Nous étudions des multiplicateurs de Fourier à symboles réguliers sur des groupes localement compacts. De nouveaux critères de Hörmander-Mikhlin pour des multiplicateurs spectraux et non spectraux sont établis. Notre approche se base sur trois nouveaux résultats clés. Premièrement, nous utilisons certains opérateurs maximaux dans des espaces non commutatifs pour obtenir un contrôle sur de larges classes de multiplicateurs. Ce principe général — exploité en analyse harmonique euclidienne ces 40 dernières années — présente un intérêt indépendant et pourrait admettre de nouvelles applications. Deuxièmement, en établissant une version non commutative de la théorie de plongement de Sobolev pour les semigroupes de Markov initiée par Varopoulos, la dimension de cocycle utilisée auparavant est remplacée par la dimension de Sobolev. Ceci permet plus de flexibilité sur la régularité du symbole. Enfin, nous introduisons une notion duale de la croissance polynomiale pour exploiter davantage notre principe du maximum sur des multiplicateurs de Fourier non spectraux. La combinaison de ces ingrédients produit de nouvelles estimations pour des multiplicateurs de Fourier réguliers dans des algèbres de groupe.
We investigate Fourier multipliers with smooth symbols defined over locally compact Hausdorff groups. Our main results in this paper establish new Hörmander-Mikhlin criteria for spectral and non-spectral multipliers. The key novelties which shape our approach are three. First, we control a broad class of Fourier multipliers by certain maximal operators in noncommutative spaces. This general principle—exploited in Euclidean harmonic analysis during the last 40 years—is of independent interest and might admit further applications. Second, we replace the formerly used cocycle dimension by the Sobolev dimension. This is based on a noncommutative form of the Sobolev embedding theory for Markov semigroups initiated by Varopoulos, and yields more flexibility to measure the smoothness of the symbol. Third, we introduce a dual notion of polynomial growth to further exploit our maximal principle for non-spectral Fourier multipliers. The combination of these ingredients yields new estimates for smooth Fourier multipliers in group algebras.
Mots-clés : Fourier multiplier, group von Neumann algebra, Sobolev dimension, Multiplicateur de Fourier, algèbre de von Neumann associée à un groupe, dimension de Sobolev.
@article{ASENS_2017__50_4_879_0, author = {Gonz\'alez-P\'erez, Adri\'an and Junge, Marius and Parcet, Javier}, title = {Smooth {Fourier} multipliers in group algebras via {Sobolev} dimension}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {879--925}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {4}, year = {2017}, doi = {10.24033/asens.2334}, mrnumber = {3679616}, zbl = {1384.42010}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2334/} }
TY - JOUR AU - González-Pérez, Adrián AU - Junge, Marius AU - Parcet, Javier TI - Smooth Fourier multipliers in group algebras via Sobolev dimension JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 879 EP - 925 VL - 50 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2334/ DO - 10.24033/asens.2334 LA - en ID - ASENS_2017__50_4_879_0 ER -
%0 Journal Article %A González-Pérez, Adrián %A Junge, Marius %A Parcet, Javier %T Smooth Fourier multipliers in group algebras via Sobolev dimension %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 879-925 %V 50 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2334/ %R 10.24033/asens.2334 %G en %F ASENS_2017__50_4_879_0
González-Pérez, Adrián; Junge, Marius; Parcet, Javier. Smooth Fourier multipliers in group algebras via Sobolev dimension. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 879-925. doi : 10.24033/asens.2334. http://www.numdam.org/articles/10.24033/asens.2334/
, New Mathematical Monographs, 11, Cambridge Univ. Press, Cambridge, 2008, 472 pages (ISBN: 978-0-521-88720-5) | DOI | MR | Zbl
Optimal control of singular Fourier multipliers by maximal operators, Anal. PDE, Volume 7 (2014), pp. 1317-1338 (ISSN: 2157-5045) | DOI | MR | Zbl
, Progress in Math., 197, Birkhäuser, 2001, 126 pages (ISBN: 3-7643-6598-6) | DOI | MR | Zbl
A factor not anti-isomorphic to itself, Ann. Math., Volume 101 (1975), pp. 536-554 | DOI | MR | Zbl
Harmonic analysis on semigroups, Ann. of Math., Volume 117 (1983), pp. 267-283 (ISSN: 0003-486X) | DOI | MR | Zbl
Noncommutative de Leeuw theorems, Forum Math. Sigma, Volume 3 (2015) (ISSN: 2050-5094) | DOI | MR | Zbl
Uniformly elliptic operators with measurable coefficients, J. Funct. Anal., Volume 132 (1995), pp. 141-169 (ISSN: 0022-1236) | DOI | MR | Zbl
, London Mathematical Society Monographs. New Series, 23, The Clarendon Press, Oxford Univ. Press, New York, 2000, 363 pages (ISBN: 0-19-853482-5) | MR | Zbl
, Studies in Advanced Math., CRC Press, Boca Raton, FL, 1995, 276 pages (ISBN: 0-8493-8490-7) | MR | Zbl
, De Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., Berlin, 2011, 489 pages (ISBN: 978-3-11-021808-4) | MR | Zbl
An example of a nonnuclear -algebra, which has the metric approximation property, Invent. math., Volume 50 (1978/79), pp. 279-293 (ISSN: 0020-9910) | DOI | MR | Zbl
Operator-valued weights in von Neumann algebras. I, J. Funct. Anal., Volume 32 (1979), pp. 175-206 (ISSN: 0022-1236) | DOI | MR | Zbl
Operator-valued weights in von Neumann algebras. II, J. Funct. Anal., Volume 33 (1979), pp. 339-361 (ISSN: 0022-1236) | DOI | MR | Zbl
Problems of extrapolation and spectral synthesis on groups, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971) (Lecture Notes in Math.), Volume 266, Springer, Berlin (1972), pp. 157-166 | DOI | MR | Zbl
functional calculus and square functions on noncommutative -spaces, Astérisque, Volume 305 (2006) (ISSN: 0303-1179) | Numdam | MR | Zbl
Noncommutative Riesz transforms—a probabilistic approach, Amer. J. Math., Volume 132 (2010), pp. 611-680 (ISSN: 0002-9327) | DOI | MR | Zbl
Noncommutative Riesz transforms—Dimension free bounds and Fourier multipliers (preprint arXiv:1407.2475 ) | MR
Smooth Fourier multipliers on group von Neumann algebras, Geom. Funct. Anal., Volume 24 (2014), pp. 1913-1980 (ISSN: 1016-443X) | DOI | MR | Zbl
Mixed-norm inequalities and operator space embedding theory, Mem. Amer. Math. Soc., Volume 203 (2010) (ISBN: 978-0-8218-4655-1, ISSN: 0065-9266) | DOI | MR | Zbl
Approximation properties for noncommutative -spaces associated with discrete groups, Duke Math. J., Volume 117 (2003), pp. 313-341 (ISSN: 0012-7094) | DOI | MR | Zbl
Doob's inequality for non-commutative martingales, J. reine angew. Math., Volume 549 (2002), pp. 149-190 (ISSN: 0075-4102) | DOI | MR | Zbl
Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab., Volume 31 (2003), pp. 948-995 (ISSN: 0091-1798) | DOI | MR | Zbl
Noncommutative maximal ergodic theorems, J. Amer. Math. Soc., Volume 20 (2007), pp. 385-439 (ISSN: 0894-0347) | DOI | MR | Zbl
, Graduate Studies in Math., 15, Amer. Math. Soc., Providence, RI, 1997, 398 pages (ISBN: 0-8218-0819-2) | MR | Zbl
, London Mathematical Society Lecture Note Series, 210, Cambridge Univ. Press, Cambridge, 1995, 130 pages (ISBN: 0-521-47910-X) | DOI | MR | Zbl
Noncommutative -spaces without the completely bounded approximation property, Duke Math. J., Volume 160 (2011), pp. 71-116 (ISSN: 0012-7094) | DOI | MR | Zbl
Noncommutative Khintchine and Paley inequalities, Ark. Mat., Volume 29 (1991), pp. 241-260 (ISSN: 0004-2080) | DOI | MR | Zbl
Inégalités de Khintchine dans , C. R. Acad. Sci. Paris Sér. I Math., Volume 303 (1986), pp. 289-292 (ISSN: 0249-6291) | MR | Zbl
L'opérateur carré du champ, Séminaire de Probabilités, X (Première partie, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975) (Lecture Notes in Math.), Volume 511, Springer (1976), pp. 142-161 | DOI | Numdam | MR | Zbl
, Cambridge Studies in Advanced Math., 78, Cambridge Univ. Press, Cambridge, 2002, 300 pages (ISBN: 0-521-81669-6) | MR | Zbl
, London Mathematical Society Lecture Note Series, 294, Cambridge Univ. Press, Cambridge, 2003, 478 pages (ISBN: 0-521-81165-1) | DOI | MR | Zbl
Non-commutative vector valued -spaces and completely -summing maps, Astérisque, Volume 247 (1998) (ISSN: 0303-1179) | Numdam | MR | Zbl
, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459-1517 | DOI | MR | Zbl
, Sobolev spaces in mathematics. I (Int. Math. Ser.), Volume 8, Springer, 2009, pp. 299-343 | DOI | MR | Zbl
Riesz transform, Gaussian bounds and the method of wave equation, Math. Z., Volume 247 (2004), pp. 643-662 (ISSN: 0025-5874) | DOI | MR | Zbl
Sharp pointwise estimates on heat kernels, Quart. J. Math. Oxford Ser., Volume 47 (1996), pp. 371-382 (ISSN: 0033-5606) | DOI | MR | Zbl
, Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, N.J., 1970, 290 pages | MR | Zbl
, Annals of Math. Studies, No. 63, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970, 146 pages | MR | Zbl
, Encyclopaedia of Math. Sciences, 125, Springer, Berlin, 2003, 518 pages (ISBN: 3-540-42914-X) | DOI | MR | Zbl
, Springer, New York-Heidelberg, 1979, 415 pages (ISBN: 0-387-90391-7) |Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., Volume 196 (2002), pp. 443-485 (ISSN: 0022-1236) | DOI | MR | Zbl
Hardy-Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985), pp. 240-260 (ISSN: 0022-1236) | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 100, Cambridge Univ. Press, Cambridge, 1992, 156 pages (ISBN: 0-521-35382-3) | MR | Zbl
Cité par Sources :