Moderate deviations for the range of a transient random walk: path concentration
[Déviations modérées pour le range d'une marche aléatoire transiente: concentration trajectorielle]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 755-786.

Nous étudions les déviations qui réduisent la frontière du support d'une marche transiente sur le réseau euclidien. Nous décrivons en particulier une stratégie optimale pour réduire la frontière du support. Les techniques employées s'appliquent aussi bien au volume du support lui-même, et fournissent des énoncés mathématiques qui illustrent l'image du « fromage suisse » de Bolthausen, van den Berg et den Hollander.

We study downward deviations of the boundary of the range of a transient walk on the Euclidean lattice. We describe the optimal strategy adopted by the walk in order to shrink the boundary of its range. The technics we develop apply equally well to the range, and provide pathwise statements for the Swiss cheese picture of Bolthausen, van den Berg and den Hollander [7].

DOI : 10.24033/asens.2331
Classification : 60F10, 60G50.
Keywords: Large deviations, capacity, range of a random walk, boundary of the range.
Mot clés : Grandes déviations, capacité, range d'une marche aléatoire, frontière du range.
@article{ASENS_2017__50_3_755_0,
     author = {Asselah, Amine and Schapira, Bruno},
     title = {Moderate deviations for the range  of a transient random walk:  path concentration},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {755--786},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {3},
     year = {2017},
     doi = {10.24033/asens.2331},
     mrnumber = {3665554},
     zbl = {1378.60055},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2331/}
}
TY  - JOUR
AU  - Asselah, Amine
AU  - Schapira, Bruno
TI  - Moderate deviations for the range  of a transient random walk:  path concentration
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 755
EP  - 786
VL  - 50
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2331/
DO  - 10.24033/asens.2331
LA  - en
ID  - ASENS_2017__50_3_755_0
ER  - 
%0 Journal Article
%A Asselah, Amine
%A Schapira, Bruno
%T Moderate deviations for the range  of a transient random walk:  path concentration
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 755-786
%V 50
%N 3
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2331/
%R 10.24033/asens.2331
%G en
%F ASENS_2017__50_3_755_0
Asselah, Amine; Schapira, Bruno. Moderate deviations for the range  of a transient random walk:  path concentration. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 755-786. doi : 10.24033/asens.2331. https://www.numdam.org/articles/10.24033/asens.2331/

Asselah, A.; Castell, F. A note on random walk in random scenery, Ann. Inst. H. Poincaré Probab. Statist., Volume 43 (2007), pp. 163-173 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Asselah, A.; Schapira, B. Boundary of the range of transient random walk (preprint arXiv:1507.01031, to appear in Probab. Theory Related Fields ) | MR

Asselah, A. On large intersection and self-intersection local times in dimension five or more (preprint arXiv:0801.3918 )

Asselah, A.; Schapira, B.; Sousi, P. Capacity of the range of random walk on d (in preparation) | MR

Benjamini, I.; Kozma, G.; Yadin, A.; Yehudayoff, A. Entropy of random walk range, Ann. Inst. Henri Poincaré Probab. Stat., Volume 46 (2010), pp. 1080-1092 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Bolthausen, E. On the volume of the Wiener sausage, Ann. Probab., Volume 18 (1990), pp. 1576-1582 (ISSN: 0091-1798) | DOI | MR | Zbl

Bolthausen, E. Localization of a two-dimensional random walk with an attractive path interaction, Ann. Probab., Volume 22 (1994), pp. 875-918 (ISSN: 0091-1798) | DOI | MR | Zbl

Berestycki, N.; Yadin, A. Condensation of random walks and the Wulff crystal (preprint arXiv:1305.0139 )

Donsker, M. D.; Varadhan, S. R. S. Asymptotics for the Wiener sausage, Comm. Pure Appl. Math., Volume 28 (1975), pp. 525-565 (ISSN: 0010-3640) | DOI | MR | Zbl

Donsker, M. D.; Varadhan, S. R. S. On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math., Volume 32 (1979), pp. 721-747 (ISSN: 0010-3640) | DOI | MR | Zbl

Hebisch, W.; Saloff-Coste, L. Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993), pp. 673-709 (ISSN: 0091-1798) | DOI | MR | Zbl

Jain, N.; Orey, S. On the range of random walk, Israel J. Math., Volume 6 (1968), pp. 373-380 (ISSN: 0021-2172) | DOI | MR | Zbl

Khanin, K. M.; Mazel', A. E.; Shlosman, S. B.; Sinaĭ, Y. G., The Dynkin Festschrift (Progr. Probab.), Volume 34, Birkhäuser, 1994, pp. 167-184 | DOI | MR | Zbl

Lawler, G. F., Modern Birkhäuser Classics, Birkhäuser, 2013, 223 pages (reprint of the 1996 edition) (ISBN: 978-1-4614-5971-2; 978-1-4614-5972-9) | DOI | MR | Zbl

Le Gall, J.-F. Propriétés d'intersection des marches aléatoires. I. Convergence vers le temps local d'intersection, Comm. Math. Phys., Volume 104 (1986), pp. 471-507 http://projecteuclid.org/euclid.cmp/1104115088 (ISSN: 0010-3616) | DOI | MR | Zbl

Lawler, G. F.; Limic, V., Cambridge Studies in Advanced Math., 123, Cambridge Univ. Press, Cambridge, 2010, 364 pages (ISBN: 978-0-521-51918-2) | DOI | MR | Zbl

Okada, I. The inner boundary of random walk range, J. Math. Soc. Japan, Volume 68 (2016), pp. 939-959 (ISSN: 0025-5645) | DOI | MR | Zbl

Phetpradap, P. Intersections of random walks (2012)

Povel, T. Confinement of Brownian motion among Poissonian obstacles in 𝐑d,d3 , Probab. Theory Related Fields, Volume 114 (1999), pp. 177-205 (ISSN: 0178-8051) | DOI | MR | Zbl

Ráth, B.; Sapozhnikov, A. Connectivity properties of random interlacement and intersection of random walks, ALEA Lat. Am. J. Probab. Math. Stat., Volume 9 (2012), pp. 67-83 (ISSN: 1980-0436) | MR | Zbl

Sznitman, A.-S. Long time asymptotics for the shrinking Wiener sausage, Comm. Pure Appl. Math., Volume 43 (1990), pp. 809-820 (ISSN: 0010-3640) | DOI | MR | Zbl

Sznitman, A.-S. On the confinement property of two-dimensional Brownian motion among Poissonian obstacles, Comm. Pure Appl. Math., Volume 44 (1991), pp. 1137-1170 (ISSN: 0010-3640) | DOI | MR | Zbl

van den Berg, M.; Bolthausen, E.; den Hollander, F. Moderate deviations for the volume of the Wiener sausage, Ann. of Math., Volume 153 (2001), pp. 355-406 (ISSN: 0003-486X) | DOI | MR | Zbl

van den Berg, M.; Bolthausen, E.; den Hollander, F. On the volume of the intersection of two Wiener sausages, Ann. of Math., Volume 159 (2004), pp. 741-782 (ISSN: 0003-486X) | DOI | MR | Zbl

  • Li, Xinyi; Zhuang, Zijie On large deviations and intersection of random interlacements, Bernoulli, Volume 30 (2024) no. 3 | DOI:10.3150/23-bej1666
  • Gilch, Lorenz A. Asymptotic capacity of the range of random walks on free products of graphs, Electronic Journal of Probability, Volume 29 (2024) no. none | DOI:10.1214/24-ejp1086
  • Asselah, Asselah; Schapira, Bruno Large Deviations for Intersections of Random Walks, Communications on Pure and Applied Mathematics, Volume 76 (2023) no. 8, p. 1531 | DOI:10.1002/cpa.22045
  • Asselah, Amine; Schapira, Bruno The two regimes of moderate deviations for the range of a transient walk, Probability Theory and Related Fields, Volume 180 (2021) no. 1-2, p. 439 | DOI:10.1007/s00440-021-01063-3
  • Asselah, Amine; Schapira, Bruno Deviations for the capacity of the range of a random walk, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ejp560
  • Asselah, Amine; Schapira, Bruno On the nature of the Swiss cheese in dimension 3, The Annals of Probability, Volume 48 (2020) no. 2 | DOI:10.1214/19-aop1380
  • Schapira, Bruno Capacity of the range in dimension 5, The Annals of Probability, Volume 48 (2020) no. 6 | DOI:10.1214/20-aop1442
  • Berestycki, Nathanaël; Yadin, Ariel Condensation of a self-attracting random walk, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 55 (2019) no. 2 | DOI:10.1214/18-aihp900
  • Okamura, Kazuki Unions of random walk and percolation on infinite graphs, Brazilian Journal of Probability and Statistics, Volume 33 (2019) no. 3 | DOI:10.1214/18-bjps404
  • Asselah, Amine; Schapira, Bruno; Sousi, Perla Capacity of the range of random walk on Z4, The Annals of Probability, Volume 47 (2019) no. 3 | DOI:10.1214/18-aop1288

Cité par 10 documents. Sources : Crossref