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SMOOTH FOURIER MULTIPLIERS
IN GROUP ALGEBRAS VIA SOBOLEV DIMENSION

BY ADRIAN GONZALEZ-PEREZ, Marius JUNGE
AND JAVIER PARCET

ABSTRACT. — We investigate Fourier multipliers with smooth symbols defined over locally com-
pact Hausdorff groups. Our main results in this paper establish new Hormander-Mikhlin criteria for
spectral and non-spectral multipliers. The key novelties which shape our approach are three. First,
we control a broad class of Fourier multipliers by certain maximal operators in noncommutative L
spaces. This general principle—exploited in Euclidean harmonic analysis during the last 40 years—is
of independent interest and might admit further applications. Second, we replace the formerly used
cocycle dimension by the Sobolev dimension. This is based on a noncommutative form of the Sobolev
embedding theory for Markov semigroups initiated by Varopoulos, and yields more flexibility to mea-
sure the smoothness of the symbol. Third, we introduce a dual notion of polynomial growth to further
exploit our maximal principle for non-spectral Fourier multipliers. The combination of these ingredi-
ents yields new L, estimates for smooth Fourier multipliers in group algebras.

REsuME. — Nous étudions des multiplicateurs de Fourier a symboles réguliers sur des groupes lo-
calement compacts. De nouveaux critéres de Hormander-Mikhlin pour des multiplicateurs spectraux
et non spectraux sont établis. Notre approche se base sur trois nouveaux résultats clés. Premiérement,
nous utilisons certains opérateurs maximaux dans des espaces L, non commutatifs pour obtenir un
controdle sur de larges classes de multiplicateurs. Ce principe général — exploité en analyse harmo-
nique euclidienne ces 40 derniéres années — présente un intérét indépendant et pourrait admettre de
nouvelles applications. Deuxiémement, en établissant une version non commutative de la théorie de
plongement de Sobolev pour les semigroupes de Markov initiée par Varopoulos, la dimension de co-
cycle utilisée auparavant est remplacée par la dimension de Sobolev. Ceci permet plus de flexibilité sur
la régularité du symbole. Enfin, nous introduisons une notion duale de la croissance polynomiale pour
exploiter davantage notre principe du maximum sur des multiplicateurs de Fourier non spectraux. La
combinaison de ces ingrédients produit de nouvelles estimations L, pour des multiplicateurs de Fou-
rier réguliers dans des algébres de groupe.

Introduction
The aim of this paper is to study Fourier multipliers on group von Neumann algebras for

locally compact Hausdorff groups. More precisely, the relation between the smoothness of
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880 A. GONZALEZ-PEREZ, M. JUNGE AND J. PARCET

their symbols and L ,-boundedness. This is a central topic in Euclidean harmonic analysis. In
the context of nilpotent groups, it has also been intensively studied in the works of Cowling,
Miiller, Ricci, Stein and others. In this paper we will consider the dual problem, placing
our nonabelian groups in the frequency side. Today it is well understood that the dual of a
nonabelian group can only be described as a quantum group, its underlying algebra being the
group von Neumann algebra. The interest of Fourier multipliers over such group algebras
was recognized early in the pioneering work of Haagerup [11], as well as in the research
carried out thereafter. It was made clear how Fourier multipliers on these algebras can help
in their classification, through the use of certain approximation properties which become
invariants of the algebra. Unfortunately, the literature on this topic does not involve the
L,-theory—with a few exemptions like [21] and the very recent paper of Lafforgue and de la
Salle [25]—as it is mandatory from a harmonic analysis viewpoint. In this respect, our work
is a continuation of [18, 19] where 1-cocycles into finite-dimensional Hilbert spaces were
used to lift multipliers from the group into a more Euclidean space. This yields Hormander-
Mikhlin type results depending of the dimension of the Hilbert space involved. Here, we shall
follow a different approach through the introduction of new notions of dimension allowing
more room for the admissible class of multipliers. These notions rely on noncommutative
forms of the Sobolev embedding theory for Markov semigroups, which carrie an ‘encoded
geometry’ in the commutative setting. Prior to that, we need to investigate new maximal
bounds whose Euclidean analogs are central in harmonic analysis. In this paper we shall limit
ourselves to unimodular groups to avoid technical issues concerning modular theory.

This text is divided into three blocks which are respectively devoted to maximal bounds,
Sobolev dimension and polynomial co-growth. Let us first put in context our maximal
estimates for Fourier multipliers. Given a symbol m : R” — C with corresponding Fourier
multiplier Ty, there is a long tradition in identifying maximal operators o} which satisfy the
weighted L,-norm inequality below for all admissible input functions f and weights w

(WL2) [ mrPw s [ 1rEomw.

It goes back to the work of Coérdoba and Fefferman in the 70’. This general principle
has deep connections with Bochner-Riesz multipliers and also with A, weight theory. The
Introduction of [2] gives a very nice historical summary and new results in this direction.
The main purpose of this estimate is that elementary duality arguments yield for p > 2 that

[T = Lp@®") — Ly®)| S [ : Loy (B") = Ligpay (R 2.
The most general noncommutative form of this inequality would require too much termi-
nology for this Introduction. Instead, let us just introduce the basic concepts to give a reason-
able but weaker statement. Stronger results will be given in the body of the paper. Let G be
a locally compact Hausdorff group. If we write u for the left Haar measure of G and A for
the left regular representation A : G — B(L,G), the group von Neumann algebra ZG is
the weak operator closure in B(L,G) of A(L1(G)). We refer to Section 1 for a construction
of the Plancherel weight T on ZG, a noncommutative substitute of the Haar measure. Note
that 7 is tracial iff G is unimodular—which we assume—and it coincides with the finite trace
given by t(x) = (8., x8.) when G is discrete. In the unimodular case, (ZG, t) is a semifi-
nite von Neumann algebra with a trace and it is easier to construct the noncommutative
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SMOOTH MULTIPLIERS VIA SOBOLEV DIMENSION 881

Lp-spaces L,(ZG,t) with norm [|x|, = z(|]x|?)"/?, where |x|? = (x*x)?/? by functional
calculus on the (unbounded) operator x*x. Given a bounded symbol m : G — C, the corre-
sponding Fourier multiplier is densely defined by T,,A(f) = A(mf'). Alternatively, it will be
useful to understand these operators as convolution maps in the following way

Th(x) =A(m)*xx = ® Id)(S)L(m) (ox® 1))

where § : £G — ZG ® ZG is determined by §(Ag) = Ay ® Ag ando : ZG — ZG
is the anti-automorphism given by linear extension of o(Ag) = A,-1. The first map is
called the comultiplication map for £G, whereas o is the corresponding coinvolution. Our
next ingredient is the L,-norm of maximal operators. Given a family of noncommuting
operators (x,,),, affiliated to a semifinite von Neumann algebra /7, their supremum is not
well-defined. We may however consider their L,-norms through

H suptx,
w€ER

HLp(c%) = ” (Xw)wen ”Lp(oﬂ’l;Loo(Q))’

where the mixed-norm L,(L)-space has a nontrivial definition obtained by Pisier for
hyperfinite ¢ in [31] and later generalized in [15, 20]. This definition recovers the norm
in L,(3; Loo(2)) for abelian oM = Loo(X), further details in Section 1. Finally, condi-
tionally negative lengths ¥ : G — R, are symmetric functions vanishing at the identity e
which satisfy }_, , agapy(g~'h) < 0 for any family of coefficients with Y ¢dg = 0. Due
to its one-to-one relation to Markov convolution semigroups, they will play a crucial role
in this paper. In the classical multiplier theorems, the symbols m are cut out with func-
tions 7n(|€]) for some compactly supported n € C°°(R). Our techniques do not allow us
to use compactly supported functions in R, . Instead, we are going to use analytic func-
tions decaying fast near 0 and near co. We will call such  an §#g°-cut-off, see Section 1
for the precise definitions. The archetype of such functions will be n(z) = ze ?. When
such function is real-valued for every z € R4 we will say that 5 is real. We will denote
by L;(%G) the noncommutative L,-space L,(ZG) modulo the functions supported
in Gy ={g € G :y¥(g) =0}, see Section 1.1.7 for details.

THEOREM A. — Let G be a unimodular group equipped with any conditionally negative
length  : G — Ry. Let n be a real Sy -cut-off and m : G — R an essentially bounded
symbol satisfying that m(g=") = m(g) for every g € G. Assume B; = A(mn(ty)) admits
a decomposition By = X;M, with M, positive and satisfying My = oM,, and consider the
convolution map R(x) = (|M;|?> * x)¢=0. Then the following inequality holds for 2 < p < oo

1
2
)

1Tl 3Ls(26) S (?ug ||Et||z) H R Lpj2y(LG) = L(p2y (LG Loo)
>

By duality, a similar stamens holds for 1 < p < 2. Moreover, the assumptions of 75
being real, of m satisfying that m(g~') = m(g) and of M, being positive and satisfying that
M, = oM, can be removed if we allow slight modifications in the statement of the theorem,
like framing the conclusion in terms of noncommutative Hardy spaces. Theorem A combines
in a very neatly way noncommutative generalizations of (W L,) with square function esti-
mates. In the particular case of Hérmander-Mikhlin symbols—as we shall see along this
paper—the decomposition splits the assumptions. Namely, the L,-norm of ¥, is bounded
using the smoothness condition while the maximal & is bounded through the geometrical
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882 A. GONZALEZ-PEREZ, M. JUNGE AND J. PARCET

assumptions regarding the dimensional behavior of 1. Apart from the direct consequences
given in the present paper, this result is of independent interest and admits potential appli-
cations in other directions to be explored in a forthcoming publication.

Given a conditionally negative length ¢ : G — R, the infinitesimal generator of the
semigroup A, — exp(—t¥(g))Ag is the map determined by A(A,) = ¥ (g)A.. In particular,
y-radial Fourier multipliers fall in the category of spectral operators of the form 7 (A4). These
maps are known as spectral multipliers and play a central role in the theory. Our aim in
this second block is to find smoothness criteria on m which implies L,-boundedness of the
spectral multiplier Tpoy .

It is well understood—specially after [6, 38]—that if we want to obtain L, boundedness
for m(A) from the smoothness of m, for every semigroup, we need to impose analyticity on m.
To obtain a smoothness condition with a finite number of derivatives our space needs to
be finite-dimensional. Indeed, it is known that the optimal smoothness order may growth
with the dimension. This indicates the necessity of defining a notion of dimension in the
non-commutative setting. We will take as dimension the value d > 0 for which a Sobolev
type embedding holds for A. Recall that there is a Sobolev embedding theory for Markov
semigroups introduced by Varopoulos [42]. More precisely, given a measure space (€2, i) and
certain elliptic operator A generating the Markov process S; = exp(—tA), one can introduce
the Sobolev dimension d for which the equivalence below holds

17120 @ < 142 f @y <= 150/ | < 217 1@

The property of the right hand side is known as ultracontractivity. When it holds for the
semigroup generated by an invariant Laplacian on a Lie group, it forces j(B;(e)) ~ t4.
Thus, we can understand ultracontractivity as a way of describing the growth of balls. With
that motivation we introduce general ultracontractivity properties

1
Si: L — < —,
where cb stands for completely bounded. The function ® will measure the “growth of
the balls”. Since doubling measure spaces are widely recognized as a natural setting for
performing harmonic analysis, we will impose ® to be doubling, i.e.,:

su {q’(z’)} <
b | @) ’

and our doubling dimension will be given by

Dg = log, sup

t>0

(21)
{ P(1) } '

In the classical abelian setting, apart from the ultracontractivity—or on-diagonal behavior
of S;—we need to impose off-diagonal decay on S;, typically Gaussian bounds. Let
(G, ¥, X) be a triple formed by a locally compact Hausdorff unimodular group G, a
conditionally negative length ¥ : G — Ry and an element X in the extended positive
cone £G4, see[12, 13] for precise definitions. We will say that the triple satisfies the standard
assumptions when:

4¢ SERIE - TOME 50 — 2017 — N° 4



SMOOTH MULTIPLIERS VIA SOBOLEV DIMENSION 883

1) Doublingness
Oy (s) = t(x[0,5)(X)) is doubling.

i1) L, Gaussian upper bounds
2

—Br=
T X)|A(e™Y 2) < 2" forsomef > 0.
(1o O ) 5 gs g
1ii) Hardy-Littlewood maximality
+X[0,s)(X) <
supT /22— x x X forevery 1 < p < .
Szlg Oy (5) S Ixlz,z6) yl<p

Lp(ZG)

We will also require the inequality iii) to hold uniformly for matrix amplifications. As we
shall see, inequality ii) implies ultracontractivity with ®y as growth function. We will omit
the dependency of X from ®x when it can be understood from the context. It is also
interesting to point out that, in the classical case, Gaussian bounds can be deduced from the
ultracontractivity in the presence of geometrical assumptions like locality or finite speed of
propagation for the wave equation, see [35, 36] and [34, Section 3]. Generalizing such results
to the noncommutative setting will be the object of forthcoming research. The connection of
standard assumptions with smooth y-radial Fourier multipliers is nearly optimal.

THEOREM B. — Let (G, V¥, X) be any triple satisfying the standard assumptions which we
considered above. Given an $Hy -cut-off function n and a symbol m : Ry — C, the following
inequalities hold for 1 < p < 0o :

) Ifs> (Do +1)/2

Trno o < sup |m(-)n(- s .
I Tmoy | (L3 (26y) = tzg lm@)nC) |y ®4)
i) If's > Dg/2 and € CBPlan;bfor some q > 2
o < In(-
I Tmov lesLs(zey) < igg [m(t )77()||Wq,S(R+)-
The last inequality holds with ¢ = oo under the sole assumption of s > Dg /2.

The term (33 also stands for “completely bounded” and the property CBPlan;I> plays the
role of the g-Plancherel property introduced by Duong-Ouhabaz-Sikora [41], see the body
of the paper for concrete definitions. The proof of Theorem B is the most technical in this
paper. It will explain the decoupling nature of Theorem A. The X, are controlled using the
Sobolev smoothness (via the Phragmen-Lindel6f theorem) for any degree s > 0, whereas the
maximal bound determines optimal restrictions in terms of the Sobolev dimension Dg.

Theorem B should be illustrated with interesting examples. The existence of natural triples
satisfying the standard assumptions for nonabelian groups is the subject of current research,
which will appear elsewhere. In this paper we shall construct such triples out of finite-
dimensional cocycles. This permits to recover the results in [18, 19] for v -radial multipliers.
In fact, we should emphasize at this point that the notion of dimension in the previous
approach was limited to the Hilbert space dimension of the cocycle determined by the
length . Working with finite-dimensional cocycles is an unfortunate limitation which we
could remove for noncommutative Riesz transforms in [19]. Theorem B allows to go even
further for smooth radial multipliers.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



884 A. GONZALEZ-PEREZ, M. JUNGE AND J. PARCET

In our third and last block of this paper, we consider general (non-spectral) Fourier
multipliers. Apart for the semigroup over ZG generated by ¥ we will endow G with two
semigroups &1/ % : Loo(G) = Loo(G) of left/right invariant operators. The intuition here
is that &; will describe the geometry of G while the semigroup generated by ¥ will describe
the geometry of its dual. If A denotes the infinitesimal generator of a semigroup over Lo (G),
we use the standard notation for its nonhomogeneous Sobolev spaces

1 lwpsor = 1A+ D216

When & is left invariant there exists a positive densely defined operator A affiliated to 2G
such that A(Af) = A(f)A forall f € domy(A).In a similar way we obtain A(Af) = AA(f)
when & is right invariant, see Proposition 3.3 for the proof. Then we define the polynomial
co-growth of A as follows

cogrowth(4) = inf{r >0:(1+ ;1\)_% € L1($G)} .

Our choice for the term “polynomial co-growth” sits on the intuition that A behaves like HE
in the case of the Laplacian A on R? and therefore cogrowth(&) = D follows from the
fact that large balls grow like 7. Further in Section 3 we will characterize polynomial co-
growth by relating the behavior of small balls in G with “large balls” in ZG, see Remark 3.8
for further explanations. It is also worth mentioning the close relation between polynomial
growth and Sobolev dimension as it will be analyzed in the body of the paper. Our main result
in this direction is the following criterium for non-spectral multipliers.

THEOREM C. — Let G be a unimodular group equipped with a conditionally negative
length . Let &1/ & 5 be respectively left/right invariant submarkovian semigroups on Loo(G)
whose generators Aj satisfy Cogrowth(;l\j) = D; for j = 1,2. Consider an $Hg -cut-off
Sunction n and a symbolm : G — C. Then, if's; > D; /2 for j = 1,2, the following inequality
holds for 1 < p < o0

1Tl eaLg 26y S Sup max {”’l(ﬂﬁ)m” Wit@Gy [n@yym| Wj;z(G)}‘

Theorem C establishes a link between the, a priori unrelated, geometries which deter-
mine ¥ and ;. Indeed, we use the length ¥ to cut m—determining the size of the support—
and use A; to measure the smoothness of m. It is interesting to note that passing to the dual
requires a size condition on A, reinforcing the intuition that duality switches size and
smoothness. The main difference with Theorem B is that in this general context we have
been forced to place the dilation in the cut-off function 5 instead of the multiplier m. We
conclude the paper illustrating Theorem C for Lie groups of polynomial growth by means
of the subriemannian metrics determined by sublaplacians, see Corollary 3.9.

1. Maximal bounds

1.1. Preliminaries

Although the material here exposed is probably well-known to experts, let us review some
notions and results in the interface between harmonic analysis and operator algebra that we
will need throughout this section. We will start with a brief exposition of noncommutative
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SMOOTH MULTIPLIERS VIA SOBOLEV DIMENSION 885

integration theory, including the construction of noncommutative L, spaces. Our main
example will be the group von Neumann algebra of an unimodular Lie group equipped with
its canonical Plancherel trace. Then we will review some basics of operator space theory
as well as the construction of certain mixed-norm spaces. Finally we will consider Markov
semigroups with an special emphasis on semigroups of convolution type. We will revisit
Hardy spaces and square function estimates associated with a semigroup.

1.1.1. Noncommutative L, spaces. — Part of von Neumann algebra theory has evolved as the
noncommutative form of measure theory and integration. A von Neumann algebra oM [24,
39, 40], is a unital weak-operator closed C*-subalgebra of J3(&#), the algebra of bounded
linear operators on a Hilbert space ¢#. We will write 1, or simply 1, for the unit. The posi-
tive cone oM is the set of positive operators in oM and a trace t : oM — [0, o] is a linear
map satisfying t(x*x) = t(xx*). Such map is said to be normal if sup,, t(xy) = T(SUpy Xs)
for bounded increasing nets (x4 ); it is semifinite if for x € M \ {0} there exists 0 < x’ < x
with t(x") < oo; and it is faithful if z(x) = 0 implies x = 0. The trace 7 plays the role of
the integral in the classical case. A von Neumann algebra ¢ is semifinite when it admits
a normal semifinite faithful (n.s.f. in short) trace T. Any x € M is a linear combination
X1 — X2 + ix3 —ix4 of four positive operators. Thus, T extends as an unbounded operator to
nonpositive elements and the tracial property takes the familiar form t(xy) = t(yx). The
pairs (M, ) composed by a von Neumann algebra and a n.s.f. trace will be called noncom-
mutative measure spaces. Note that commutative von Neumann algebras correspond to clas-
sical measurable spaces.

By the GNS construction, the noncommutative analog of measurable sets (characteristic
functions) are orthogonal projections. Given x € M, its support is the least projection ¢
in oM such that gx = x = xq and is denoted by suppx. Let & @ be the set of all x € M
such that T(suppx) < oo and set &, to be the linear span of & J&M If we write |x| = v/x*x,
we can use the spectral measure dE of |x| to observe that

xedy=xIP = / sPdE(s) € QS”Z}W = 7(|x]?) < o0.
R4

If we set ||x||, = r(|x|1’)%, we obtain a norm in &, for 1 < p < oo. By the strong density
of &y in M, the noncommutative L, space L,(cM) is the corresponding completion
for p < oo and L (M) = oM. Many basic properties of classical L, spaces like duality,
real and complex interpolation, Holder inequalities, etc hold in this setting. Elements
of L,(cM) can be described as measurable operators affiliated to (oM, ), we refer to
Pisier/Xu’s survey [33] for more information and historical references. Note that classical L,
spaces L, (2, u) are denoted in this terminology as L, (M) where oM is the commutative
von Neumann algebra Lo (2, ).

1.1.2. Group algebras and comultiplication formulae. — Our main example of noncommu-
tative measure space in this paper is that of group von Neumann algebra. Let G be a locally
compact and Hausdorff group (LCH group in short) equipped with its left Haar measure pu,
throughout this text we will assume G to have a numerable base for the topology. Let
A:G — B(L,G) be the left regular representation. We will also use A to denote the linear
extension of A to the space L(G). We will denote by C;'G the norm closure of A(L1(G))

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



886 A. GONZALEZ-PEREZ, M. JUNGE AND J. PARCET

and by ZG the closure of C}*G in the weak operator topology. ZG is usually referred to as
the group von Neumann algebra associated to G. There is a distinguished normal faithful
weight 7 : 2G4+ — Ry such that A : L1(G) N Ly(G) — ZG extends to an isometry from
L»(G) to Ly(ZG, t), the GNS construction associated to t. Such weight is unique and it is
called the Plancherel weight. When the function f belongs to the dense class C.(G) x C.(G)
we have t(A(f)) = f(e). The Plancherel weight is tracial if and only if G is unimodular.
In this case it is called the Plancherel trace. From now on we will focus on unimodular
groups. We will often work with the spaces L,(ZG, t) although the dependency on t will
be dropped in our terminology.

ZG has a natural comultiplication given by linear extension of §(Ag) = Az ® A, which
extends to a *-homomorphism § : C;G — C;G ®min C;G. There is a unique normal
extension § : G — ZG® ZG. This is a consequence of the fact that if § is normal
then 8x : LG+ ® TGy« — ZLGy. Here @min and ® represent respectively the minimal and
projective o.s. tensor products [32] and ® denotes the weak operator closure of the algebraic
tensor product. Identifying Z(G x G). with £G4 ® ZG. we have

8*</ch f(gl’gZ)A@ugz)dﬂ(gl)dM(gz)) =/Gf(g, Agdu(g).

for every f € C.(G x G) * C.(G x G). The boundedness of §. is then a consequence
of the Herz restriction theorem [14]. It is interesting to note that the Plancherel weight can
be characterized as the unique normal, nontrivial and §-invariant weight, where §-invariant
means that

(t ® Id)éx = t(x)1.
Analogously, Fourier multipliers are characterized as §-equivariant maps

§T = (T ® Id)§ = (Id ® T)8.

We will denote by 0 : ZG — <ZG the anti-automorphism given by linear extension
of 0(Ag) = Ag—1. The quantized convolution of two elements x, y affiliated to ZG is defined
by

x*xy = (r®Id)(éx (0y ®1)).
Observe that given m € Lo (G), the corresponding Fourier multiplier has the form

Tm(x) =A(m) xx = (T ® Id)(S/\(m) (ox ® 1)).

1.1.3. Operator space background. — The theory of operator spaces is regarded as a noncom-
mutative or quantized form of Banach space theory. An operator space E is a closed subspace
of B(EH). Let My, (E) be the space of m x m matrices with entries in E and impose on it the
norm inherited from M,,,(E) C B(S#™). The morphisms in this category are the completely
bounded linear maps (c.b. in short) u : E — F, i.e., those satisfying

lullepe,ry = |u: E— F|, = sup |1das,, ® u]l gas,, ) iy < O

Similarly, given C*-algebras A and B, a linear map u : A — B is called completely positive
(c.p. in short) when Idyy,, ®u is positivity preserving form > 1. Whenac.p.mapu : A — Bis
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SMOOTH MULTIPLIERS VIA SOBOLEV DIMENSION 887

contractive (resp. unital) we will say it is a c.c.p. (resp. u.c.p.) map. The Kadison-Schwartz
inequality for a c.c.p. map u : oM — M claims that

u(x)*u(x) <u(x*x) forall x e M.

Ruan’s axioms describe axiomatically those sequences of matrix norms which can occur
from an isometric embedding into JB(&#). Admissible sequences of matrix norms are called
operator space structures (o.s.s. in short) and become crucial in the theory. Given a Banach
space X and an isometric embedding p : X — B(S#) we will denote by X” the corre-
sponding operator space. Central branches from the theory of Banach spaces like duality,
tensor norms or complex interpolation have been successfully extended to the category of
operator spaces. Rather complete expositions are given in [8, 30, 32]. Two particular aspects
of operator space theory which are relevant in this paper are the following:

A. Vector-valued Schatten classes. — We will denote by S, the Schatten p-class given by
Sp = Lp(B(L2), Tr) with Tr the standard trace in J3(£5). Similarly, S, stands for the same
space over m x m matrices. Vector-valued forms of these spaces can be defined as long as
we define an o.s.s. over the space where we take values. Given an operator space E, we may
define the E-valued Schatten classes S| E] as the operator spaces given by interpolation

SPE) := [SZIEL SPE]]1 = [SZ ®min E.S]" ® E]

1 1-
D D

These classes provide a useful characterization of complete boundedness
lullesce.ry = sup [1du,, ® u| gspey spey for 1= p<oco

For a general hyperfinite von Neumann algebra ¢ the construction of L, (o}; E) is carried
out by direct limits of E-valued Schatten classes. We refer to Pisier’s book [31] for more
on vector-valued noncommutative L, spaces. The space L,(cM; E) for nonhyperfinite o
cannot be constructed without losing fundamental properties like projectivity/injectivity of
the functor E — L,(cM; E). Fortunately, this drawback is solvable for the vector-valued L,
space we shall be working with.

B. Operator space structure of L,. — Given an operator space E, its opposite Ep is the
operator space which comes equipped with the operator space structure determined by the
o.s.s. of E as follows

m m
H j’k2=1 ajx  ejk HMITI(EOP) = “ j’kz=1 ax; Q ejk HMm(E)’
where ey stand for the matrix units in M,,. Alternatively, if E C B(&/), then Eqp = E T
C B(S#), where T is the transpose. The op construction plays a role in the construction of
a “natural” o.s.s. for noncommutative L, spaces. If ¢ is a von Neumann algebra we will
denote by M, it opposite algebra, the original algebra with the multiplication reversed.
It is a well-known result that ¢}, and ¢ need not be isomorphic [5]. For every operator
space E the natural inclusion j : E — E** is a complete isometry. This allows us to build
an operator space structure in the predual ¢}, as the only operator space structure that
makes the inclusion j : oM, — oM™ completely isometric. The operator space structure
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of L,(cM) is given by operator space complex interpolation between Li(eM) = (Mop)«
and oM. In particular, it turns out that

Lp(W)* = Lp’(Wop)
is a complete isometry for 1 < p < oo, see [32, pp. 120-121] for further details.

1.1.4. Loo-valued L, spaces. — Maximal inequalities are a cornerstone in harmonic analysis.
Unfortunately, the supremum of a family of noncommuting operators is not well-defined,
so that we do not have a proper noncommutative analog of maximal functions. Neverthe-
less, this difficulty can be overcome if all we want is to bound is the maximal function in
noncommutative L,, as usually happens in harmonic analysis for commutative spaces. In
that case we exploit the fact that the p-norm of a maximal function can always be written as
a mixed L, (Lo )-norm of the corresponding entries. This reduces the problem to construct
the vector-valued spaces L,(cM; Loo(€2)). This construction can be carried out without
requiring o to be hyperfinite, relaying in the commutativity of Loo(2). L, (cM; Loo(S2)) 18
defined as the subspace of functions x € Loo(2; L,(cM)) which admit a factorization of
the form x, = @ yp B With a, B € Lap(eM) and y € Loo(R2; oH). The norm in such space
is then given by

[o)ocallL(oneraian = Il (es55up Iyollon) 1Bl = ¥ = avp}.
When x, > 0 the norm coincides with

(1.1) |Codoeelly ity = inf{||y||Lp(eM) C Xp < yforae we Q}
Its operator space structure satisfies

It is standard to use the following notation for the noncommutative L,(L)-norm

+ _

H e ¢ HLP(CM) = [oocal L, @y

where the sup is just a symbolic notation without an intrinsic meaning. In the proof of
Theorem B we will use the fact that if (i, )w,eq, 15 @ family of finite positive measures in €2
and (Ry, )w, eq, is a family of positivity preserving operators, then the following bound holds

forx € L,(M)+

12 s [ Ro@dan@)}] ) = (w0 Tonli)| sup* Roy )

Wy €QH Wy €N w1 €Q Hp

When M is hyperfinite, this definition of L,(eM; Loo(2)) coincides with the corre-
sponding vector-valued space as defined by Pisier [31]. This approach to handle maximal
inequalities in von Neumann algebras has been successfully used in [15] to find noncommu-
tative forms of Doob’s maximal inequality for martingales and the maximal ergodic inequal-
ities for Markov semigroups [23]. The predual can be explicitly described as the L{-valued
space L,/ (cM; L1(S2)). Indeed, let S, (2) be the Schatten class associated to the Hilbert space
L,(£2). Note that there is a hermitian form ¢ : L, ,(cM) ® S5() X Ly 5 (M) ® S5(R2) —
Ly(cM) ® L1(R2) given by

gx®m,y ®n) = x*y ® diag(m*n),
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where diag : S1(2) — L;(f2) is the restriction to the diagonal. Define

XMz, (L1 @) = inf{||a||L2p(em;s5(Q)) 1612, (555 * q(a,b) = X}-
This space satisfies that L, (cM; L1(R))* = Ly (cMop: Loo(R)) for 1 < p < oc.

1.1.5. Hilbert-valued L, spaces. — For certain operator spaces whose underlying Banach
space is a Hilbert space we can define vector-valued noncommutative L, spaces for general
von Neumann algebras. Indeed, let &/ be a Hilbert space and P.&§ = (e, £)e for some e € S/
of unit norm. We define the following two Hilbert-valued forms of L, ()

Lp(eM; J) = Lp(M® B(H)) A gy @ Pe),

Lp(M; ) = gy @ Pe)Lp(M® B(H)),
called the L, spaces with ¢#-column (resp. ¢//-row) values. Their o.s.s. are the ones inher-
ited from L,( M ® AB(SH)). If 4 = {5, then we can identify L,(B(H) ® M) with
L,(cM)-valued n x n matrices. Under that identification L, (M; S£°) (resp. L,y (M; SH'))

corresponds to the matrices with zero entries outside the first column (resp. row) and we
have that

Ly()

n
H Z)Cj ® ej1
ji=1
n
H Zx_/ ® ey;
j=1

The same formulas hold after replacing the finite sums by infinite ones of even by integrals.
For every 1 < p < oo we can embed ¢/ isometrically in S, by sending c,(ej) = eq
or rp(ej) = e;1, where {e;} is an orthonormal basis of ¢#. Such maps are called the
p-column/p-row embeddings. These isometries endow ¢/ with several o.s. structures.
Observe that, as an o.s, L,(cM; A7) (resp. L,y(M; SE7)) coincides with Pisier’s vector-
valued L,-space L,(cM; ) (resp. Lp(cM; SH™)) for oM hyperfinite. For 1 < p < oo
the duals are given by L, (cM: F)* = Ly (M: J°) and Ly (M: F)V* = Ly (M. ).

The duality pairing can be expressed as

<Z_/ xj ®ej, Zk Yk ® €k> = Zj T(x;))-
The spaces L,(cM; $#) and L, (M; S#°) form complex interpolation scales for p > 1

[Loo(H: ). Ly (M H)]y = Ly (M S,
[Loo(H: ). Ly (M H)]y = Ly (M: FO).

In order to treat square functions and Hardy spaces we will need to control sums and inter-
sections of these Hilbert valued noncommutative L, spaces. The algebraic tensor product
L,(M)® Hembedsin L,(M® HB(EH)) by Id®r and Id®c. Taking direct sums we obtain
an embeddingin X = L,(M & B(H) ® Ly(M & B(SH)). The space L,(M; F'7€) is
defined as the norm closure (or weak-* closure if p = 00) of L,(cM) ® ¢/ inside X. Such
space comes equipped with the norm given by

n 1
n J
Lp(M® B(E)) =

1
*\ 2

n
AE ) |
Lp(H® BUL)) H(; I50 ) Lo

160 opsrrney = max {15 s iy 1L s )
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The embedding also gives L,(cM: 7€) an o.s.s. We will denote the dual spaces by
Ly(eM; ) = Ly (Mop: SH")* for 1 < p < oo. Since the subspace
Loo(Mop: H'™) C (1® Pey)(Mop ® B(T) ® (Mop ® B(FNA® Pey)
C Mop ® B(H) & Mop ® B(H)
is weak-* closed, Loo(cMop: S#'"°) inherits a natural weak-* topology through the inclu-

sion. The space L, (cM; @%r“) is defined as the subset of weak-* continuous functionals
in Loo(cMop: &/"°)*. The sum notation comes from the fact that

15 ey = I oy + 1oy % = v + 2.
We will denote by L, (cM; S#°) the spaces given by
Ly(cM; SH'T¢) whenl < p <2,
Ly(M; 7€) when2 < p < o0.

The spaces L,(cM; S#°°) are crucial for the noncommutative Khintchine inequalities [27,
28], the noncommutative Burkholder-Gundy inequalities [22], noncommutative Littlewood-
Paley estimates [16] and other related results.

Lp(M; H'€) =

1.1.6. Markovian semigroups and length functions. — A semigroup & = (S;)r>0 over a
Banach space X is a family of operators S; : X — X such that Sy = Id and S;S; = S;+s.
Let (oM, ) be a noncommutative measure space, we will say that a semigroup & over oM is
submarkovian iff:

1) each S; is a weak-* continuous and c.c.p. map,
i) each S; is a self-adjoint, i.e., T(S;x*y) = t(x*S;y),
iii) the map ¢z — S; is pointwise weak-* continuous.

o is Markovian if each S; is a u.c.p. map, ie S;(1) = 1. Markovian operators satisfy
7 o §; = t while submarkovian ones satisfy T o §; < 7. Sometimes these semigroups
are called symmetric and Markovian, where symmetric is synonym with self-adjoint. All the
semigroups in this paper will be symmetric, so we will drop the adjective. Using the first two
properties it is easy to see that S; extends to a c.c.p. map on L;(M). By the Riesz-Thorin
theorem S; is a complete contraction over L,(cM) for 1 < p < oo. The third property
implies that ¢ — S; is SOT continuous in L (). By interpolation between the pointwise
norm continuity on L;(¢/) and the pointwise weak-* continuity on ¢ we obtain that
t — S; is SOT continuous on L, (M) for 1 < p < oo. Forevery 1 < p < oo thereis a
densely defined and closable operator A whose closed domain is given by

— S[X

dom,(A) = {x €Ly(cM):3 lim >
t—>0+
When p = 2 we have that S, = e~ and S,[L,(c¥)] C dom,(A) for 1 < p < oo. In
the case p = oo we have that A is densely defined and closable with respect to the weak-x
topology with domain given by those x € M such that lim,_, o+ (x — S;x)/¢ exists in the
weak-* topology. We will call A4 the infinitesimal generator of .

in the norm topology }

We are interested in those (sub)markovian semigroups over ¢ = <G which are of
convolution type. In other words, each S; is a Fourier multiplier. It can be proved that

4¢ SERIE - TOME 50 — 2017 — N° 4



SMOOTH MULTIPLIERS VIA SOBOLEV DIMENSION 891

S; = T,—+v for some function . Let us recall a characterization of these functions. First,
recall some definitions. A continuous function ¥ : G — C is said to be conditionally
negative (c.n. in short) iff ¢ (¢) = 0 and for every finite subset {g1, ..., gn} C G and vector
(v1, .., Um) € C" we have

m m

Dvi=0 = > y(g g <0.

i=1 ij=1
When ¢ : G — Ry is symmetric (¥(g) = ¥ (g~ ')) and c.n. we will say that ¥ is a condi-
tionally negative length. Let §/ be a real Hilbert space. Given an orthogonal representation
a : G — O(EH) we say that a continuous map b : G — S# is a 1-cocycle (with respect to «)
iff it satisfies the 1-cocycle law

b(gh) = a(g)b(h) + b(g).
The following characterization is proved in [1, Appendix C] or [4, Chapter 1].

THEOREM 1.1. — Let & = (S¢)r>0 be a semigroup of convolution type over the group
algebra LG. Then, the following statements are equivalent:

1) & is a Markovian semigroup,
i) thereis a c.n. length ¢ : G — Ry such that Sy = T,—1v,
iii) there is a real Hilbert space &/, an orthogonal representation o : G — O(&H) and a
1-cocycle b : G — &H, such that ¥ (g) = ||b(g)||§% and Sy = T,—1v.

1.1.7. Holomorphic calculus and noncommutative Hardy spaces. — We now introduce
the Hardy spaces associated with a submarkovian semigroup on (oM, t) as well as the
corresponding $#°°-functional calculus. Both tools were introduced in the noncom-
mutative setting in [16]. If & is a submarkovian semigroup, the fixed point subspace
Fp ={x € Lp,(cM) : S;(x) = x YVt > 0} coincides with ker A C dom,(4) and it is a subal-
gebra when p = oo. It is also easily seen to be a complemented subspace for 1 < p < oo with
projection given by O, (x) = lim;— o« S;x where the limit converges in the weak-* topology
of Ly, for I < p < oo. In that range of p we will denote by Ly (M) = Lp(cM)/Fp
which is also a complemented subspace with projection given by P, = Id — Q,. Note
that L,(cM) ~ Ly(cM) @p Fp. When S; are Fourier multipliers over o = ZG with
symbol e~*¥ we define Go = {g € G : ¥(g) = 0}. In that case it is easy to see that F,
coincides with the space bellow

{x € L,(cM): x = A(v) with supp(v) C Go}”’”".

Indeed, let us denote the space above by B,,. The inclusion B, C F, is trivial. For the other
we are going to distinguish between two cases. The first is when 1 < p < 2. In such range the
operator A* : L,(2G) — L,/(G) is contractive and so, if S;(x) = x, we have that x = A(f)
and that e’V f = f. Which implies that f|g\G, = 0. In the range 2 < p < oo, assume
that xo € F, butnotin By, then by the Hahn-Banach theorem, thereisa yo € L, (ZG) such
that (yo, xo) > € and (yo,x) = 0 when x € B,. We have that yo = A(fo) and by the second
condition we have that

0= (yo. A()) = /G fodv,
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for every v with supp[v] C Go which in turn implies that fy|g, = 0. As a consequence
e~V fo — 0 pointwise. On the other hand, since xo satisfies that S; (xo) = xo for every ¢, we
can change yg by S; (o) keeping the separation properties. The same holds for every element
in the weak-x* closed convex hull of such family

C=hull" {A(e™V fo): 0 <1t}.

But, the limit e 7*¥(®) f;(g) — 0 implies that 0 € C, which contradicts (y, x) > €.

In a similar way we find that A(v) € L;(o]l@ if and only if the support of the measure v
doesn’t intersect Gy. It is also worth recalling that for Gy of measure zero L;(%G) = L,(ZG).

For any given x € oM we define the function Tx :(0,00) — L,(cM) given by
t > 19;S;x. We can see x > T'x as a map from certain domain D C M into L,(M; /'),
Ly(cM; ) or Ly(M; H'), where S = Lp(R4,dt/t). The induced seminorms
on D C oM are called the row Hardy space, column Hardy space or Hardy space semi-
norms. Observe that the map T has as kernel those elements fixed by &. Quotient out the
null space and taking the completion with respect to any of those norms when p < oo
(resp. the weak-x topology for p = oo) gives the Hardy spaces H (cM; &), Hy (M &) or
H,(M; &). We can represent such norms as follows

Il g oz 57 = H([R+ (I%S’x)*(t%stx)$)%

XNl g (89 = H(/R+ Q%S’x)(f%&x)*%)%

We will drop the dependency on the semigroup and write H; (M) whenever it can be
understood from the context. These spaces inherit their o.s.s. from that of L,(cM; $#") or
Ly(cM; S/°). Therefore we have the following identities

SylH, (M; $)] = Hy(M® B(L3); & ®1d),
SylH, (M; §)] = Hy(M® B(L3); & ® 1d).
The duality is obtained from that of L,(cM; S£°) or Ly(cM; S#'), resulting in the cb-

isometries H, (M; &) = H;,(o]ﬁ/lop; o) for 1 < p < oo. The same holds for the column
case. Finally let us recall that by [16, Chapters 7 and 10] we have thatif 1 < p < oo then

(1.3) Hp(M: 8) = Ly (M),

with the equivalence as operator spaces depending on the constant p. The result fails
for p = 1,00 and Hy(M; &) is smaller in general than LS (). Observe that 10,5;x =
n(tA)x where n(z) = ze™%. Due to the results in [16] we can change n by other analytic func-
tions in certain class obtaining equivalent norms. We will say that a holomorphic function
p defined over the sector g = {z € C : |arg(z)| < 0} is in S (Zy) iff it is bounded and
we will say that it is in $#g (2g) C S#™° () iff there is an s > 0 such that

Lp()’

Ly(0)

|z|*
()| < RN

We will denote by /% or &y the spaces (Nop<z/a K (Z6) OF (No<pen/z Ho (Z6)
respectively. If needed, we will equip these spaces with their natural inverse limit topologies.
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We have that for any p € §#;° the following holds

" ”x”Hﬁ(eM) ~(p) ”(/]R+ (P(IA)x)*p(l‘A)x%>é
t

1
¥z ~o | ([ pears (o))’

R4
The equivalence also holds after matrix amplifications. This type of identities also hold for

wider classes of unbounded operators A satisfying certain resolvent estimates, see [16] for
further details.

Lp()

Ly

1.2. The general principle

We are now ready to prove our maximal bounds in Theorem A. In fact, we shall obtain a
more general principle in Theorem 1.3 which decouples in terms of row and column Hardy
spaces.

DEFINITION 1.2. — Let (By):>0 be a family of operators affiliated to TG. We say that

(Bt)t>0 has an Ly-square-max decomposition when there is a decomposition B, = X;M;
such that :
sup | Z¢l2 < oo,
(SM) =
sup*o|M;|? x uH < Il
t>0 p

Similarly, (B;)s>o has an L,-max-square decomposition when B; = M;%; with:

Sp[|Sifla < oo,
(MS,) L

sup*o [ M2« ul S Il
t>0 p

When we say that (B;);>o has a max-square (resp. square-max) decomposition we mean
that it has an L ,-max-square (resp. L,-square-max) decomposition for every 1 < p < oco.

THEOREM 1.3. — Let G be a LCH group equipped with a conditionally negative length
¥ G —> Ry. Let & = (St)s>0 be the convolution semigroup generated by W and pick any
ne Sy Ifm : G — Cis a bounded function satisfying that B, = A(mn(ty)) has an
L(p/2y-square-max decomposition By = ;M for some 2 < p < oo, then Ty, : Hy(ZG) —
H(ZG) and

1
2

1T\l 3cHS) S(o) (sug ||Ez||2) H (R0 : L(p/2y(ZG) — L(pj2y(4G; Loo)
>

where R¢(x) = o|M;|* x x. Similarly, when (By):>o admits an L, /2y -max-square decompo-
sition By = M;X; for some 2 < p < 0o, we get Ty, : H)(ZG) — Hy(ZG) and the following
estimate holds

1
2

1Tl 1) e» (SR ISel2) [ (RDizo - Loy (26) = Lipyay (26 Leo)
=

where R} (x) = o|M}|? = x. By duality, similar identities also hold for 1 < p < 2.
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COROLLARY 1.4. — If G, ¥, n and m are as above and B, = A(mn(ty)) admits both
a Lpjay-max-square and a L, zy-square-max decomposition, then it turns out that
T : Ly(2G) — Ly (ZG) boundedly. Furthermore, if m = c in Go = {g € G : ¥(g)}
then Ty, is a bounded map on L,(ZG).

Proof. — The first assertion follows trivially from (1.3). For the second we use that
L;(ZG) is a complemented subspace, and so

ITmxllp = 1PpTmxllp + 1 QpTmxllp

= 1Tw Poxllzg 20y + 1 Tmg, @o¥lp S (ITml gy +¢)Ixlpe O

Proof of Theorem 1.3. — Assume that B, = A(mn(ty)) has an L, y-square-max
decomposition. According to (1.4) with p(z) = n(z)o(z) for some 0 € &g, and using
that T,,, commutes with the spectral calculus of A (the generator of &) we obtain

1T () g~ [ (1At A) Tnx) ”Lp(zG;Lg)
= |(nt ) Tmo(tA)x), ., “LP(ZG;Lg)
= || (T'm(xt))zzo ”Lp(zG;Lg)’

where m;(g) = m(g)n(ty(g)) and x; = Tpuy)X. Recall also that the L,-space involved is
L, (Ry,dt/t). Now we may express the term on the right hand side as follows

2 dt
(1.5) | (T, (x0)) 5 HLp(sz;Lg) = H /R+ |Tmtxz|27 ,

dt dt
([ P = [ i)
Ry t Ry t

where u € L(p/2y(ZG)+ is the unique element realizing the L, ,-norm, which exists by the
weak-* compactness of the unit ball of L, /2y (Z2G). Now we have to estimate the term inside
the integral. As u > 0, we may write u = w*w for some w € L;(,/2y and

(1. T, (x02) = (0] T, (20) Pw%) = 7(w |z @ 1) (8B (0, @ 1) | w*).

L;

As L; — wL,w* is order preserving, any bound of L; gives a bound of the above term. By
the complete positivity of the canonical trace we can apply Proposition 1.1 in [26], i.e.,

(x, 1) (e ) = e )y, y)
to the operator-valued inner product {x, y) = (r ® Id)(x*y). This yields

Lo = | ® 1)(5%,5M, (0%, ® 1))
< | @IBIE ) 46 (¢ ® 1)((037 @ DM M, (03, ® 1)

< (sup I=4113) (= @ 1) (81M, P(0(xfx) @ 1) = ((sup 2 13) (1Ml » x7x1).
t>0 t>0
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We have used the §-invariance of the trace in the second inequality and the definition of the
noncommutative convolution in the last identity. Now, substituting inside the trace and using
the identity for the adjoint of the noncommutative convolution operator gives

(U T, (x)?) < K2 (u(IMe]? % x7x0)) = K2T((0| My |* % u)x[x;),

where K is the supremum of the L, norm of X;. This gives rise to

dt
ITw@lg S0 K [ el i)
+

. dt
< K? inf r(A[ x;"x,—)
o|lM,|2xu<A4 Ry t
< K* inf |4] / x5 x dt H
- o|M;|2xu<A Lwray Ry £ t lip/2
S K2 (RS>0 : Lipjay — L(p/2)’(Loo)” ”x“ib?

by using Fatou’s lemma in the second line and the definition of the L,(ZG; L) norm for
positive elements in the last inequality. Taking square roots gives the desired estimate. The
calculations for the row case are entirely analogous. O

REMARK 1.5. — Throughout this paper we construct max-square and square-max
decompositions of B, = A(mn(ty)) by choosing an smoothing positive factor M, with
M; = oM; = M and satisfying the appropriate maximal inequalities. Then we extract M,
from the left and from the right of B, as

B, = (B;M; )M,
B, = M;(M;['B,).

If the family ¥; = B;M,” 1 is uniformly bounded in L, and B; is self-adjoint then the other
is automatically uniformly in L, by the traciality of 7. Most of the times it will be enough to
check one of the two decompositions.

Proof of Theorem A. — The assumptions on m and 7 ensure that B; is self-adjoint, simi-
larly we know by assumption that M, is symmetric and positive. The result follows easily
from Theorem 1.3 and Remark 1.5. O

REMARK 1.6. — The technique employed here gives complete bounds assuming that the
maximal inequalities are satisfied with complete bounds. In order to prove that assertion, let
us express the matrix extension (75, ® Idas,) as a matrix-valued multiplier whose symbol
takes diagonal values. Indeed

(T ® 1day, ) ([xi7]) = (14 ® T @ Ty, ) ($2.00) @ Ly,) (1@ o)),
K
where K is the corresponding kernel affiliated with ZG ® G ® Cly, . Clearly, any
square-max decomposition B, = X,M; of By = A(mn(ty)) yields a diagonal decom-
position (§¥; ® 1p,)(6M; ® 1p,) of K = 6B; ® 1p,. On the other hand recall
that 7, : H; — Hy iscb. iff T, ® Idy, @ Sp[H,] — S;[Hj] is uniformly bounded
forn > 1 and that S;[H;(2G; &)] = Hy (M, ® 2G;1d ® &). That allows us to write the
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norm of S [H;(%G; &)] as an L,/-norm like in (1.5). Then, using [26, Proposition 1.1]
for (x,y) = (Id ® v ® Idp,, ) (x*y) as in the proof of Theorem 1.3, gives for 2 < p < oo

1
2
cb

ITallsrs) v (5P 1Sel) [ (RE)ezo0 * Lip/ay (£6) = Loy (26: Leo)
=

The row case is similar. The discussion of Corollary 1.4 generalizes to ¢.b. norms.

2. Spectral multipliers

2.1. Ultracontractivity

Let (oM, ) be a noncommutative measure space and consider a Markov semigroup
© = (St)¢>0 defined on it. Given a positive function ® : Ry — Ry and 1 < p < g < oo,
we say that & satisfies the Rg;q ultracontractivity property when

1
X : < -

(R29) IS¢ - Lp(eM) — Lo(M)|| £ Py Vi>0.

Similarly, § has the CBRE? property when the above estimate holds for the c.b. norm
of S¢ : L(cM) — Ly(M). These inequalities have been extensively studied for commuta-
tive measure spaces [43, Chapter 1]. In the theory of Lie groups with an invariant Rieman-
nian metric (equipped with the heat semigroup generated by the invariant Laplacian)
ultracontractivity holds for the function ®(z) = w(B;(e)) which assigns the volume of a
ball for a given radius. Influenced by that, we will interpret the above-defined properties
as a way of describing the “growth of the balls” in the noncommutative geometry deter-
mined by & = (S¢)¢>0. For that reason, we will work with doubling functions ®. Doubling
functions are increasing functions ® : Ry — R with ®(0) = 0 and satisfying

{ d(21) }

sup < 00.

t>0 @([)

The doubling condition for @ is a natural requirement since metric measure spaces (2, i, d)
with ®,(t) = w(Bx(?)) uniformly doubling in x constitute an adequate setting for
performing harmonic analysis in commutative measure spaces. Given a Markov semigroup
& = (S¢)r>0 over a noncommutative measure space (oM, 1), let us recall the following:

i) If & satisfies RE*° it satisfies R5 for 1 < po < p < ¢ < g < oo.
ii) If ® is doubling and § satisfies R5""% for some 1 < py < go < oo, then it satisfies
RE%forl < p <gq < oo.

The same holds for the CBRE“° ultracontractivity property. The proof follows the same
lines than [43, Theorem I1.1.3]. In the noncommutative setting a similar result is stated in [17,
Lemma 1.1.2 ] for ®(¢) = tP. As a consequence, all the ultracontractivity properties RE4
are equivalent for doubling . We shall denote them simply by R and similarly CBR . As
a corollary, we obtain that if ¢} is an abelian von Neumann algebra CBR%“ and RE? are
equivalent for doubling @ since R%? is equivalent to RS> and any bounded map into an
abelian C *-algebra is completely bounded. For any doubling function ® we may define its
doubling dimension D¢ as

Dy = log, sup

t>0

®(21)
[a07)
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It is quite simple to show that any doubling ® : Ry — Ry admits upper/lower polynomial
bounds for large/small values of t > 0. More precisely, we have the bounds

O(t) S(py) tP* ®(1) when 1> 1,

2.1 D
(1) Z(pg) - P(1) when ¢ <1.

Of course, the converse of this assertion is false. Whenever a Markovian semigroup &
satisfies R (resp. CBRg) for doubling ® we will call D¢ the Sobolev dimension (resp. c.b.
Sobolev dimension) of (M, 1) with respect to &. The reason for this name is based on
the well-known relation between ultracontractivity estimates for a Markov semigroup and
Sobolev embedding estimates for its infinitesimal generator. One of the first contributions
to that relation is in the work of Varopoulos, who proved in [42] that when ®(t) = t? the
property R is equivalent to a whole range of Sobolev type estimates for the infinitesimal
generator of the semigroup. See also [43] for more on that topic. Whenever ®(¢) = t? we
will denote the ultracontractivity properties by Rp or CBRp. By adding a zero, like R (0),
we will mean that the inequality R%7 is satisfied for # < 1 for every p < g. This notation
is borrowed from [43, I1.5]. Recall that if & satisfies Rg (resp. CBRg) for some doubling
function @ then, by the polynomial bounds in (2.1), we have Rp, (0) (resp. CBRp, (0)).

Our characterization of co-polynomial growth in Section 3 bellow requires the following
equivalence for Sobolev-type inequalities in term of the ultracontractivity properties Rp (0).
We did not find the proposition below in the literature, but it could be well-known to experts.
We include a sketch of the proof.

ProOPOSITION 2.1. — Let & be a submarkovian semigroup acting on a noncommutative
measure space (M, ©). Let A denote its infinitesimal generator. Then, the following properties
are equivalent :

1) for every e > 0, & satisfies the Rp.(0) property,
i) for every ¢ > 0, we have that

1A+ AP Lo(e) — M Seey -
Similarly, & € CBRp4.(0) forall e > 0iff (1 + A)™* : L(cM) b, M for all € > 0.

Proof. — The implication 1) = ii) follows from the identity

A+ 4 x) = %(4 tse_tSt(x)?)
+

The integral in [0, 1] may be estimated applying the Rp (0) property, whereas the integral
for t > 1 is easily estimated using the semigroup law. This gives the desired implication. For
the converse, we now take s = D/4 4+ ¢ and use that || f(A)[| aiz,) < || f lloo

¢t La(eM) > M| = |+ H7EA+ )3,

B(L2 (M), M)
<Ja+a |a+mis,
B(L2 (M), M) B(L2)
s\(G3) s et
Stes) (5) e zl_%. ]
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REMARK 2.2. — Observe that if Rp(0) is satisfied then ii) also holds. Nevertheless the
converse is not true since the norm ||S; : Li(cM) — M| could be comparable to, say,
tP(1 4+ log(t)) for 0 < t < 1. The original result proved by Varopoulos [42] established a
equivalence between R p (0) and the bounds

A+ A Ly(M) = L_pn (M)

for every 0 < s < n/p. When s > n/p the image space of L, (M) is certainly much smaller
than Lo (M), for example in R” with the usual Laplacian the image space lies inside spaces
of Holder functions. Therefore, by describing the behavior of (1 + A)™* in Lo (M) we lose
information and we can no longer recover Rp (0).

We will denote by WAp (M), or simply WP (M) when the semigroup S; = ¢~*4 can be
understood from the context, the closed domain in L, (/) of the unbounded operator (1 +
A)$/2, with norm given by

Ixllyps = A+ 4727,
These are called the fractional Sobolev spaces associated with &. They satisfy the natural
interpolation identities. Namely, if we set 1/p3 = (1 — 0)/p1 + 0/ p> we get

(W2 (M), WP ()] = W (),
(W (M) W2 ()] = W20 (o).
Point ii) in Proposition 2.1 may be rephrased as WA2 S (M) C M forevery s > D/2.

2.1.1. L, bounds for CB(L2(ZG), TG) multipliers.— We shall work extensively with Marko-
vian convolution semigroups over £G with the CBRg ultracontractivity property for
doubling ®. In general, determining the c.b. norm of a multiplier between general L, spaces
is a problem that nobody expects to be solvable with a closed formula. Despite that, we
can obtain characterizations in some particular cases. One of these cases is that of the c.b.
multipliers Ty, : Ly(ZG) — <ZG. That will allow us to express the CBR?I;CX’ property
of & = (T,~tv)¢>0 as a condition over y. The next theorem is probably known to experts.
Since we could not find it in the literature, we include it here for the sake of completeness.

THEOREM 2.3. — If T denotes the map m +— T, :

i) T:LY(G) - GB(LS(LG), TG) is a complete isometry.

ii) 7 : L5(G) — CAR(LL(LG), LG) is a complete isometry.

The image of T is the set of multipliers Ty, : L;(iG) LNe for 1 € {c,r} resp.

Proof. — Let V and W be operator spaces and pick x ® y € V* @ W*. According
to [32, Theorem 4.1] the map Jxg,(w) = x(y,w) extends linearly to an isomorphism
J: (VRW)* — CGB(W,V*). Using the pairing (,) : L5(ZG) x L§(ZG) — C given
by (y, w) = 7(y ow) we obtain as a consequence that

Ts:(w) = 1d R 1)(§z A Q@ ow)) =z * w,
where §z denotes the comultiplication map acting on z. This yields

|7 - LY(ZG) — LG |, = [8200) ] (1. 515207y
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where T € {r, ¢} is either the row or the column o.s.s. We now claim that the natural map
U Loo(Z2G: LY (2G)) — (2G. ® LY (26))”

is a complete isometry with 1°° = r for ¥ = ¢ and vice-versa. This is all what is needed
to complete the argument since we have the following commutative diagram of complete
isometries

LiG) r CBLL" (26), 2G)
p i
Li(ZG) (2G. & LY" (2G))*

\ /
Loo(ZG; LY(ZG)).
Let us therefore justify our claim. According to [§]
(2G.® L}(26)* ~ 26 ® ¢ L1” (2G)

where ® g stands for the Fubini tensor product of dual operator spaces. Bear in mind
that if V* and W* are dual operator spaces, there are weak-* continuous embeddings
V*C B(S#) and W* C B(H,) and we can define the weak-* spatial tensor product
V*® W* as
VXRW* = (V* @ WHv".

Such construction is representation independent and V* ® W* embeds completely isomet-
rically in V* ® & W*. Since the column and row embeddings of L,(ZG) into B(L2(ZG))
are weak-* continuous, L (ZG; LZOP(XZG)) = %G@L;op(%G). This proves that ¢ is a
complete isometry and so is the map m +— T, = J sA(m)- O

REMARK 2.4. — Since L5(ZG) and L§(ZG) are isometric as Banach spaces, the norms
for multipliers in GB(L5(ZG), LG) and CAB(LS(ZG), ZG) coincide too, even if their
matrix amplifications do not. Indeed we obtain that

1T ll ey (26).26) = Imlla@y = 1Tmll eswsz6).26)-

For non-hyperfinite ZG, the space of Fourier multipliers in GB(L2(ZG), £G), may be diffi-
cult to describe as an operator space. Nevertheless, as a consequence of the above identities,
its underlying Banach space is the Hilbert space L,(G).

REMARK 2.5. — As a consequence of the above, if G is a group and & = (T,—rv )s>0 18
a semigroup of Fourier multipliers satisfying CBRfI;oo for some function @, then G is
amenable. To see it just notice that e 'V € L,(G) and so e 2V € L,(G) for allt > 0. But
a group is amenable iff there is a sequence of integrable positive type functions converging
to 1 uniformly in compacts.
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2.2. Standard assumptions

Let Z2G% denote the extended positive cone of ZG. As it will become clear along
the paper, we shall treat unbounded operators X in ZG as noncommutative or quantized
metrics over ZG. Note that if G is LCH and abelian, any translation-invariant metric over its
dual group can be associated with the positive function A : y — d(y, e). The metric condi-
tions impose that A is symmetric, does not vanish outside e and A(x1x2) < A(x1) + A(x2).
Here we will only require X to be symmetric, i.e., to satisfy X = X. Recall that
the anti-automorphism o extends to ZG%. Following the intuition relating symmetric
operators in ZG% to metrics, we will say that X € <G} is doubling iff the function
®x (r) = t(x[0,/(X)) is doubling. When the dependency on the operator X can be under-
stood from the context we will just write ®. In a similar fashion, we will say that X satisfies
the L ,-Hardy-Littlewood maximal property when

(10 < .

x (7) p

If we say that X has the HL property, omitting the dependency on p, we mean that the HL
property is satisfied for every 1 < p < oo, with constants depending on p. When the property
HL,, holds uniformly for all matrix amplifications, we will say that X satisfies the completely
bounded Hardy-Littlewood maximal property (CBHL, in short). Let ¥ : G — Ry be a
conditionally negative length generating a semigroup & . We will say that & has L, Gaussian
bounds with respect to X when there is some 8 > 0 such that

(HL,) sup*

r>0

2
.
e PT

Py (V1)
DEFINITION 2.6. — A triple (2G, &, X), where & is a Markov semigroup of Fourier

multipliers generated by ¥ : G — Ry and X € (2G)Y}, is said to satisfy the standard
assumptions when

(L2GB) | Hroo XA} S

1) X is symmetric and doubling.
i) & has Lo,GB with respect to X.
i) X satisfies the CBHL property.
Since LG is determined by G and § by W we shall often write (G, ¥, X) instead.

REMARK 2.7. — If & has L,GB then it admits CBR;;;O ultracontractivity. Namely if we
take r = 0 in (L,GB), it follows from Theorem 2.3 and Remark 2.4. If X is in addition
doubling, & has the whole range of ultracontractivity properties CBR g, .

2.2.1. Stability under Cartesian products. — It is interesting to note that the standard
assumptions are stable under certain algebraic operations, the most trivial of them is prob-
ably the Cartesian product. Stability under crossed products also holds under natural
conditions, see Remark 2.10 below.

LEMMA 2.8. — Assume that
§7 = (8] )wyeq; : Lp(My) = Lp(: Loo()))
is completely positive for j € {1,2}. Then §* @ &2 is also c.p. and
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| 6" ® 8 Lp(oMy & oMa) = Lp(oM1 & oMai Loo(R1) Omin Leo(@2)) |
S T1 |67 Lotedp > Loty L@ .

Je{1,2}

Proof. — It follows from §' @ §% = ($' ® Id) o (Id ® §?) and (1.1), details are
omitted. ]

THEOREM 2.9. — Let (G;,v;, X;) be triples satisfying the standard assumptions for
j = 1,2 and consider the Cartesian product G = G1 X G, . Then (G, V¥, X) also satisfies
the standard assumptions with the c.n.length Y (g1, 82) = V¥1(g1) + V2(g2) and X € LG}
determined by the formula X* = X7 @ 1+1® X3.

Proof. — Proving that X is doubling and that the semigroup generated by ¥ has Gaus-
sian bounds amount to a trivial calculation. Indeed, ®y is controlled from the inequalities
Xi0.r/2) (@ xj0.r/20(0) = xo.n@ + b) =< xo.n(a) x[0.)(b), which are valid for positive
and commuting operators a,b. On the other hand, the L,GB follow similarly from the
inequality x[r00)(@ + ) < X[r/2,00)(@) + X[r/2,00) (D). Let us now justify the CBHL property.
Letm : Lp(ZG; Loo ®min Loo) = Lp(ZG; Loo) bethemap givenbym(x® f ®g) = x® fg,
which is c.p. By Lemma 2.8

R ® R =(RE®R?) .o Lp(ZG) = Lp(ZG: Loo(ds) ®min Loo(d)).

where R/ (x) = @y, ()7 x[0,5)(X;j) * x is c.p. As a consequence m o ((,9?/1 ® ﬂz) is also

completely positive. Therefore, by the doubling property we obtain the following estimate
X0,r)(X) < X10.)(X1) _ Xjo.n(X2) . 1 2

( Dx () %), 5o, 0 ( O, (1) © Dy, (r) wx), = me (R @ R

for x > 0. This is all what we need to reduce CBHL of X to that of X; and X,. O

REMARK 2.10. — Let H and G be LHC unimodular groups and § : G — Aut(H)
be a measure preserving action. Let (H, ¥, X1) and (G, ¥,, X») be triples satisfying the
standard assumptions. It is possible to prove that, under certain invariance conditions on X
and v, the semidirect product K = H Xy G satisfies the standard assumptions for some
X € 2K and certain c.n. length function ¥ : K — R4 built up from X7, X, and
Y1, ¥, respectively. Since the techniques required to prove this result are quite involved and
of independent interest, we postpone its proof to a forthcoming paper were we shall explore
other applications involving Bochner-Riesz summability and related topics.

2.3. Hormander-Mikhlin criteria

In this subsection we shall give a proof of Theorem B i) by means of a suitably chosen
max-square decomposition. The key is to prove that, if B, = A(m n(¢y)), then

=2 5= 5 (1+ ) ot o (14 20

Et Mt

is a square-max decomposition for y > Dg/2. Breaking the symbol m into its real and
imaginary parts and using Remark 1.5, we obtain a max-square decomposition by placing
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the smoothing factor (1 + X2/¢)?/2 on the left hand side of B;. The proof of the maximal
inequality consists in expressing the maximal operator as a linear combination of Hardy-
Littlewood maximal operators associated to X and apply (1.2). For the square estimate we
will use the smoothness condition.

LEMMA 2.11. — Assume that F; € Co(Ry) is a family of bounded variation functions
parametrized by t > 0. Let 0F; be its Lebesgue-Stjelties derivative and |0F; ()| its absolute
variation, then for every doubling operator X, we have:

X10,n (X)
< (sup||® H (su TLOD T e x
Ly ( t>Ig ” ”Ll(ldFtl)) r>g ®(r) )

(sup+ Fi(X) * x)

>0 Ly
Proof. — By integration by parts we have that
F) = [ R8O = [ R0 0)
Ry Ry

X[o,r) (s)

= — JdF, = — = S D(r)dF(r).

| xocanri) = — [ HeoRawrm

By functional calculus, the same holds for F;(X). Applying (1.2) ends the proof. O

According to Theorem A, the right choice for the square-max decomposition is given
by Fi(s) = |M:|*(s) = ®(/1)~'(1 + s2/t)77. It will suffice to pick here y > Dg/2, the
condition in Theorem B 1) will be justified later on. In order to prove the finiteness of the
maximal bound in Theorem A, we just need to verify the condition of Lemma 2.11 for this
concrete function.

LeEmMA 2.12. — For any doubling ®, we find

d 2,-2¢
[ ooz

Proof. — Changing variables s — +/fv, we obtain

+e
|ds Sa. WD,

d s2\ 2% 52\ - 225 o
/R+ o) 5 (1+7) s ~wa) / °)(1+7) - ds
Da+2+¢
_ / O(Wivo)(1+v) 2 dv
R+
4k+1

- (/()1+I§Lk ) - A+§Bk.

The monotonicity of ® gives A < ®(+/7), while its doublingness yields
4kt _Dg+2+e

Bi<  @(/2PeErD / (o) "2 v
4k

~(Da) @(ﬁ) 2D<I>(k+l)2_(Dq>+€)k

~(Dg) P(VT) 275K

Since the sequence of Bys is summable, we have proved the desired estimate. O
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For the estimate of the square part, let us start by extending the Gaussian bounds to the
complex half-plane H = {z € C : Re(z) > 0}. We need the following version of the
Phragmen-Lindeloff theorem, see [7] for the proof.

THEOREM 2.13. — If F is analytic over H and satisfies
|F(z1e'")] £ (=] cos8) ™,
IF(zDI < 2177 exp (—alz| ™).
for some a, B > 0and 0 < p < 1, then we find the following estimate

IF(z1e)] S9) (121 cos8) ™ exp (= 21z cos ).
We may now generalize the Gaussian L,-bounds to the complex half-plane.

PropPoOSITION 2.14. — Let G be a unimodular group, v : G — R4 a cn. length and
X € 2G4 a doubling operator satisfying LoGB. If we set h, = A(e™ZY), the following bound
holds for every z € H

_Br2Refz}
2 [z Izl

1
T X ro0) X)hz 2 S ———e
{ } (v/Refz})
Proof. — Let x be an element of L, (ZG) with ||x||, < 1. Assume in addition that x = px
for p = x[r,00)(X). Then we define G as the following holomorphic function

Gy(z) = e O (V1) (h,x)>2.
Then, the estimate below holds in H

_ Refz} _ Reiz}
Gx(2)| = e T DDt (hx)]> <e” 1 o(VD)e(|h:]?)
_lzlcos® _ Refz}
= e PO el gy S ¢ DD/ D(VRe(Z)).
Note that the second identity above follows from Plancherel theorem and the last inequality
from L,GB for r = 0. On the other hand, since ® is doubling it satisfies ®(s(1 + r)) <
®(s)(1 + r)P® for every r > 0 and

Do

o etz O (/1) o Rz Jt Dq>< t =
Gl s R~ ) S (ee)

by using that e (14 1/5)* < (1/5)% in the last inequality. We also have

1G22 = e T oD |t (0|
< I O
<e T oW T{phihyz} S e <I>(\/H)e =T
s (e D)7t ¢ (L) T erE,

Ak
The Phargmen-Lindel6f theorem allows us to combine both estimates, giving

' D —Bo B2 coso
1Gx(|z]e'®)] < tTd)(IZIcos@) 2 T BT
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Taking the supremum over all x with ||x|| < 1 and x = p x we get

).

Sup |Gy (z)] = ™7
X

Our previous estimate then yields

D _DPo  Br2 cos6
RS tT®(|z|cose) AP 2

Choosing the parameter > 0 to be t = Re{z} gives the desired estimate. O

LEmMMA 2.15. — If X € 2G is doubling and  : G — Ry has L,GB, then

1
‘L’{(l + XTZ)K|/1,(1_Z~§)|2}2 5(,() q)(\l/;); (1 + |§|)K for all k> 0.
Proof. — Writing z = ¢(1 — i§) in Proposition 2.14 gives
(Mmoo OOz P10 () § e 87 ol
q>(f)
Using the spectral measure dEx of X and since (1 + s%) Sgey 1 + 52

X2\¥ _
f{(l + T) |ht(17ié)|2} ) T{lhzu i$)|2} + f{lhzu il KXZK}

<
S g ek / ) dEx(s)}.

To estimate the term A we use integration by parts
2

_ ST\ 2
A= - ( ; ) t{|hi—igy)|*dEx (s)}

= /R+ (f)K(—as)T{lh;(l—ig)|2X[s,oo)(X)}

t

:/R d (Sz) {|ht(1 i6)l X[SOO)(X)} ds.

+ds

In the second line, by —057{|h(1—ig)|? X[s.00)(X)}, We mean the Lebesgue-Stjeltjes measure
associated with the increasing function g(s) = —t{|h;a1—ig)|* X[s,00)(X)} and the third line
is just an application of the integration by parts formula for Lebesgue-Stjeltjes integrals. A
calculation gives the desired result

2k—1 Bs
A< / (2” ) ! 77(1+T$\2>ds
Ry t* q’(«/?)

(1 5P )“/ et gy (L ED*
R4

~ (k) NG ) —é(ﬁ) . O

PROPOSITION 2.16. — Let By = A(m(yY)n1(ty)) where n1(z) = n(z)e % for some
ne€ Hy . Assume also that X is a doubling operator satisfying L,GB, then the following
estimate holds for every § > 0 and k > 0

A+ 2 1B S 0] 1

R4)

4¢ SERIE - TOME 50 — 2017 — N° 4



SMOOTH MULTIPLIERS VIA SOBOLEV DIMENSION 905

Proof. — By Fourier inversion formula

— —ts _ L o~ ikts —ts
m(s)n05) = moyas) e = (5= [ A@eeag)e,
my(ts)

Thus, by composing with ¢ and applying the left regular representation
1
B, = — | m;(&)hiq-igyd§.
¢ Zn/‘@mt(%—) ta-ig)d§

Triangular inequality for the L,-norm with weight (1 + X2/¢) and Lemma 2.15 give

(e N (s Ny KIS
S /R Wé)w{(wX72)”|h,<1,,~g>|2}7ds

1
®(V)?

Hoder’s inequality in conjunction with the definition of Sobolev space then yield

<o / A1+ 6 1 1 g~ F ag = A
R

o(vDA = ( /R (1+16) " Vdg)" mG Ol 140

2 (Ry)
The integral above is dominated by (1 + 8*1)% and the assertion follows. O
Proof of Theorem B1i). — Let By = A(m(Y)n1(ty)) withni(s) = e *n(s)and B, = X, M,
be the decomposition (2.2) with y > Dg/2 . Since we are assuming X to be symmetric, we

have that o|M;|*> = |M,|? and, by Lemma 2.11 and Lemma 2.12, M, satisfies the maximal
inequality of (SM,). By Proposition 2.16 we have that

sup |2 o (z6) Sy sup [mG™ O |, 14s
t>0 t>0 w

2 (]R+).
Therefore B, = X,M; is a square-max decomposition. By similar means we obtain a
max-square decomposition B, = M;%;. Since our maximal bounds trivially extend to

matrix amplifications, we may apply Theorem 1.3 in conjunction with Remark 1.6 to
deduce complete bounds of our multiplier 7,0y in both row and column Hardy spaces.
Finally, arguing as in Corollary 1.4 and noticing that m o v = m(0) on the subgroup
Go ={g € G : ¥ (g) = 0}, we deduce the assertion. O

REMARK 2.17. — It is interesting to observe that the proof given here can be adapted
to the classical case. Indeed, let S; = ™4 be a Markovian semigroup acting on Lo (X, ().
Assume further that the metric measure space (X, dr, i), where dr is the gradient metric [34,
Definition 3.1], is doubling, i.e.,:

€SS sup sup
xeX r>0

{M(Bx(2r))}
— 1 <00
P (Bx(r))

and that its integral kernel k;(x, y) has Gaussian bounds with respect to the gradient

distance, i.e.,:
_gr2
e

2
| Aoy (@r(x. ) ke (x5 < BT
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In that case we can apply the well known covering arguments for doubling spaces to prove
that the Hardy-Littlewood maximal operator is of weak type (1, 1) and by interpolation the
HL inequalities hold. Since (X, dr, u) is a doubling metric measure space with bounded
Hardy-Littlewood maximal inequalities and Gaussian Bounds we can apply the results above
to reprove the classical spectral Hormander-Mikhlin theorem as stated in [41]. We shall
consider this a new proof of the classical spectral Hormander-Mikhlin. Interestingly, some
of the steps of the proof are parallel to that of [41] even when the main idea of our approach
is to use maximal inequalities instead of Calderon-Zygmund estimates for the kernels.

2.4. The g-Plancherel condition

In this subsection we shall refine our results by proving Theorem B ii). Our first task is to
introduce the noncommutative form of the Plancherel condition assumed in the statement.

DEFINITION 2.18. — Let (M, t) be a noncommutative measure space and let & be a
submarkovian semigroup generated by A. We say that & satisfies the completely bounded
q-Plancherel condition, denoted by CBPlaanp, where ® is some increasing function and
q € (2, 0], whenever

1 _
IF (Dl eiroz6),26) S ——NFE " L, ms)-

O(V1)?
for every t > 0 and for every function F : Ry — Ry with supp(F) C [0, t_l].

REMARK 2.19. — In the context of this paper ¢# = ZG for some LCH unimodular
group G endowed with its canonical trace and & = (T,—rv )¢>0 18 a semigroup of convolution
type. In that case F'(A) = Tr(y) and by Theorem 2.3 and Remark 2.4 we have that

ITrw) leawacz6),26) = ITFw) leawsz6),26)
= Trwlleawszer.ze) = 1FW)lL6)-
Thus, the CBPlang> condition can be restated as a bound on the C’,%’(L;(%G), ZG) norm,
where T is either the column or the row o.s.s. of Ly(ZG), or as a bound in the L,(G)-norm

of the symbol F(y). Furthermore, since iy determines & we will sometimes say that ¢ has
the CBPlan;D.

For every F with supp(F) C [0,27!] we have that F(¢~'-) is supported in [0, 1]. Using
that L, ([0,1]) C L,([0, 1]), with contractive inclusion, we see that CBPlang> = CBPlan;I>
for p <gq.

PRrROPOSITION 2.20. — Let (G, ) be a pair formed by a LCH unimodular group and a c.n.
length. Let ® be a doubling function. If { satisfies the utracontractivity estimates CBRfI,joo then
it satisfies CBPlan2 .

Proof. — We pick s > 0, to be chosen later, and notice that

F(Y(g)) = F(Y(g)e’V®e™VE) = Gy(y(g))e™*V

where Gy is a bounded function with ||Gy|leo < || F|loce®’?. Therefore

ITrw)ll eaLo(26),26) = 116, Ss legra(z6),26)
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< W Te,w) leaw,zonlSsll eaw,(z6).26)
S I Flloce®’ " D(/5) 2.

Making s = ¢ and noticing that || F s = || F(t7'-)||co gives the desired result. O

The terminology of the g-Plancherel condition comes from the so-called spectral
Plancherel measures which arise in the study of spectral properties of infinitesimal genera-
tors of Markovian semigroups over some measure spaces [35, 41]. In the case of a semigroup
of Fourier multipliers generated by a c.n. length we can define the Plancherel measure py;,
as the only o-finite measure over R satisfying that for every F € C.(R4)

1
(23) ITew) lesaczerze) = ( /l; )P dpy (5))
+

Itis trivial to see that duy (r) = 0, u({g € G : ¥ (g) < r}), where 9, represents the Lebesgue-
Stjeltjes derivative of the increasing function g(r)=u({g € G: ¥ (g) <r}).

2.4.1. Characterization of the q-Plancherel condition. — By formula (2.3) the
CAB(L2(ZLG), LG) norm of Tr(yy can be expressed as an integral of F. The following
lemma (whose proof is straightforward and we shall omit) allows to express the CBPlan;I>
property as a L,/2y (R4) bound on iy .

LEmMA 2.21. — Let (2, X) be a measurable space and consider two measures |, v on it.
Assume in addition that | is a positive measure. Then, we have the inequality

(2.4) ] /Q F@dv(@)| < KIf I, o

if and only if v < p and ¢ = dv/dp satisfies ||¢’||Lp/(du) < K. Furthermore, the optimal K
in (2.4) is precisely ||$ ||z, - If v is also positive, it is enough for (2.4) to hold only for positive
functions.

PROPOSITION 2.22. — Let G be a LCH unimodular group equipped with a c.n. length
¥ G — Ry. Then, this pair satisfies the CBPlaanI> property with respect to some increasing
Sfunction ® : Ry — Ry if and only if djuy (r) = 0, u{g € G : ¥ (g) < r} fulfills the following
conditions:

1) duy < dm.

oo | dity H 14,2
i) | —= < ®(R"2) "R < forevery R > 0.
| mrom], SRR for every

Proof. — Lett = 1/R and G(s) = |F(s)|>. By (2.3), CBPlaanI> is equivalent to

2
q

/ "6 dia ) < ORH / R ds)

- cp(R—é)—lR-i([oR 1G(s)|% ds)%.

Then, the result follows applying Lemma 2.21 to (2, dv,dpn) = (R4, duy, dm). O
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The result above uses the crucial fact that the spectrum of the semigroup & generated by
can be identified with G. Therefore, spectral properties of the semigroup can be translated
into geometrical properties of G. It is also interesting to note that the characterization in
Proposition 2.22 can be expressed as a bound for the size of the spheres associated to the
pseudo-metric dy (g, h) = ¥ (g~ h)"/2.

2.4.2. Stability under direct products. — Consider two pairs (G;, ¥;) of LCH unimodular

groups equipped with c.n. lengths for j = 1,2. Then it is clear that ¢ : G; x G, — R given
by ¥ (g,h) = ¥1(g) + ¥2(h) is also a c.n. length. Notice that

| Tr e HZ%’(Lz(%G),%G) - /G <G |FW1(2) + ¥2(0)|” dig, (g) dpg, (h)
— [ [ 1FE+ 0 dnn© duva)
Ry JRy

— [ 1FOPA (i 5 10 ®).
R+

Thus, the Plancherel measure is jty = y, * iy, and we obtain the following result.

THEOREM 2.23. — Assume (G;, ;) satisfy CBPlanq for j =1,2. Then the pair
(G1 x Ga, V) defined above satisfies the CBPlanq property with ® = &, ®, and with

¢ = max {2, (qil + qi2>_1}'

Proof. — The result is a simple consequence of Young’s inequality for convolutions and
we shall just sketch the argument for the (slightly more involved) case where 1/¢, + 1/¢2 > 1/2,
so that ¢ = 2. According to Proposition 2.22, it suffices to see that

H dy,  d 1/fz ” 1

<
Loo.R) = R®(R-1/2)Dy(R1/2)’

The CBPlan;I’l1 property of (Gy, ¢1) implies

Hd% dyr, H Hd% dy» 1 H dy»
T qu & (R 1/2) &3
Now, since 1/¢gy + 1/g> > 1/2 it turns out that
1 H dy 1)dy2
a/2 (CI2/2)’ 7‘ - ?)
The result follows from the characterization of CBPlanflpz2 in Proposition 2.22. O
REMARK 2.24. — A result along the same lines can be obtained for crossed products

under invariance assumptions on ;. This goes in the same spirit as Remark 2.10.
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2.4.3. Refinement of the smoothness condition. — Here we are going to see how we can prove
the optimal smoothness order in the Hérmander-Mikhlin condition of Theorem B ii) when
Y satisfies the CBPlang’ property. We need several preparatory lemmas. In the next one we

denote by W,”* (Ry), where n € &g, the Sobolev space given by completion with respect
to the norm

1wy = (=322 -
LEmMA 2.25. — Given f, g : Ry — C, the following holds:
1) For everye >0
|1 =029, Sy (1= 0DCHFI2 1] (1 =8¢ ],
ii) Ifp(z) =z%¢Zandn € Sy
[ =322 @pN)], S (1= D2 f)] -

Equivalently, we find the embedding Wy>* 178 (R 1) C(s.e) Wag' (R4).

Proof. — The second point follows immediately from the first one by noticing that

p(z) = z%¢~7 has finite W2*(R..) norm. We are going to prove the first point for s € N and
use interpolation. Given s € N, we have

|1 =022(f)], ~ D I0E(fD)ll

k?O . .
= XX ( j)(af;fxa’;fg)HZ

k=0 j=0
)
< J k )
Son (oo, 1947 1) ( S 1l
i 2\s/2
~ ((max 19 £l ) (1 92772 .
Thus, all we have to see is that for every j € {0,1,2,...,s}

[07.(1 = 92)~6+etD2 £ <o 1 f oo

Recall that if the symbol of a Fourier multiplier is given by the Fourier transform of finite

measure, then it is bounded in Lo (R). Thus, we just need to see that there is a finite
measure u; s such that

215(6) i
/L],S - (1+|E|2 S+§+l
. 1 J
_ sen®)’ B 0, e mp @),

(L+EPT27 A +1EP)?
where H[; is the Hilbert transform for j odd and the identity map for j even. By [37,
V.3, Lemma 2] m; is a finite measure. Therefore, it is enough to see that if vy ;(§) =

1/(1 + |g|>)6He=7+D/2 then Hijj(vs,;) is a finite measure. Applying the Hilbert transform
or identity map to [37, V.(26)] gives the desired result. O
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LEmMMA 2.26. — Assume G is a LCH unimodular group, W : G — Ry is a c.n. length and
that they satisfy the CBPlan;I> property. If n1, N2 € SHg (2g), with 01 satisfying that there is
y > 0 such that |n1(z)| < e "ReG) for all z € g, then the following estimate holds for all
m € Loo(R4)

(A @m0, 26y Swean mE O, @,

1
(V1)2
Proof. — Using integration by parts we obtain

2 0n 0 m D) sy = | [ o Omatevyran @p)ar|
+

L>(Z2G)
< [ BP0 1100 ) 4
+
Nos, applying the CBPlan;I> property, we obtain

||K(m(1/f)771 (W)nz(ll/f)) ”LZ(LG)
1
<o / )t (/1130 0,y

Ry CD\/_/
- (/R m()—q)(m)

So, we just need to estimate the integral in the right hand side term

r 4/+l r_l/q o]
! dr =A B;.
A+nl(r)¢(/_)2 (f ZL i) pdr=a+35

The first term is bounded as follows

dr)[ma mO) .y

1 1 1
’ Vag, < .
= @(ﬁ)éfo minrr S o(/1)}

For the rest of the terms, we apply the doubling condition to obtain
2DT¢(1'+1) 3. 2* e 2(D¢, +2)
M Loo([47 ,47+1
oWk eyt T

The function n; decreases exponentially and so does n}. Therefore 7 (z) < e™¥Z for Re{z}
large enough. That allows us to sum up all the terms in the series obtaining ) ; B; @(ﬁ)_%
up to a constant depending on (D, y), as desired. O

Bj <3- 4| llL e ait1y)

PROPOSITION 2.27. — Assume G is a LCH unimodular group, ¥ : G — Ry isa c.n. length
and that they satisfy the CBPlan;I> property. Assume in addition that X € ZG? is doubling and
admits L,GB. Then, we find for k,8,& > 0

X2
{(1+—) |B| } S(Do.q8.0) I 90O sy

1
o(V/1)?
where B; = A (m(Y)n(ty)e 2V (1y)), nis a g -cut-off and a = 2k /8 + (1 + €)/2.
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Proof. — Fixk,8,e > 0and a = 2«/8 + (1 + ¢)/2. We define the linear, unbounded map
K;:D C Loo(Ry) = Ly(ZG)by K, (m) = A(m(ty)n(ty)e 2V (ty)?). Using Lemma 2.26
with 1 (z) = z% 2% and 1,(z) = n(z) gives that

1
2.5) HK S WIOR,) — Lao(ZG) H <(Dog) ——
¢ n (Do.q) q)(\/;)%
Let us denote by ¢, the family of weights given by ¢, (x) = t{(1 + 171 X?)“x} and let
L2(ZG, ¢y ) be the Hilbert spaces associated to the GNS construction of ¢, . We know
from Proposition 2.16 that

2,s+% 1
K:: Wap (R4) — LZ(%G’(bt,s) S(K,B,s) T
(V1)2
where s = 2«/6 and p(z) = z%e~%. Composing with the inclusion
s+E 41+ 2,5+ 142
qus : ° (R+) C(s,e") Wr]ps : (R+),

which follows by interpolation from Lemma 2.25 for ¢ = oo and the trivial inclusion for
q = 2, gives

q,s+ % +1+¢’
n

(2.6) ’Kt W,

(R+) = L2(ZLG, ¢rs)

S(IC,S,S,S/)

1
®(VD)2
Notice that the spaces obtained through GNS construction L,(ZG, ¢, ) are well behaved

with respect to the complex interpolation method. In particular, the expected identity below
holds

[L2(Z2G. d1.) - L2 (LG ¢1uy) |y = L2(LG. br,(1-6)i) +61c2)-
Therefore, interpolating (2.5) and (2.6) with 6 = §/2 yields

1
(VD)2

w3 AFE 14
HKz Wy 203 (Ry) = La(ZG. §y5)

S(Dq),q,/c,é,s,a’)
Finally, choosing ¢ and ¢’ such that ((1 + ¢)/2 + 1 + &) < 2 gives

H Kt : qu’K+8(R+) — Lz(ng,gbt,K)

S(Dgx.8)

1
o(V1)2

Therefore, applying this bound to the function m(t~!-) proves the assertion. O

Proof of Theorem Bii). — Lets > Dg/2. Forany n € ¥y and §,e > 0 we can define
n1(z) = n(z)e ??z%, where a = 25/8 + (1 +¢)/2. Set B, = A(m(y)n1(t¥)) and apply (2.2).
By Proposition 2.27

SUP 1211, (26) S(Dagussoe) SUP |m(t™" )n() ”Wp.s+8(R+)'
t>0 t>0

Once this is settled, the argument continues as in the proof of Theorem B 1). O
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2.5. An application for finite-dimensional cocycles

Our aim is to recover the main result in [18] for the case of radial multipliers to illustrate
how the Sobolev dimension approach is, a priori, more flexible than the one used in [18].
We will start proving that c.n. lengths coming from surjective and proper finite-dimensional
cocycles satisfy the standard assumptions. Then we will reduce the case of general finite-
dimensional cocycles to surjective and proper ones.

Let b : G — R” be a finite-dimensional cocycle. Assume that b is surjective and
proper (i.e., b~![K] is a compact set for every compact K). Then the pullback of the Haar
measure b*u(E) = (b~ '[E]) in R” is translation invariant and therefore satisfies that
db*u() = cd &. Indeed, let o : G — O(R") be the orthogonal action naturally associated
to b. Given a Borel compact set E C R” with b"1(E) = A C G and since h(gd) =
ag(b(A)) + b(g), we conclude that

b*u(E) = p(A) = p(gA) = b* (g (E) + b(g)).
Note that p(A) is well-defined and finite since b is continuous and proper. Applying this
identity to the a-invariant sets £ = B,(0) and using the subjectivity of b, we conclude the

assertion. By rescaling b if necessary we will assume, without loss of generality, that b* i is
the Lebesgue measure over R”. An important consequence of this fact is that

1
Sell? :/ e VE2y :/ e 2P g (p* =——,
l t”@cg(Lz(gzg),zg) G| I“du(g) o (b )(§) o(V7)

where § = (S;)¢>o0 is the semigroup associated with ¥ (g) = |b(g)||* and ®(¢) ~ ¢". There-
fore, the semigroup associated to any proper and surjective finite-dimensional cocycle satis-
fies the CBR ¢ property. In the same way, the measure 1y defined in (2.3) can be expressed
(using polar coordinates) as in terms of b*p and a trivial calculation gives that v has the
CBPlan? property. We need to find a suitable X, € Z2G?% . We shall prove that b induces a
natural transference map from functions f : R* — C into operators x € £G given by

J(f) =A(f ob).

Therefore, if R is a distribution in R” such that :/‘E(x) = | x|, our choice will be X;, = A(R(D)).
Before proving X;, € ZG% we will need the following auxiliary result.

LemMA 2.28. — If ¢; : R* — C are radial L,-functions

A@1 0b) MA@z 0b) = A((p1 * ¢2) 0 b)
for any group G equipped with a proper and surjective cocycle b : G — R".

Proof. — We know that d(b* ) = dm, so that

0190) % (@205 = [ or®0Nwt" ) dath
- /G 01 (b)) g2 (b(g) — b(h))) dp(h)
- /G 01(b(1)g2(b(g) — b(h)) d(h)
- /R 0©ea(b(9) — d (BT WE)
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— [, 0@ -0d5 = @1+ e)be).
Taking the left regular representation at both sides yields the assertion. O

It is straightforward to restate Lemma 2.28 in terms of the transference operator ¢/. We
shall be working with the following subclass of radial functions in the Euclidean space R"

AR")raq = {¢ : R" — C| ¢ radial, ¢ € Li(R")}.

The norm on A(R")raq given by @ ||lawn),.qa = ||¢3||1 makes such space a Banach algebra. If
needed, A(R"),,q Will be given the o.s.s. inherited from the Fourier class A(R"). Observe that
Lemma 2.28 implies that

2.7 (@1 ¢2) = & (d1) /(2),

for any ¢; € A(R")raq. In fact, we have the following.

LEMMA 2.29. — Let b : G — R”" be a proper and surjective cocycle. Then,

1) & AR™)rag — ZG is contractive, a x-homomorphism for the natural conjugation and
Ppositivity preserving,

il) for every radial function ¢ € A(R™)raq, we have that || &/ (P) |z = 9]l co-

Proof. — Let us start with 1). It is trivial that &/ is bounded since
1T @)z = 1M ob)z6 < b 0blr, @) = DL, @

The multiplicativity follows from (2.7) and the fact that the map is *-preserving is trivial. To
see that the map is positivity preserving just notice that if 0 < ¢ € A(R");aq, then ¢ is of
positive type. But, if that is the case, then

$(b(g™" 1) = Plag1(b(g) —b(h) = $(b(g) —b(h)

and so ¢ o b is also of positive type over G.
For ii), let o C ZG be the weak-* closure of ¢Z = ¢/[A(R");aq]. Clearly, since

(@) = Gove) = [ 4@ dm,
we have that |, is also semifinite and faithful. As a consequence we get

23) Iloe=  sup el

§e€Ball(La (M, 7| )
and by the Plancherel identity Ly(cM) =~ Lo(R")aq. We are also going to use that if
A C oM is a weak-x dense x-subalgebra of o, then Lo(cM) N oA is norm dense
inside L, (). Those two facts yield that

IZ@lze =  sup (D)2
geBall(La(H)

= sup I (@)l
JW)ETNBall(La (M)

= sup lg vl = l¢llo

yeBall(L2(R")raq)

for any radial ¢ and that concludes the proof. O
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In order to define X, as an element of £G7, we need to express it as the supremum of
positive operators in £G. We use

t= [ slgreE
Ry s

and think of ny(§) = |£|>se™* IE1” as a continuous partition of the unit. Note that s € A(R")aq.
Hence

d R d
£ = / E1ms© L5 o r(®) = / En®L Xy = sup T(@en).
Ry s 3 s 0<e<R<oo

where, again, ¢, r € A(R")raq. This presents Xj as a well-defined element of the extended
positive cone ZG.

THEOREM 2.30. — Let G be a LCH unimodular group and consider an n-dimensional
proper and surjective cocycle b : G — R"™ equipped with the conditionally negative length
V(g) = ||b(g)||>. Then (G, v, Xp) satisfies the standard assumptions.

Proof. — We will start by proving the L,GB. By noticing that { +— [0 ({) is an
increasing function and the normality of the weight x + t {x [A(e™"¥)|?} we obtain that

|t Xp) R = sup T t1r00(T @er)) AP

0<e<R<o0

If P is a polynomial, (2.7) gives P(&/(¢)) = &/(P(¢)). The function y[. ) may not be a
polynomial but we can approximate it by analytic functions as follows. Let F be

11 4
(2.9) F©) =5+ ﬁ/o e ds.
We define the function y, , > 0 by
Anr (@) = (F(n (¢ =) = F(=n1))”.

For r > 0, the positive functions y, , converge pointwise and boundedly asn — 00 to x[;,c0)
except at r, where the value is 1/2. Furthermore, y, ,(0) = 0 and y,,, is a real analytic
function with arbitrarily large convergence radius. By the analyticity it holds that, for any
radial ¢ in the Schwartz class,

Xn,r((’?(‘ﬁ)) = C?(Xr,n(‘]s))

The right hand side is well-defined since x;., (¢) is again a Schwartz class function and so its
Fourier transform is integrable. By [9, Proposition 1.48]if y,,, converges to x[c) pointwise
and boundedly then y, ,(x) converges to x[o,c)(x) is the SOT topology for any positive
x € £G. We have that

t{ Moy (Xp) AP} = sup | SOT-lim s, (T (6,8)) Ihe™ )P

0<e<R<o0
= sup lim T{g(}(r,n o ¢€,R) |A(E_IW)|2}
0<s<R<oo ">

A

< lim sup r{g()(r,n © ¢g,R) |l(€_”’”)|2}-

n—=>00 g ce<R<o0
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Moreover, A(e V) = &/ (h;) for the heat kernel 4, in R” and

oo X ™)} = Tim  sup o (trn © ber) | T ()P

n—> g<g<R<oo

= lim sup T{(’?((Xr,n © ¢£,R) |hl‘|2)}

n—>00 g << R<o0

— lim  sup /R A @er(©) () Pd &

n—=>00 g ce<R<o0

IA

lim - Xrn(ED) [he (§)7d &

n—oo

2
e 2

1

= , h 2de <
[, reeotebin@Prds < o
The CBHL inequality will follow from the L, Gaussian lower bounds
-1 -872
_”p - - > e ¢
(L GLB) H(X[o,r)(Xb))t(e )X[o,r)(Xb)) ”00 NS

Recall that if x € oM, and p is a projection, then pxp € (p Mp)+ and, since any positive
element can be inverted in the extended positive cone, it holds that (pxp)~! € (pM Py
We have pl|(pxp) |zl < pxp, where the L-norm is taken in p o p and the left hand
side may be zero. So, we can understand the right hand side of (L., GLB) as a lower bound
on xpo,r)(Xp) A(e™* V) X10,r)(Xp). The Lo GLB allow to bound the noncommutative Hardy-
Littlewood maximal operator by the maximal operator associated with the semigroup.
Indeed, since X} and A(e~*¥) commute from (2.7) we deduce that (Lo, GLB) yield

Xio.n (Xp) i P
% < X[O,t)(Xb)k(e t IP) X[O,t)(Xb) < Ae t 1/’).
This implies
X10,0)(X5)
[qi# *x S Sp(x),

for every positive x. Now, using the maximal inequalities for semigroups of [23] gives the
boundedness of the noncommutative Hardy-Littlewood maximal for every 1 < p < co. The
fact that S; ®d is again a Markovian semigroup gives the complete bounds and so the CBHL
inequality holds. To prove that (L. GLB) holds we use that §/ : ¢Z — ZG is a complete
contraction. Justifying the calculations like in the case of upper L, Gaussian bounds and
using (2.7) we obtain that

[ (20 XA 0 (3)) | = 37 gon(Xn) Ae™) 4|
= Me) T (X MR,
= @) o
.10 = [T ey S 12T
where x[o,-(|x]) < ¥r is a radial and analytic function approximating y[o (|x|) such that

n r2 ~
h7' %, < t2eP 7. One can safely take 7,(x) = F(M(1 — |x/r|?)F(M(1 + |x/r|?))
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for large enough M, where F is defined like in (2.9). The analyticity is used to ensure that
1 (T (@) = &/(r(¢)). In Line (2.10) we used the second point in Lemma 2.29. O

COROLLARY 2.31. — Given a LCH amenable unimodular group G, let b : G — R" be a
finite-dimensional cocycle with associated c.n. length (g) = |b(g)|>. Then, given a symbol
m:Ry — Cand1 < p < oo, the following estimate holds for any g cut-off function n and
any s > n/2

| Tomow | CA(LY(ZG)) <) igg [m@ 0| W2-s(Ry)"

Proof. — If the cocycle b is surjective and proper the result follows from Theorem B.
Indeed, in that case we know from Theorem 2.30 that (G, ¥, Xj) satisfies the standard
assumptions with ®(s) = s” and Sobolev dimension D¢ = n. Moreover, the CBPlan§I> prop-
erty also holds as we explained before Lemma 2.28. In the general case take G = R" x, G
where « : G — O(n) is the orthogonal representation that makes g — (x > agx + b(g))
an affine representation. The function by : G, — R" given by by (€, g) = £ + b(g) satisfies
the cocycle law with cocycle action B : G — R” given by B¢ o) = o,. Indeed, we have

bu(§ +agl,gh) =&+ agl + b(gh)
=&+ agl+agh(h) +b(g)
= Be.g)(bx (8. 1) + by (§, 8).

Furthermore b, is clearly surjective but it may not be proper. In that case, we shall take
the associated affine representation 7, : G, — R” x O(n) and note that the quotient
representation 75, : Gy = Gy/ker(my) — R" x O(n) satisfies that its associated
cocycle b5, : G5 — R” is always proper (even if it is not injective). To see that, let
p1:R” x O(n) — R" be the natural projection into the first component and consider a
compact set K C R”. Then

B3 7K] = (@) ey K] = () T K x O()]

and the last term is compact since K x O(n) is compact and =5, is continuous bijection
between second countable locally compact groups and hence a continuous group isomor-
phism. Summing up, we have the following commutative diagram

G—b>R"

e

R" x4 G =Gy po

|

(R" xq G)/ ker(my) = G,

According to Theorem 2.30, for the last cocycle we can use that (G, v, X, b°, ) satisfy the
standard assumptions, where v§, is the c.n. length naturally associated to b3, . By Theorem B,
this implies

| Tnews, | esir,pzasy S sup [m @O, -
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Now, using de Leeuw’s type periodization [3, Theorem 8.4 iii)] we obtain the same complete
bounds for Tyey,, in Ly (ZG ) forevery 1 < p < oo. In order to prove the assertion, we just
need to restrict to the subgroup {0} x G < G.This follows from the de Leeuw’s restriction
type result in [3, Theorem 8.4 1)]. O

2.6. Foreword

During the exposition of the contents of Section 2 several natural questions arise.

1. The first question is whether all finite-dimensional proper cocycles, not necessarily
surjective, such that their associated c.n. length satisfy CBRg have L,GB for some
X € ZG?. We have only been able to prove it in the easier case of surjective cocycles.
To that end, our intuition is that a (probably nontrivial) generalization of (2.7) will be
required.

2. The second point sprouts from the annoyance of the fact that we have not been able
to produce explicit examples of infinite-dimensional cocycles with L, GB. We are not
confident about their existence. It will be of great interest for us to either construct
infinite-dimensional cocycles having L, GB or to prove that all c.n. lengths admitting X
with L, GB come from finite-dimensional cocycles. A way of relaxing such problem is
to change the family of c.n. lengths arising from finite-dimensional to the family of
(real) analytic c.n. lengths (in order to make sense of analyticity we will require G to
be a Lie group). Note that every finite-dimensional cocycle » : G — R” over a Lie
group G induces a group homomorphism of Lie groups 7 : G — R” x O(n). Such
homomorphisms are automatically analytic. Therefore, the function ¥ : G — Ry is
real analytic. It is reasonable to conjecture that every ¥ : G — R defined on a Lie
group and with L,GB is analytic.

3. A possible strategy for constructing conditionally negative lengths coming from
infinite-dimensional cocycles with L, GB is to extend the stability results (announced in
Remark 2.10) for crossed products to non f-invariant ; : H — Ry and X, € ZHZ.
If either G is amenable or 6 : G — Aut(H) is an amenable action, some sort of
averaging procedure may give new c.n. lengths having L, GB if the original ones do
have L, GB. It will also be desirable to extend the stability of the standard assumptions
to extensions of topological groups.

3. Non-spectral multipliers

3.1. Polynomial co-growth

As we have seen, elements in the extended positive cone £G4 can be understood as
quantized metrics over ZG. Indeed, when G is abelian, any invariant distance over its dual
group is determined by the (positive unbounded) function d (e, y) affiliated to Loo(a ), since
d(x1, x2) = d(e, x7' x2)- It may seem natural to require X to satisfy properties analogous to
the triangular inequality, the faithfulness and the symmetry. Nevertheless, such assumptions
will not be necessary here since we will need just “asymptotic” properties of X . Indeed, one
of our main families of examples will come from the unbounded multiplication symbols of
invariant Laplacians over G. In order to match the classical case of R” with the standard
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Laplacian, whose multiplication symbol is |£|2, we will use the convention that X behaves
like d(e, x)?. That will explain the 1/2 exponent in some of the formulas.

DEFINITION 3.1. — Given X € 2G4, we say that X has polynomial co-growth of order D
iff
D= inf{r >0:(1+Xx)"?e Ll(zG)} < 0.

The definition is motivated by the fact that if we are in an abelian group and X is the
unbounded positive function given by d (e, y)?, where d is a translation invariant metric then,
defining ®(r) = t(x[o,2)(X)) = u(Br(e)), we get

|1+ x)~227) =/R U ey = @“)/R 2rd(r)

+ (1 +r2)%+s + (1 +r2)%+1+s

In particular the last expression is finite whenever u(B, (e)) < rP.

REMARK 3.2. — In the proof of Theorem C we are only going to use that the convolution
operator u — u » (1 + X)™# is completely bounded on L »(ZG) for B > D. Any element
in L1(ZG) induces such bounded operator. Indeed we could have defined a similar notion
of polynomial co-growth alternatively as

D= inf{r S>0:(1+X)"% ¢ &%(Ll(zc))} < o0,

where (1 + X)™"/2 is identified with the operator x > (1 4+ X)~"/2 » x. This condition is a
priori weaker than co-polynomial growth although they coincide for amenable groups. We
will stick to the original since it is a condition general enough to allow us to prove Theorem C
and restrictive enough to be fully characterized.

Now we are going to prove the existence of unbounded operators affiliated to ZG
behaving like multiplication symbols for left or right invariant Laplacians. Recall that a
submarkovian semigroup ¢ acting on L (G) is respectively called left/right invariant when
Stodg =Ag08;0rS;0p, = pg oS, accordingly.

ProPOSITION 3.3. — Let G be a LCH unimodular group and consider any submarkovian
semigroup & over Loo(G). Let A denote its positive generator. Then, the following properties
hold:

1) If & is left invariant then there is a densely defined and closable unbounded positive
operator A affiliated to TG such that, for all f € dom(A) C Lo(G)

AMAf) = A(f)A.

i) If & is right invariant then there is densely defined and closable unbounded positive
operator A affiliated to TG such that, for all f € dom(A) C L,(G)

AAf) = AN(S).
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Proof. — We start by proving ii). Notice that A : dom(A4) C L,(G) — L,(G) is densely
defined. It is affiliated with ZG iff for every unitaryu € ZG’ = R G we have that ud = Au.
Since S; is p invariant and we can approximate in the SOT topology every element in R G by

linear combinations of elements in (pg)geG, We obtain that S; commutes with any element
x € RG. A function f € L,(G) is in dom(A4) when

. Id-S;
1
t—l>r(r)1+ 4 /
exists in L,(G) and we then have
Id-S
lim ”A = ’ fH
t—0+

This implies u dom(4) C dom(A) for any U(RG). Multiplying by u we obtain

luAf — Auf||2< 11m HuA 2+ lim ”Id_stuf—Aufuzz

t—>0+
for every f € dom(A). This proves that A is affiliated with ZG. Notice that A : Lo(G) — Lo(ZG)
unitarily. We will define A= AAL*. By definition A is an unbounded operator on L,(ZG)
affiliated with (A RGA*) = A ZGA* which is also equal to the von Neumann algebra G
acting by left multiplication in the GNS construction associated to its trace. The operator A
is densely defined and closable since A is densely defined and closable. The identity of ii)
follows by definition. The construction for i) is somewhat analogous. We need two trivial
observations:

1. The anti-automorphism o : £G — ZG extends to a unitary operator o3 : Lo(ZG) —
Ly(ZG)sincetoo = 1. If 7, : LGop — B(L2(ZG)) and 7y : LG — B(L2(ZG))
are the right and left GNS representations, then o3 o 7, (x) = 7¢(0x) © 05.

2. The anti-automorphism ¢ extends to an automorphism of the extended positive
cone ZG% . We are going to denote such extension again by o.

Notice that, since my[ZG] = n,[ZG], any elementin x € ;[ ZG]’ can be expressed as . (x”)
for some x’ € ZG. By point 1, the map that sends x to x’ is given, after identifying ZG with
its GNS representation 7¢[ZG], by x' = o(02 x 02). Let S be given by S = AAL*. Then
S is affiliated with (A ZGA*)' = m¢[ZG]. If we define 4 as A = (0, S 03), where o is the
extension of point 2, we obtain 1). O

REMARK 3.4. — Since G is unimodular, the unitary « : L,(G) — Lo(G) given by
f(g) = f(g™Y) is an isometry that intertwines pg and Ag. We can characterize the pairs of
left and right invariant operators Ay, A, whose left and right multiplication symbols, Ay and
A, respectively, coincide. By a trivial calculation those are the operators such that Aj. = tA,.
Indeed, using that A : L,(G) — Lo(ZG) satisfies Aot = op0) and that if A is the infinitesimal
generator of a submarkovian semigroup then AT = A, we obtain that

O’(),AIA*) = O’z/\AzA*O'z = )LtAzL/X*,

but the right hand side satisfies that o (AA1A¥) = AA] A* = LA )%
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Now we are going to characterize those semigroups whose infinitesimal generator has
polynomial co-growth. In order to prove the characterization we will need the following
two lemmas. Recall that the Fourier algebra AG is defined as those f : G — C such that
A(f) € Li(ZG) with || fllag = IIA(f)lL,(zc)- We will use below the straightforward
inequalities for f € AG

(3.1) [T = 1 f lloe = z(ACND.
Indeed, both follow from the identity t(AzA(f)) = f(g) which is valid for /" € AG.

LEmMMA 3.5. — Let G be a LCH unimodular group and & a submarkovian semigroup of
right (resp. left) invariant operators satisfying that S; : Co(G) — Co(G). Let A be the positive
generator and assume further that A has polynomial cogrowth of order D. Then WA2 S(G)NAG is
dense inside WAZ’S (G) for every s > D/2 + e.

Proof. — We will prove only the right invariant case. Notice that AG is closed by left and
right translations. The fact that S; : Co(G) — Co(G), together with the Riesz representation
theorem gives that for every g € G there is weak-* continuous family of unit measures on G,
(47 )geG,r=0 such that

S, f(g) = /G F(hydps (h).

Applying the right invariance gives us that du$ (h) = du¢(hg™'). This yields
(32) S0 = [ o fus = i x 10

where (Fpé)(E) = pé(E~Y). It is clear that |S; f — fllL,) — 0ast — 0. Recall
that the same is true for f € WAZ’S (G) in the WAZ’S (G)-norm for every s > 0. Suppose that
f e WA“ (G), then, applying the formula (3.2) together with the polynomial co-growth, we
have that

Sif =t f=Cpex A+ A2+ A2 f =heg g,
where g = (1 + A)*/2 f. We have that ||g||, = ||f||Wj.2 and
Wresllz < Il [+ D7), 46 < oo

This proves that S; f € AG N WA2 *(G). Making t — 0" completes the claim. O

THEOREM 3.6. — Let G be a unimodular LCH group and let & be a right (resp. left)
invariant submarkovian semigroup over G. Let A be its infinitesimal generator and assume
further that S; : Co(G) — Co(G). Then, the following assertions are equivalent:

1) The multiplication symbol A\QfA has polynomial co-growth of order D.
i) & satisfies the following inequality for every ¢ > 0

H A+ 4@+ 1,G) - L°°(G)H <o L.
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Proof. — To prove i) = ii), pick f € AG N W?5(G) for s = D/2 + 2¢ and note

”f”oo < “/\((1 + A)_3/2(1 +A)s/2f)||1
= [+ A) 2@+ a2 )|,

< |+ A7 LA+ a7 )],

~ _on1/2
= “(I‘FA) SHI ”f”Wj'S(G) S(s) ”f”Wj'S(G)'

We have used (3.1) in the first inequality, Proposition 3.3 in the first identity and the polyno-
mial cogrowth in the last inequality. By the density Lemma 3.5 we conclude that WA2 “(G)
embeds in L, (G) which is a rephrasal of ii). For the implication ii)) = 1) we note that
from (3.1)

_D_ _D_
(04 D7F200) | < 0+ 475 f ] S0 171
Taking the supremum over f € L,(G) with norm 1 gives the desired result. O

REMARK 3.7. — Due to Proposition 2.1 we obtain that the point ii) is equivalent to satisfying
the ultracontractivity property Rp1¢(0) for every ¢ > 0. Since Rp(0) implies Rp4.(0) for
every ¢ > 0, it is sufficient to prove Rp (0) in order to have polynomial co-growth of order D.

REMARK 3.8. — Sobolev inequalities involving powers of 1 + A are sometimes called local
[43, I1.X] since they are tightly connected to the ultracontractivity estimates for 0 < t < 1
and in many contexts that amounts to describing the growth of ball of small radius. Therefore
Theorem 3.6 relates the behavior of the large balls of TG with the behavior of small balls
in G. This goes along the common intuition that taking group duals exchanges local and
asymptotic/ coarse properties.

Proof of Theorem C. — Let B, = A(mn(ty)) and let A; be the multiplication symbol
associated with the generator of the right invariant semigroup &’; which is determined by
Proposition 3.3. Then

o~

Bo=(1+A4) 2 (1+4)7B

M[ Et

is a max-square decomposition. By the definition of co-polynomial growth we have that
o|M;> = (1 4+ 6A;)™! € L(ZG) and therefore it is a c.b. multiplier in every Ly (ZG)
for 1 < p < oo. Since M, does not depend on ¢, the maximal inequality (MS,) is satisfied
trivially. By the construction of Ay we have

~ L
sup | 2 z6) = sup |[(1 + A1) 2 A(mn(z = sup ||mn(t LRI
S0 124 2,69 = sup | (1+ A1) * A0mn(y) |06 = 599 brm @)y 20

The square-max decomposition is manufactured in exactly the same way. O
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3.2. Sublaplacians over polynomial-growth Lie groups

Here we are going to work with left (resp. right) invariant submarkovian semigroups
over Lo (G) generated by sublaplacians. Let M be a smooth manifold, X = {Xy,..., X;}
be a family of smooth vector fields and u a o-finite measure over M. Let us denote
by (0} (1)) re(—¢, ¢); the one-parameter diffeomorphism generated by X; and assume further
that u is invariant under (0 (£)) re(—¢; .¢,)- Then, the semigroup whose infinitesimal generator
is given by the sublaplacian associated to X

,
Ay =-) X?
j=1

is submarkovian. This is a consequence of the theory of symmetric Dirichlet forms [10]. If
M = G is a Lie group, u its left Haar measure and X = {Xy, ..., X} left invariant vector
fields. By the invariance under the one parameter subgroup generated by X; of u we have that
S; = e7*A% is a submarkovian semigroup of left invariant operators. The same construction
can be performed using right invariant vector fields if G is unimodular. Any sublaplacian
carries a natural subriemannian metric given by

1 1 r

. 2

e =it ([ S0P ) [y o = Y a0 X0,
yO=xy(h=y " = J=0

This metric coincides with the Lipschitz distance given by the gradient form, also known as

Meyer’s carré du champs [29]. Observe also that, if G is a connected Lie group, then its subrie-

mannian distance is finite iff X generates the whole Lie algebra. Similarly, f € Ker,(Ax) iff

f € Ly(M)and f(x) = f(y) whenever the subriemannian distance dx(x, y) is finite.

The main family of illustrations of Theorem C comes from Lie groups endowed with right
and left invariant sublaplacians. Indeed, let V = {vy,v,,...,v,} C T.G be a collection of,
linearly independent, vectors generating the whole Lie algebra and X; = {X1,..., X} and
X, = {Y1,...,Y,} beitsright and left invariant extensions respectively. Then their associated
sublaplacians satisfy tAx, = Ax,t where we use tf (g) = f(g™'). Hence, it suffices to study
the polynomial co-growth for le . By Remark 3.7 we just need to show that S; = e¢~*2% has
the Rp(0) property and by [43, Theorem VIII.2.9] we known that if G is a Lie group of
polynomial growth, then

et < <7 '

By DSy
where /; is the heat kernel associated with S;, dx, is the subriemannian distance associated
to X; and B, (r) are the balls of radius r with respect to that metric. It is a well known fact,
see [43], that

dy, (x.)2 dyx, (x.)2
S Ralbii , S 7

(Be(r)) ~ 10,

for ¢t small. Here Dy is the local dimension associated to Xy, given by

o0
Do =Y j dim(Fj41/F)),
j=0
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where Fp = {0}, F; = X; and F,+1 = span{F [F;,X1]}. As a consequence S; has the
Rp,(0) property and therefore Axl, and so sz, have polynomial co-growth of order Dy.
As a corollary we obtain the following theorem.

THEOREM 3.9. — Let G be a polynomial growth Lie group equipped wit a c.n. length
VG — Ry. Letn € Sy and consider a generating set X = {X1, X2, ..., X, } of independent
right invariant vector fields. Let us write Ax for its sublaplacian. Then, the following inequality
holds for every 1 < p < oo and any s > Dgy/2

2 @

1Tl eawg 26y Sep supmax {H’I(f (AL PER
t>0 Ax
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