotic properties of the spherical harmonic Yi we first observe
that, if we restrict our attention to points of the form

p WD ‰�1
�
x

ƒ

�
with x 2 BR and ƒ > R, we then have

(5.3) p � pn D cos
�
distS3.p; pn/

�
D cos

�
jx � xnj CO.ƒ

�1/

ƒ

�
;

asƒ!1. Here distS3.p; pn/ denotes the distance between the pointsp andpn as measured
on the sphere S3 and the last equality stems from the fact that‰ W B! B is a patch of normal
geodesic coordinates. We will henceforth use the notation

(5.4) eYi .x/ WD Yi ı‰�1� x
ƒ

�
:

Since for ƒ large we have the asymptotic behavior

�.ƒC 1/

�.ƒC 3
2
/
D

1
p
ƒ
CO.ƒ�

3
2 / ;

we conclude from Eq. (5.3) that

(5.5) Cƒ.p � pn/ D

� p
�

2
p
ƒ
CO.ƒ�

3
2 /

�
P
. 12 ;

1
2 /

ƒ

�
cos

�
jx � xnj CO.ƒ

�1/

ƒ

��
:

Now Darboux’s asymptotic formula for the Jacobi polynomials [19, Theorem 8.1.1] implies

1
p
ƒ
P
. 12 ;

1
2 /

ƒ

�
cos

t

ƒ

�
D

2
p
�
j0.t/CO.ƒ

�1/ ;
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which holds uniformly for compact sets (e.g., for jt j 6 2R). Therefore Eq. (5.4) can be written
by virtue of Eq. (5.5) as

eYi .x/ D NX
nD1

cinCƒ

�
cos

�
jx � xnj CO.ƒ

�1/

ƒ

��
D

NX
nD1

cin j0.jx � xnj/CO.ƒ
�1/ ;

provided thatƒ is sufficiently large and x; xn 2 BR. This proves that for any ı0 > 0 and allƒ
large enough we have the uniform bound

(5.6) kwi � eYikC0.B/ < ı0 :
To get the CmC2 bound stated in the proposition, we notice that the eigenvalue equation

�Yi Cƒ.ƒC 2/Yi D 0

for the spherical harmonic Yi in S3 can be written in terms of the rescaled function eYi as

�0eYi C eYi D 1

ƒ
AeYi ;

where the coordinates x are assumed to take values in B, �0 WD
P
i @
2
xi

is the flat space
Laplacian acting on the x coordinates and A is a scalar second-order operator of the form

AeYi WD �2eYi CG1DeYi CG2D2eYi :
Here the functionsGi .x;ƒ/ are (possibly matrix-valued) functions that depend smoothly on
all their variables and whose derivatives are bounded independently of ƒ for x 2 B, i.e.,

(5.7) sup
x2B

jD˛
xGi .x;ƒ/j < C˛ :

Here the constant C˛ depends on the multiindex ˛ but not on ƒ.

By construction, the function wi satisfies the Helmholtz equation

�0w
i
C wi D 0 ;

and hence the difference wi � eYi satisfies the equation

�0.w
i
� eYi /C .wi � eYi / D 1

ƒ
AeYi :

Therefore, in view of the uniform bounds (5.6) and (5.7), standard elliptic estimates yield

kwi � eYikCmC2;˛.B/ < Ckw
i
� eYikC0.B/ C C

ƒ
kAeYikCm;˛.B/

< Cı0 C
C

ƒ
kwi � eYikCmC2;˛.B/ C

C

ƒ
kwikCmC2;˛.B/ ;

which implies that

kwi � eYikCmC2.B/ 6 Cı0 C
CkwikCmC2;˛

ƒ
< ı

provided that ƒ is large enough (which in turn implies that ı0 is small). This completes the
proof of the proposition.
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6. Proof of Proposition 3.3

We start by defining a vector fieldeu on S3 using the Hopf fields hi aseu WD Y1 h1 C Y2 h2 C Y3 h3 ;
where the functions Yi are the spherical harmonics obtained in Proposition 3.2. In the
following lemma we compute the action of the Laplacian on the vector field eu using the
properties of the Hopf fields. The Laplacian on vector fields that we need to consider is
defined as the dual of the Hodge Laplacian on 1-forms, and can be computed as

� WD � curl curlCr div ;

where r and div are the gradient and divergence operators, respectively.

L 6.1. – The Laplacian of the vector fieldeu is

��eu D ƒ.ƒC 2/euC 2 curleu :
Proof. – The proof is simpler if we work with differential forms, so let us denote by ě

and ˛i the 1-forms that are dual to eu and hi , respectively, with respect to the canonical
metric on S3. We recall that the dual of curleu is the 1-form ?d ě, with ? being the Hodge
star operator. The 1-form ě is given by ěD Yi ˛i , where summation over repeated indices is
understood throughout. The Laplacian of ě is then

��ě WD dd�ěC d�d ěD �d ? d ? .Yi ˛i /C ?d ? d.Yi ˛i / :
Using that ?d˛i D 2˛i because ˛i is the dual 1-form of the Hopf field hi , and that the

differential of Yi can be written as dYi D hj .Yi / j̨ , where hj .Yk/ denotes the action of the
vector field hj on the scalar function Yk , we readily obtain

d ? d ? .Yi ˛i / D
1

2
d ? .hj .Yi / j̨ ^ d˛i / :

Observing that j̨ ^ d˛i D 2 j̨ ^ ?˛i D 2ıjk �, where � stands for the Riemannian volume
3-form on S3, it follows that

(6.1) d ? d ? .Yi ˛i / D d.hi .Yi // D hjhi .Yi / j̨ :

Analogously, a straightforward computation using that ?. j̨ ^ ˛i / D "j il˛l , where "j il
stands for the Levi-Civita permutation symbol, and the identity "iml"jkl D ıij ımk � ıikımj
yields

?d.Yi ˛i / D "j ilhj .Yi / ˛l C 2Yi ˛i ;(6.2)

?d ? d.Yi ˛i / D �hjhj .Yi / ˛i C hihj .Yi / j̨ C 4"j ilhj .Yi / ˛l C 4Yi ˛i :(6.3)

Finally, adding Eqs. (6.1) and (6.3) we obtain

��ěD �hjhi .Yi / j̨ C hihj .Yi / j̨ � hjhj .Yi / ˛i C 4"j ilhj .Yi / ˛l C 4Yi ˛i

D ƒ.ƒC 2/Yi ˛i C 2"j ilhj .Yi / ˛l C 4Yi ˛i ;

where we have used that �Yi D �ƒ.ƒ C 2/Yi and that the commutator of Hopf fields is
Œhi ; hj � D �2"ijlhl . The lemma then follows upon noticing that

2"j ilhj .Yi / ˛l C 4Yi ˛i D 2 ? d ě
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by Eq. (6.2).

Using this lemma, it is easy to check that

u WD
1

2ƒ2
curl.curlCƒ/eu

is a Beltrami field with eigenvalueƒC 2. Indeed, a straightforward computation shows that

curlu D
1

2ƒ2
curl curl.curlCƒ/eu D 1

2ƒ2
curl.��Cƒ curl/eu

D
ƒC 2

2ƒ2
curl.curlCƒ/eu D .ƒC 2/u :

To prove the Cm estimate of the proposition, it is convenient to introduce the following
auxiliary vector field in the unit ball B of R3

Nu.x/ WD eY1.x/ e1 C eY2.x/ e2 C eY3.x/ e3 ;
where x 2 B and eYi was defined in (5.4). There is no loss of generality in choosing
the orthonormal basis ei of R3 compatible with the Hopf fields hi in the sense that
‰�.hi /.0/ D ei . It is then easy to check that for x 2 B one has:

‰�eu� �
ƒ

�
D NuC

G1

ƒ
Nu ;

‰�.curleu/� �
ƒ

�
D ƒ

�
curl0 NuC

G2

ƒ
NuC

G3

ƒ
D Nu

�
;

‰�.curl curleu/� �
ƒ

�
D ƒ2

�
curl0 curl0 NuC

G4

ƒ
NuC

G5

ƒ
D NuC

G6

ƒ
D2
Nu
�
:

Here curl0 denotes the Euclidean curl operator, acting on the variables x, and the func-
tions Gi .x;ƒ/ are (possibly matrix-valued) functions that depend smoothly on all their
variables and whose derivatives are uniformly bounded as

(6.4) sup
x2B

jD˛
xGi .x;ƒ/j < C˛ :

Here the constant C˛ depends on the multiindex ˛ but not on ƒ.

These identities and the fact that .curl0 curl0C curl0/v D 2v then permits us to write‰�u� �
ƒ

�
� v


Cm.B/

6
1
2
.curl0 curl0C curl0/. Nu � v/


Cm.B/

C
C

ƒ
k NukCmC2.B/

6 Ck Nu � vkCmC2.B/ C
C

ƒ
k Nu � wkCmC2.B/

C
C

ƒ
kv � wkCmC2.B/ C

C

ƒ
kvkCmC2.B/ :(6.5)

To conclude, notice that it stems from Propositions 3.1 and 3.2 that

kv � wkCmC2.B/ < ı

k Nu � wkCmC2.B/ < 3ı ;

so in particular

k Nu � vkCmC2.B/ 6 k Nu � wkCmC2.B/ C kv � wkCmC2.B/ < 4ı :
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Hence the proposition follows from the estimate (6.5) upon noticing that v is a fixed vector
field (so its norm is independent ofƒ) and choosingƒ large enough, which also allows us to
take ı as small as one wishes.

7. Proof of Theorem 2.1 in the torus

Arguing as in the proof of Proposition 3.1 we can readily show that for any ı > 0, there
exists a vector field v1 on R3 that approximates the Beltrami field v in the ball B as

(7.1) kv1 � vkC0.B/ < ı ;

and that can be represented as the Fourier transform of a distribution supported on the unit
sphere of the form

v1.x/ D

Z
S2
f .�/ ei��x d�.�/ :

Again S2 denotes the unit sphere f� 2 R3 W j�j D 1g and f is a smooth R3-valued function
on S2.

Let us now cover the sphere S2 by finitely many closed sets fUngNnD1 with piecewise smooth
boundaries and pairwise disjoint interiors such that the diameter of each set is at most ı0. We
can then repeat the argument used in the proof of Proposition 3.1 to infer that, if �n is any
point in Un and we set

cn WD f .�n/ jUnj ;

the field

w.x/ WD

NX
nD1

cn e
i�n�x

approximates the field v1 uniformly with an error proportional to ı0:

kw � v1kC0.B/ < Cı
0 :

The constantC depends on ı but not on ı0, so one can choose the maximal diameter ı0 small
enough so that

(7.2) kw � v1kC0.B/ < ı :

In turn, the uniform estimate

kw � vkC0.B/ 6 kw � v1kC0.B/ C kv � v1kC0.B/ < 2ı

can be readily promoted to the CmC2 bound

(7.3) kw � vkCmC2.B/ < Cı :

This follows from standard elliptic estimates as both w (whose Fourier transform is
supported on S2) and v satisfy the Helmholtz equation:

�v C v D 0 ; �w C w D 0 :

Furthermore, replacingw by its real part if necessary, we can safely assume that the fieldw is
real-valued.

Let us now observe that for any large enough odd integer ƒ one can choose the points
�n 2 Un � S2 so that they have rational components (i.e., �n 2 Q3) and the rescalings ƒ�n

4 e SÉRIE – TOME 50 – 2017 – No 4



KNOTTED STRUCTURES IN BELTRAMI FIELDS 1011

are actually integer vectors (i.e.,ƒ�n 2 Z3). This is because rational points � 2 S2\Q3 with
ƒ� 2 Z3 are uniformly distributed on the unit sphere as ƒ!1 through odd values [6].

Choosing �n as above, we are now ready to prove Theorem 2.1 in the torus. Without
loss of generality, we will take the origin as the base point p, so that we can identify the
ball B with B through the canonical 2�-periodic coordinates on the torus. In particular, the
diffeomorphism‰ W B! B that appears in the statement of Theorem 2.1 can be understood
to be the identity.

Since ƒ�n 2 Z3, it follows that the vector field

eu.x/ WD NX
nD1

cne
iƒ�n�x

is 2�-periodic (that is, invariant under the translation x ! xC 2� a for any vector a 2 Z3).
Therefore it descends to a well-defined vector field on the torus T3 WD R3=.2�Z/3, which we
will still denote byeu.

Since the Fourier transform of eu if now supported on the sphere of radius ƒ, eu then
satisfies the Helmholtz equation on the flat torus T3 with energy ƒ2,

�euCƒ2eu D 0 :
A straightforward calculation then reveals that the vector field on the torus

u WD
curl curleuCƒ curleu

2ƒ2

satisfies the equation
curlu D ƒu ;

so it is a Beltrami field on T3 with eigenvalue � WD ƒ.

Let us now notice that, with some abuse of notation,

eu� x
ƒ

�
D w.x/

for all points x, say, in the ball B. In particular, as the derivatives of the rescaled vector
fieldeu.�=ƒ/ behave as

curleu� �
ƒ

�
D ƒ curlw ;

curl curleu� �
ƒ

�
D ƒ2 curl curlw ;

it then follows thatu� �ƒ� � v

Cm.B/

D

ƒ2 curl curlw Cƒ2 curlw
2ƒ2

� v


Cm.B/

D

curl curl.w � v/C curl.w � v/
2


Cm.B/

6 Ckw � vkCmC2.B/

< Cı ;
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where we have used the identity curl curl v C curl v D 2v to pass to the second equality and
the estimate (7.3) to derive the last inequality. The theorem then follows provided that ı is
chosen small enough for Cı < ".

8. Concluding remarks

To conclude, let us make a few simple observations about our main result that follow from
its proof:

There are many Beltrami fields with closed vortex lines and tubes of a given link type. –
Indeed, since our construction works for any large enough odd integer � and Beltrami fields
corresponding to different eigenvalues are L2 orthogonal, there are many non-proportional
Beltrami fields with closed vortex lines and tubes realizing any given link.

In the sphere, the result holds true for any large enough eigenvalue �. – Indeed, the fact that
ƒ is odd was never used in the proof of Theorem 2.1 in S3 (cf. Section 3), so it stems that,
given any finite union of closed curves and tubes S , for any integer � with j�j greater than
certain constantƒ0.S / there is a Beltrami field with eigenvalue � having a structurally stable
set of vortex lines and vortex tubes diffeomorphic to S .

In our Beltrami fields on the sphere, knots and links appear in pairs. – In fact, using the Hopf
basis fhig3iD1 introduced in Section 3, any Beltrami field u on S3 with eigenvalue � WD ƒC2,
with ƒ a nonnegative integer, can be written as

u D F1 h1 C F2 h2 C F3 h3 ;

where Fi are smooth functions on the sphere. It is then easy to check using Eq. (6.2) that
Fi must be a spherical harmonic of energy ƒ.ƒ C 2/. Since such a spherical harmonic is
known to have parity .�1/ƒ, in the sense that

Fi .�p/ D .�1/
ƒ Fi .p/

for all points p in the unit sphere S3, and the Hopf fields hi are odd (i.e., hi .�p/ D �hi .p/),
we conclude that a Beltrami field on the sphere with eigenvalue � has parity .�1/�C1, so it is
either even or odd. Therefore, the fact thatˆ.S / is a set of vortex lines and vortex tubes of the
Beltrami field u diffeomorphic to S and contained in a ball of small radius 1=� automatically
implies that so is the antipodal set �ˆ.S /.

The result carries over to lens spaces. – In order to see why, the key is that in the sphere the
statement of Theorem 2.1 can be refined to include localizations around different points of
the sphere. More precisely, let us fix l points P1; : : : ; Pl in S3, none of which are antipodal
to another (that is, Pj ¤ �Pk), and denote by ‰j W B.Pj ; R0/ ! BR0 a patch of normal
geodesic coordinates centered at the point Pj . Here B.Pj ; R0/ denotes the geodesic ball in
the sphere of center Pj and radius

R0 WD
1

2
min
j¤k

distS3.Pj ; Pk/ :

The approximation theorem can then be stated as follows:
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T 8.1. – Let fvj gljD1 be Beltrami fields in R3, satisfying curl vj D vj . Let us fix
any positive numbers " and m. Then for any large enough integer � there is a Beltrami field u,
satisfying curlu D �u in S3, such that

(8.1)

.‰j /�u� ��� � vj

Cm.B/

< "

for all 1 6 j 6 l .

Proof. – Arguing as in Proposition 3.2 we infer that for any large enough integerƒ there
are spherical harmonics OYij of energy ƒ.ƒC 2/ such thatwij � OYij ı‰�1j �

�

ƒ

�
CmC2.B/

< ı ;

where wj is a vector field of the form

wj D

NX
nD1

cjn j0.jx � xjnj/

that approximates the Beltrami field vj inCmC2.B/ as in Proposition 3.1, andwij (1 6 i 6 3)
denotes its i -th Cartesian component. Noticing that the Jacobi polynomial behaves as

ƒ�
1
2 P

. 12 ;
1
2 /

ƒ .cos t / D
O.ƒ�1/

t

uniformly for ƒ�1 < t < � � ƒ�1 [19, Theorem 7.32.2], it stems that the ultraspherical
polynomial Cƒ is uniformly bounded as

jCƒ.p � q/j 6
C�

ƒ

for any points p; q in S3 such that

distS3.p; q/ > � and distS3.p;�q/ > � ;

with a constant C� that only depends on the positive constant �.

Using the formulas of Section 5 it is now easy to show that for any j and any fixed positive
radius � we have

k OYij kC0.S3n.B.Pj ;�/[B.�Pj ;�// 6
C�

ƒ
for largeƒ, with a constant that depends on � (and, of course, on v and ı). If we now define

Yi WD

lX
jD1

OYij ;

and choose � small enough so that the sets B.Pj ; �/ [ B.�Pj ; �/ are disjoint for all j , the
same reasoning that we employed in the proof of Proposition 3.2 shows thatwij � Yi ı‰�1j �

�

ƒ

�
CmC2.B/

< Cı

for all 1 6 i 6 3 and 1 6 j 6 l , which plays a role completely analogous to that
of Proposition 3.2 in the generalized context that we are now considering. The rest of the
argument remains exactly as in Section 3, so the result follows.
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In particular, this yields the existence of Beltrami fields in the sphere having prescribed
sets of closed vortex lines and tubes (modulo diffeomorphism) around any finite number of
points P1; : : : ; Pl . These lines and tubes are contained in balls of radius 1=�. This line of
reasoning also allows us to prove an analog of Theorem 1.1 in any lens space L.p; q/:

T 8.2. – Let S be a finite union of (pairwise disjoint, but possibly knotted and
linked) closed curves and tubes contained in a contractible subset of a three-dimensional lens
spaceL.p; q/. Then for any large enough even integer � there exists a Beltrami field u satisfying
the equation curlu D �u and a diffeomorphismˆ ofL.p; q/ such thatˆ.S / is a union of vortex
lines and vortex tubes of u. Furthermore, this set is structurally stable.

Proof. – The lens space can be written as

L.p; q/ D S3=G ;

where G is a finite isometry group isomorphic to Zp. We can assume that G is generated by
certain isometry g. Let us now fix a point p0 2 S3 and set

Pj WD g
j
� p0

for 0 6 j 6 p�1. If‰ is a patch of normal geodesic coordinates around p0, we will also set
‰j .x/ WD ‰.g

�j �x/. Notice that ifp is odd there are not any points in the set fPj g
p�1
jD0 that are

antipodal to each other, while for p even Pj and Pk are antipodal if and only if jj �kj D p
2

.

Let us fix a Beltrami field v in R3 as in Theorem 2.2. Theorem 8.1 then ensures the
existence of a Beltrami fieldeu in S3 such that.‰j /�eu� ��� � vj


Cm.B/

< " ;

where 0 6 j 6 p0 � 1 with p0 WD p if p is odd and p0 WD p
2

if p is even. Here v0 WD v and
vj WD 0 for 1 6 j 6 p0 � 1. Notice that, as � is even, we saw in the previous remark thateu is
odd, i.e., eu.x/ D �eu.�x/, so that eu is equivariant under the isometry x 7! �x. Hence, by
construction, the vector field

u WD

p0�1X
jD0

.gj /�eu
isG-equivariant, and therefore it defines a vector field in the quotient spaceL.p; q/ D S3=G
that we still denote by u with some abuse of notation. Arguing exactly as in the proof of
the main theorem one can show that the vector field u on L.p; q/ indeed has the desired
properties, so the statement then follows.

In the torus, the distribution of rational points on the 2-sphere is key. – The proof that we
have given holds provided that the eigenvalue � is an odd integer of sufficiently large absolute
value. It does not say anything about even integers, or about eigenvalues that are not integers.
This assertion can be refined a little, however. We have seen that for any eigenvalue � of the
curl operator in T3 there is a set of points f�ngNnD1 lying on the unit sphere S2 of R3 such
that ��n 2 Z3 (this is obvious from the fact that one can write � D jkj with k 2 Z3).
Therefore, in the proof of Theorem 2.1 for the torus (cf. Section 7) one can substitute the
collection of odd integers ƒ by any subset of eigenvalues � for which there is a set of points
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f�ng
N
nD1 � S2 (depending on � and such that the rescalings ��n are in Z3) that becomes

dense in the sphere as j�j ! 1 along this subset of eigenvalues. In particular, replacing the
density condition by the more stringent assumption that f�ng becomes equidistributed on
the sphere, it turns out that the characterization of the numbers � that satisfy this property is
somehow related to the celebrated Linnik problem in number theory. In particular, since the
aforementioned equidistribution property holds for any eigenvalue for which the integer �2

is square-free [5], we immediately infer that the statement of Theorem 1.1 also holds for any
large enough eigenvalue � of curl (possibly even or non-integer) for which �2 is square-free.

Another interesting point to consider is whether the above methods apply to tori of the
form T3

L
WD R3=.2� L /, where L is a general lattice in R3. As above, the key in this case is to

have a density or equidistribution result at disposal, but this time not for rational points on
the sphere and integer eigenvalues, but for a set of points f�ngNnD1 � S2 and real eigenvalues �
such that ��n 2 L

0, where L
0 is the so called reciprocal lattice to L , which is defined as the

set of points k 2 R3 such that k � x 2 Z for all x 2 L . In some very particular cases, e.g., for
lattices of the form L WD aZ3 with a 2 Rnf0g, the previous equidistribution results directly
hold for a sequence of eigenvalues of the form �=awith � an odd integer. In general, however,
the authors are not aware of any results in this direction.
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