En 1978 Durfee a conjecturé plusieurs inégalités entre la signature et le genre géométrique d'une singularité normale de surface. Depuis, quelques contre-exemples ont été trouvés et des résultats positifs établis dans des cas particuliers.
Nous montrons ici une inégalité `forte' de type Durfee pour toute lissification d'une singularité de Gorenstein, sous la condition que la forme d'intersection de la résolution est unimodulaire. Nous prouvons aussi l'inégalité `faible' pour toute singularité d'hypersurface et pour les intersections complètes strictes de multiplicité suffisamment grande. Les preuves établissent des inégalités générales valables pour toute singularité normale et numériquement Gorenstein de surface.
In 1978 Durfee conjectured various inequalities between the signature and the geometric genus of a normal surface singularity. Since then a few counter examples have been found and positive results established in some special cases.
We prove a `strong' Durfee-type inequality for any smoothing of a Gorenstein singularity, provided that the intersection form of the resolution is unimodular. We also prove the conjectured `weak' inequality for all hypersurface singularities and for sufficiently large multiplicity strict complete intersections. The proofs establish general inequalities valid for any numerically Gorenstein normal surface singularity.
Keywords: Durfee's Conjecture, surface singularities, signature of smoothing, geometric genus, resolution, unimodular intersection form.
Mot clés : Conjecture de Durfee, singularités des surfaces, signature des lissages, genre géométrique, résolution, forme d'intersection unimodulaire.
@article{ASENS_2017__50_3_787_0, author = {Koll\'ar, J\'anos and N\'emethi, Andr\'as}, title = {Durfee's conjecture on the signature of smoothings of surface singularities}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {787--798}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {3}, year = {2017}, doi = {10.24033/asens.2332}, mrnumber = {3665555}, zbl = {1382.32020}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2332/} }
TY - JOUR AU - Kollár, János AU - Némethi, András TI - Durfee's conjecture on the signature of smoothings of surface singularities JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 787 EP - 798 VL - 50 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2332/ DO - 10.24033/asens.2332 LA - en ID - ASENS_2017__50_3_787_0 ER -
%0 Journal Article %A Kollár, János %A Némethi, András %T Durfee's conjecture on the signature of smoothings of surface singularities %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 787-798 %V 50 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2332/ %R 10.24033/asens.2332 %G en %F ASENS_2017__50_3_787_0
Kollár, János; Némethi, András. Durfee's conjecture on the signature of smoothings of surface singularities. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 787-798. doi : 10.24033/asens.2332. http://www.numdam.org/articles/10.24033/asens.2332/
Normal two-dimensional hypersurface triple points and the Horikawa type resolution, Tohoku Math. J., Volume 44 (1992), pp. 177-200 (ISSN: 0040-8735) | DOI | MR | Zbl
, “Nauka”, Moscow, 1984, 336 pages |Normally flat deformations, Trans. Amer. Math. Soc., Volume 225 (1977), pp. 1-57 (ISSN: 0002-9947) | DOI | MR | Zbl
Length, multiplicity, and multiplier ideals, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 3717-3731 (ISSN: 0002-9947) | DOI | MR | Zbl
The signature of smoothings of complex surface singularities, Math. Ann., Volume 232 (1978), pp. 85-98 (ISSN: 0025-5831) | DOI | MR | Zbl
A characterization of the lattice, Math. Res. Lett., Volume 2 (1995), pp. 321-326 (ISSN: 1073-2780) | DOI | MR | Zbl
Invarianten quasihomogener vollständiger Durchschnitte, Invent. math., Volume 49 (1978), pp. 67-86 (ISSN: 0020-9910) | DOI | MR | Zbl
Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann., Volume 214 (1975), pp. 235-266 (ISSN: 0025-5831) | DOI | MR | Zbl
Differential forms and Hodge numbers for toric complete intersections (preprint arXiv:1106.1826 )
, Journées Complexes 85 (Nancy, 1985) (Inst. Élie Cartan), Volume 10, Univ. Nancy, Nancy, 1986, pp. 6-13 | MR | Zbl
Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen., Volume 12 (1978), pp. 51-61 (ISSN: 0374-1990) | MR | Zbl
, Topology of algebraic varieties and singularities (Contemp. Math.), Volume 538, Amer. Math. Soc., Providence, RI, 2011, pp. 369-376 | DOI | MR | Zbl
A counterexample to Durfee's conjecture, C. R. Math. Rep. Acad. Sci. Canada, Volume 34 (2012), pp. 50-64 (ISSN: 0706-1994) | MR | Zbl
The `corrected Durfee's inequality' for homogeneous complete intersections, Math. Z., Volume 274 (2013), pp. 1385-1400 (ISSN: 0025-5874) | DOI | MR | Zbl
On for surface singularities, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), Amer. Math. Soc., Providence, R. I. (1977), pp. 45-49 | MR | Zbl
, London Mathematical Society Lecture Note Series, 77, Cambridge Univ. Press, Cambridge, 1984, 200 pages (ISBN: 0-521-28674-3) | DOI | MR | Zbl
Riemann-Roch and smoothings of singularities, Topology, Volume 25 (1986), pp. 293-302 (ISSN: 0040-9383) | DOI | MR | Zbl
Milnor numbers for surface singularities, Israel J. Math., Volume 115 (2000), pp. 29-50 (ISSN: 0021-2172) | DOI | MR | Zbl
, Annals of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, 122 pages | MR | Zbl
Fonctions de Hilbert, genre géométrique d'une singularité quasi homogène Cohen-Macaulay, C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985), pp. 699-702 (ISSN: 0249-6291) | MR | Zbl
Simply-connected algebraic surfaces of positive index, Invent. math., Volume 89 (1987), pp. 601-643 (ISSN: 0020-9910) | DOI | MR | Zbl
The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. IHÉS, Volume 9 (1961), pp. 5-22 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
The Seiberg-Witten invariants of negative definite plumbed 3-manifolds, J. Eur. Math. Soc. (JEMS), Volume 13 (2011), pp. 959-974 (ISSN: 1435-9855) | DOI | MR | Zbl
Dedekind sums and the signature of , Selecta Math. (N.S.), Volume 4 (1998), pp. 361-376 (ISSN: 1022-1824) | DOI | MR | Zbl
, Singularities (Oberwolfach, 1996) (Progr. Math.), Volume 162, Birkhäuser, 1998, pp. 93-102 | DOI | MR | Zbl
Dedekind sums and the signature of . II, Selecta Math. (N.S.), Volume 5 (1999), pp. 161-179 (ISSN: 1022-1824) | DOI | MR | Zbl
On the Casson invariant conjecture of Neumann-Wahl, J. Algebraic Geom., Volume 18 (2009), pp. 135-149 (ISSN: 1056-3911) | DOI | MR | Zbl
Complex surface singularities with integral homology sphere links, Geom. Topol., Volume 9 (2005), pp. 757-811 (ISSN: 1465-3060) | DOI | MR | Zbl
Casson invariant of links of singularities, Comment. Math. Helv., Volume 65 (1990), pp. 58-78 (ISSN: 0010-2571) | DOI | MR | Zbl
Chern slopes of simply connected complex surfaces of general type are dense in , Ann. of Math., Volume 182 (2015), pp. 287-306 (ISSN: 0003-486X) | DOI | MR | Zbl
, Singularities, Part 2 (Arcata, Calif., 1981) (Proc. Sympos. Pure Math.), Volume 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513-536 | MR | Zbl
The inequality for hypersurface two-dimensional isolated double points, Math. Nachr., Volume 164 (1993), pp. 37-48 (ISSN: 0025-584X) | DOI | MR | Zbl
Elliptic singularities of surfaces, Amer. J. Math., Volume 92 (1970), pp. 419-454 (ISSN: 0002-9327) | DOI | MR | Zbl
Smoothings of normal surface singularities, Topology, Volume 20 (1981), pp. 219-246 (ISSN: 0040-9383) | DOI | MR | Zbl
Durfee conjecture and coordinate free characterization of homogeneous singularities, J. Differential Geom., Volume 37 (1993), pp. 375-396 http://projecteuclid.org/euclid.jdg/1214453681 (ISSN: 0022-040X) | MR | Zbl
Cité par Sources :