Finite generation and continuity of topological Hochschild and cyclic homology
[La génération finie et continuité en homologies de Hochschild et cyclique]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 201-238.

Le but de cet article est d'établir des propriétés fondamentales des homologies de Hochschild, de Hochschild topologique et cyclique topologique d'anneaux commutatifs et noethériens, qu'on ne suppose être que F-finis pour la majorité de nos résultats. Cette hypothèse faible est satisfaite en tous cas d'intérêts en géométrie algébrique en caractéristique finie et mixte. Nous démontrons d'abord que les groupes d'homologie de Hochschild topologique, ainsi que les groupes d'homotopie du spectre des points fixés TRr, sont des modules de type fini (après la p-complétion dans le cadre de caractéristique mixte). En l'utilisant, nous établissons la continuité de ces homologies pour n'importe quel idéal. Une conséquence de ces résultats de continuité est le théorème de Hochschild-Kostant-Rosenberg pro pour les homologies de Hochschild topologique et cyclique topologique. Finalement, nous démontrons que ces résultats de génération finie et ces propriétés de continuité sont toujours valables pour les schémas propres et lisses sur un tel anneau.

The goal of this paper is to establish fundamental properties of the Hochschild, topological Hochschild, and topological cyclic homologies of commutative, Noetherian rings, which are assumed only to be F-finite in the majority of our results. This mild hypothesis is satisfied in all cases of interest in finite and mixed characteristic algebraic geometry. We prove firstly that the topological Hochschild homology groups, and the homotopy groups of the fixed point spectra TRr, are finitely generated modules (after p-completion in the mixed characteristic setting). We use this to establish the continuity of these homology theories for any given ideal. A consequence of such continuity results is the pro Hochschild-Kostant-Rosenberg theorem for topological Hochschild and cyclic homology. Finally, we show more generally that the aforementioned finite generation and continuity properties remain true for any proper scheme over such a ring.

Publié le :
DOI : 10.24033/asens.2319
Classification : 19D55, 13D03.
Keywords: $K$-theory, topological cyclic homology.
Mot clés : $K$-théorie, homologie cyclique topologique.
@article{ASENS_2017__50_1_201_0,
     author = {Dundas, Bj{\o}rn Ian and Morrow, Matthew},
     title = {Finite generation and continuity  of topological {Hochschild}  and cyclic homology},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {201--238},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {1},
     year = {2017},
     doi = {10.24033/asens.2319},
     mrnumber = {3621430},
     zbl = {1372.19002},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2319/}
}
TY  - JOUR
AU  - Dundas, Bjørn Ian
AU  - Morrow, Matthew
TI  - Finite generation and continuity  of topological Hochschild  and cyclic homology
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 201
EP  - 238
VL  - 50
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2319/
DO  - 10.24033/asens.2319
LA  - en
ID  - ASENS_2017__50_1_201_0
ER  - 
%0 Journal Article
%A Dundas, Bjørn Ian
%A Morrow, Matthew
%T Finite generation and continuity  of topological Hochschild  and cyclic homology
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 201-238
%V 50
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2319/
%R 10.24033/asens.2319
%G en
%F ASENS_2017__50_1_201_0
Dundas, Bjørn Ian; Morrow, Matthew. Finite generation and continuity  of topological Hochschild  and cyclic homology. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 201-238. doi : 10.24033/asens.2319. http://www.numdam.org/articles/10.24033/asens.2319/

André, M., Grundl. math. Wiss., 206, Springer, Berlin-New York, 1974, 341 pages | MR | Zbl

Bloch, S.; Esnault, H.; Kerz, M. Deformation of algebraic cycle classes in characteristic zero, Algebr. Geom., Volume 1 (2014), pp. 290-310 (ISSN: 2214-2584) | DOI | MR | Zbl

Brun, M. Topological Hochschild homology of 𝐙/pn , J. Pure Appl. Algebra, Volume 148 (2000), pp. 29-76 (ISSN: 0022-4049) | DOI | MR | Zbl

Carlsson, G. Problem session, Homology Homotopy Appl., Volume 3 (2001), p. vii-xv (ISSN: 1512-0139) | MR | Zbl

Cortiñas, G.; Haesemeyer, C.; Weibel, C. A. Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann., Volume 344 (2009), pp. 891-922 (ISSN: 0025-5831) | DOI | MR | Zbl

Costeanu, V. On the 2-typical de Rham-Witt complex, Doc. Math., Volume 13 (2008), pp. 413-452 (ISSN: 1431-0635) | DOI | MR | Zbl

Dundas, B. I.; Goodwillie, T. G.; McCarthy, R., Algebra and Applications, 18, Springer London, Ltd., London, 2013, 435 pages (ISBN: 978-1-4471-4392-5; 978-1-4471-4393-2) | MR | Zbl

Dundas, B. I. Continuity of K-theory: an example in equal characteristics, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 1287-1291 (ISSN: 0002-9939) | DOI | MR | Zbl

Geisser, T.; Hesselholt, L. Bi-relative algebraic K-theory and topological cyclic homology, Invent. math., Volume 166 (2006), pp. 359-395 (ISSN: 0020-9910) | DOI | MR | Zbl

Geisser, T.; Hesselholt, L. On the K-theory and topological cyclic homology of smooth schemes over a discrete valuation ring, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 131-145 (ISSN: 0002-9947) | DOI | MR | Zbl

Geisser, T.; Hesselholt, L. On the K-theory of complete regular local 𝔽p-algebras, Topology, Volume 45 (2006), pp. 475-493 (ISSN: 0040-9383) | DOI | MR | Zbl

Geisser, T.; Hesselholt, L., Algebraic K -theory (Seattle, WA, 1997) (Proc. Sympos. Pure Math.), Volume 67, Amer. Math. Soc., Providence, RI, 1999, pp. 41-87 | DOI | MR | Zbl

Grothendieck, A. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math. IHÉS, Volume 11 (1961), pp. 5-167 (ISSN: 0073-8301) | Numdam | MR

Hartshorne, R., Graduate Texts in Math., 52, Springer, New York-Heidelberg, 1977, 496 pages (ISBN: 0-387-90244-9) | MR | Zbl

Hesselholt, L. Periodic topological cyclic homology and the Hasse-Weil zeta function (preprint arXiv:1602.01980 )

Hesselholt, L. The big de Rham-Witt complex, Acta Math., Volume 214 (2015), pp. 135-207 (ISSN: 0001-5962) | DOI | MR | Zbl

Hesselholt, L. On the p-typical curves in Quillen's K-theory, Acta Math., Volume 177 (1996), pp. 1-53 (ISSN: 0001-5962) | DOI | MR | Zbl

Hesselholt, L.; Madsen, I., Homotopy methods in algebraic topology (Boulder, CO, 1999) (Contemp. Math.), Volume 271, Amer. Math. Soc., Providence, RI, 2001, pp. 127-140 | DOI | MR | Zbl

Hesselholt, L.; Madsen, I. On the K-theory of finite algebras over Witt vectors of perfect fields, Topology, Volume 36 (1997), pp. 29-101 (ISSN: 0040-9383) | DOI | MR | Zbl

Illusie, L. Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Sup., Volume 12 (1979), pp. 501-661 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Kassel, C.; Sletsjøe, A. B. Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology, Math. Scand., Volume 70 (1992), pp. 186-192 (ISSN: 0025-5521) | DOI | MR | Zbl

Kunz, E. On Noetherian rings of characteristic p , Amer. J. Math., Volume 98 (1976), pp. 999-1013 (ISSN: 0002-9327) | DOI | MR | Zbl

Loday, J.-L., Grundl. math. Wiss., 301, Springer, Berlin, 1992, 454 pages (ISBN: 3-540-53339-7) | DOI | MR | Zbl

Langer, A.; Zink, T. De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 231-314 (ISSN: 1474-7480) | DOI | MR | Zbl

Matsumura, H., Cambridge Studies in Advanced Math., 8, Cambridge Univ. Press, Cambridge, 1989, 320 pages (ISBN: 0-521-36764-6) | MR | Zbl

Morrow, M. A case of the deformational Hodge conjecture via a pro Hochschild-Kostant-Rosenberg theorem, C. R. Math. Acad. Sci. Paris, Volume 352 (2014), pp. 173-177 (ISSN: 1631-073X) | DOI | MR | Zbl

Morrow, M. Pro unitality and pro excision in algebraic K-theory and cyclic homology, J. reine ang. Math. (2015) ( doi:10.1515/crelle-2015-0007 ) | MR | Zbl

Panin, I. A. The Hurewicz theorem and K-theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat., Volume 50 (1986), pp. 763-775 (ISSN: 0373-2436) | MR | Zbl

Popescu, D. General Néron desingularization, Nagoya Math. J., Volume 100 (1985), pp. 97-126 http://projecteuclid.org/euclid.nmj/1118780236 (ISSN: 0027-7630) | DOI | MR | Zbl

Popescu, D. General Néron desingularization and approximation, Nagoya Math. J., Volume 104 (1986), pp. 85-115 http://projecteuclid.org/euclid.nmj/1118780554 (ISSN: 0027-7630) | DOI | MR | Zbl

Pirashvili, T.; Waldhausen, F. Mac Lane homology and topological Hochschild homology, J. Pure Appl. Algebra, Volume 82 (1992), pp. 81-98 (ISSN: 0022-4049) | DOI | MR | Zbl

Quillen, D. Homology of commutative rings (1968) (unpublished MIT notes)

Quillen, D., Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 65-87 | DOI | MR | Zbl

Ronco, M. On the Hochschild homology decompositions, Comm. Algebra, Volume 21 (1993), pp. 4699-4712 (ISSN: 0092-7872) | DOI | MR | Zbl

Rülling, K. The generalized de Rham-Witt complex over a field is a complex of zero-cycles, J. Algebraic Geom., Volume 16 (2007), pp. 109-169 (ISSN: 1056-3911) | DOI | MR | Zbl

Suslin, A. A. On the K-theory of local fields, J. Pure Appl. Algebra (Proceedings of the Luminy conference on algebraic K $K$ -theory (Luminy, 1983)), Volume 34 (1984), pp. 301-318 (ISSN: 0022-4049) | DOI | MR | Zbl

Swan, R. G., Algebra and geometry (Taipei, 1995) (Lect. Algebra Geom.), Volume 2, Int. Press, Cambridge, MA, 1998, pp. 135-192 | MR | Zbl

Weibel, C. A., Cambridge Studies in Advanced Math., 38, Cambridge Univ. Press, Cambridge, 1994, 450 pages (ISBN: 0-521-43500-5; 0-521-55987-1) | DOI | MR | Zbl

Weibel, C. Cyclic homology for schemes, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 1655-1662 (ISSN: 0002-9939) | DOI | MR | Zbl

Weibel, C. A.; Geller, S. C. Étale descent for Hochschild and cyclic homology, Comment. Math. Helv., Volume 66 (1991), pp. 368-388 (ISSN: 0010-2571) | DOI | MR | Zbl

Cité par Sources :