Le but de cet article est d'établir des propriétés fondamentales des homologies de Hochschild, de Hochschild topologique et cyclique topologique d'anneaux commutatifs et noethériens, qu'on ne suppose être que F-finis pour la majorité de nos résultats. Cette hypothèse faible est satisfaite en tous cas d'intérêts en géométrie algébrique en caractéristique finie et mixte. Nous démontrons d'abord que les groupes d'homologie de Hochschild topologique, ainsi que les groupes d'homotopie du spectre des points fixés , sont des modules de type fini (après la -complétion dans le cadre de caractéristique mixte). En l'utilisant, nous établissons la continuité de ces homologies pour n'importe quel idéal. Une conséquence de ces résultats de continuité est le théorème de Hochschild-Kostant-Rosenberg pro pour les homologies de Hochschild topologique et cyclique topologique. Finalement, nous démontrons que ces résultats de génération finie et ces propriétés de continuité sont toujours valables pour les schémas propres et lisses sur un tel anneau.
The goal of this paper is to establish fundamental properties of the Hochschild, topological Hochschild, and topological cyclic homologies of commutative, Noetherian rings, which are assumed only to be F-finite in the majority of our results. This mild hypothesis is satisfied in all cases of interest in finite and mixed characteristic algebraic geometry. We prove firstly that the topological Hochschild homology groups, and the homotopy groups of the fixed point spectra , are finitely generated modules (after -completion in the mixed characteristic setting). We use this to establish the continuity of these homology theories for any given ideal. A consequence of such continuity results is the pro Hochschild-Kostant-Rosenberg theorem for topological Hochschild and cyclic homology. Finally, we show more generally that the aforementioned finite generation and continuity properties remain true for any proper scheme over such a ring.
DOI : 10.24033/asens.2319
Keywords: $K$-theory, topological cyclic homology.
Mot clés : $K$-théorie, homologie cyclique topologique.
@article{ASENS_2017__50_1_201_0, author = {Dundas, Bj{\o}rn Ian and Morrow, Matthew}, title = {Finite generation and continuity of topological {Hochschild} and cyclic homology}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {201--238}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {1}, year = {2017}, doi = {10.24033/asens.2319}, mrnumber = {3621430}, zbl = {1372.19002}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2319/} }
TY - JOUR AU - Dundas, Bjørn Ian AU - Morrow, Matthew TI - Finite generation and continuity of topological Hochschild and cyclic homology JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 201 EP - 238 VL - 50 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2319/ DO - 10.24033/asens.2319 LA - en ID - ASENS_2017__50_1_201_0 ER -
%0 Journal Article %A Dundas, Bjørn Ian %A Morrow, Matthew %T Finite generation and continuity of topological Hochschild and cyclic homology %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 201-238 %V 50 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2319/ %R 10.24033/asens.2319 %G en %F ASENS_2017__50_1_201_0
Dundas, Bjørn Ian; Morrow, Matthew. Finite generation and continuity of topological Hochschild and cyclic homology. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 201-238. doi : 10.24033/asens.2319. http://www.numdam.org/articles/10.24033/asens.2319/
, Grundl. math. Wiss., 206, Springer, Berlin-New York, 1974, 341 pages | MR | Zbl
Deformation of algebraic cycle classes in characteristic zero, Algebr. Geom., Volume 1 (2014), pp. 290-310 (ISSN: 2214-2584) | DOI | MR | Zbl
Topological Hochschild homology of , J. Pure Appl. Algebra, Volume 148 (2000), pp. 29-76 (ISSN: 0022-4049) | DOI | MR | Zbl
Problem session, Homology Homotopy Appl., Volume 3 (2001), p. vii-xv (ISSN: 1512-0139) | MR | Zbl
Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann., Volume 344 (2009), pp. 891-922 (ISSN: 0025-5831) | DOI | MR | Zbl
On the 2-typical de Rham-Witt complex, Doc. Math., Volume 13 (2008), pp. 413-452 (ISSN: 1431-0635) | DOI | MR | Zbl
, Algebra and Applications, 18, Springer London, Ltd., London, 2013, 435 pages (ISBN: 978-1-4471-4392-5; 978-1-4471-4393-2) | MR | Zbl
Continuity of -theory: an example in equal characteristics, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 1287-1291 (ISSN: 0002-9939) | DOI | MR | Zbl
Bi-relative algebraic -theory and topological cyclic homology, Invent. math., Volume 166 (2006), pp. 359-395 (ISSN: 0020-9910) | DOI | MR | Zbl
On the -theory and topological cyclic homology of smooth schemes over a discrete valuation ring, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 131-145 (ISSN: 0002-9947) | DOI | MR | Zbl
On the -theory of complete regular local -algebras, Topology, Volume 45 (2006), pp. 475-493 (ISSN: 0040-9383) | DOI | MR | Zbl
, Algebraic -theory (Seattle, WA, 1997) (Proc. Sympos. Pure Math.), Volume 67, Amer. Math. Soc., Providence, RI, 1999, pp. 41-87 | DOI | MR | Zbl
Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math. IHÉS, Volume 11 (1961), pp. 5-167 (ISSN: 0073-8301) | Numdam | MR
, Graduate Texts in Math., 52, Springer, New York-Heidelberg, 1977, 496 pages (ISBN: 0-387-90244-9) | MR | Zbl
Periodic topological cyclic homology and the Hasse-Weil zeta function (preprint arXiv:1602.01980 )
The big de Rham-Witt complex, Acta Math., Volume 214 (2015), pp. 135-207 (ISSN: 0001-5962) | DOI | MR | Zbl
On the -typical curves in Quillen's -theory, Acta Math., Volume 177 (1996), pp. 1-53 (ISSN: 0001-5962) | DOI | MR | Zbl
, Homotopy methods in algebraic topology (Boulder, CO, 1999) (Contemp. Math.), Volume 271, Amer. Math. Soc., Providence, RI, 2001, pp. 127-140 | DOI | MR | Zbl
On the -theory of finite algebras over Witt vectors of perfect fields, Topology, Volume 36 (1997), pp. 29-101 (ISSN: 0040-9383) | DOI | MR | Zbl
Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Sup., Volume 12 (1979), pp. 501-661 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology, Math. Scand., Volume 70 (1992), pp. 186-192 (ISSN: 0025-5521) | DOI | MR | Zbl
On Noetherian rings of characteristic , Amer. J. Math., Volume 98 (1976), pp. 999-1013 (ISSN: 0002-9327) | DOI | MR | Zbl
, Grundl. math. Wiss., 301, Springer, Berlin, 1992, 454 pages (ISBN: 3-540-53339-7) | DOI | MR | Zbl
De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 231-314 (ISSN: 1474-7480) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 8, Cambridge Univ. Press, Cambridge, 1989, 320 pages (ISBN: 0-521-36764-6) | MR | Zbl
A case of the deformational Hodge conjecture via a pro Hochschild-Kostant-Rosenberg theorem, C. R. Math. Acad. Sci. Paris, Volume 352 (2014), pp. 173-177 (ISSN: 1631-073X) | DOI | MR | Zbl
Pro unitality and pro excision in algebraic -theory and cyclic homology, J. reine ang. Math. (2015) ( doi:10.1515/crelle-2015-0007 ) | MR | Zbl
The Hurewicz theorem and -theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat., Volume 50 (1986), pp. 763-775 (ISSN: 0373-2436) | MR | Zbl
General Néron desingularization, Nagoya Math. J., Volume 100 (1985), pp. 97-126 http://projecteuclid.org/euclid.nmj/1118780236 (ISSN: 0027-7630) | DOI | MR | Zbl
General Néron desingularization and approximation, Nagoya Math. J., Volume 104 (1986), pp. 85-115 http://projecteuclid.org/euclid.nmj/1118780554 (ISSN: 0027-7630) | DOI | MR | Zbl
Mac Lane homology and topological Hochschild homology, J. Pure Appl. Algebra, Volume 82 (1992), pp. 81-98 (ISSN: 0022-4049) | DOI | MR | Zbl
Homology of commutative rings (1968) (unpublished MIT notes)
, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 65-87 | DOI | MR | Zbl
On the Hochschild homology decompositions, Comm. Algebra, Volume 21 (1993), pp. 4699-4712 (ISSN: 0092-7872) | DOI | MR | Zbl
The generalized de Rham-Witt complex over a field is a complex of zero-cycles, J. Algebraic Geom., Volume 16 (2007), pp. 109-169 (ISSN: 1056-3911) | DOI | MR | Zbl
On the -theory of local fields, J. Pure Appl. Algebra (Proceedings of the Luminy conference on algebraic K $K$ -theory (Luminy, 1983)), Volume 34 (1984), pp. 301-318 (ISSN: 0022-4049) | DOI | MR | Zbl
, Algebra and geometry (Taipei, 1995) (Lect. Algebra Geom.), Volume 2, Int. Press, Cambridge, MA, 1998, pp. 135-192 | MR | Zbl
, Cambridge Studies in Advanced Math., 38, Cambridge Univ. Press, Cambridge, 1994, 450 pages (ISBN: 0-521-43500-5; 0-521-55987-1) | DOI | MR | Zbl
Cyclic homology for schemes, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 1655-1662 (ISSN: 0002-9939) | DOI | MR | Zbl
Étale descent for Hochschild and cyclic homology, Comment. Math. Helv., Volume 66 (1991), pp. 368-388 (ISSN: 0010-2571) | DOI | MR | Zbl
Cité par Sources :