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FINITE GENERATION AND CONTINUITY
OF TOPOLOGICAL HOCHSCHILD

AND CYCLIC HOMOLOGY

 B I DUNDAS  M MORROW

A. – The goal of this paper is to establish fundamental properties of the Hochschild,
topological Hochschild, and topological cyclic homologies of commutative, Noetherian rings, which
are assumed only to be F-finite in the majority of our results. This mild hypothesis is satisfied in all cases
of interest in finite and mixed characteristic algebraic geometry. We prove firstly that the topological
Hochschild homology groups, and the homotopy groups of the fixed point spectra TRr , are finitely
generated modules (after p-completion in the mixed characteristic setting). We use this to establish the
continuity of these homology theories for any given ideal. A consequence of such continuity results
is the pro Hochschild-Kostant-Rosenberg theorem for topological Hochschild and cyclic homology.
Finally, we show more generally that the aforementioned finite generation and continuity properties
remain true for any proper scheme over such a ring.

R. – Le but de cet article est d’établir des propriétés fondamentales des homologies de
Hochschild, de Hochschild topologique et cyclique topologique d’anneaux commutatifs et noethériens,
qu’on ne suppose être que F-finis pour la majorité de nos résultats. Cette hypothèse faible est satisfaite
en tous cas d’intérêts en géométrie algébrique en caractéristique finie et mixte. Nous démontrons
d’abord que les groupes d’homologie de Hochschild topologique, ainsi que les groupes d’homotopie
du spectre des points fixés TRr , sont des modules de type fini (après la p-complétion dans le cadre de
caractéristique mixte). En l’utilisant, nous établissons la continuité de ces homologies pour n’importe
quel idéal. Une conséquence de ces résultats de continuité est le théorème de Hochschild-Kostant-
Rosenberg pro pour les homologies de Hochschild topologique et cyclique topologique. Finalement,
nous démontrons que ces résultats de génération finie et ces propriétés de continuité sont toujours
valables pour les schémas propres et lisses sur un tel anneau.

1. Introduction

The aim of this paper is to prove fundamental finite generation, continuity, and pro
Hochschild-Kostant-Rosenberg theorems for the Hochschild, topological Hochschild, and
topological cyclic homologies of commutative, Noetherian rings. As far as we are aware,
these are the first general results on the finite generation and continuity of topological
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202 B. I. DUNDAS AND M. MORROW

Hochschild and cyclic homology, despite the obvious foundational importance of such
problems in the subject.

The fundamental hypothesis for the majority of our theorems is the classical notion of
F-finiteness:

D 1.1. – A Z.p/-algebra (always commutative) is said to be F-finite if and only
if the Fp-algebra A=pA is finitely generated over its subring of p-th powers.

This is a mild condition: it is satisfied as soon as A=pA is obtained from a perfect field by
iterating the following constructions any finite number of times: passing to finitely generated
algebras, localising, completing, or Henselising; see Lemma 3.8.

To state our main finite generation result, we first remark that the Hochschild homology
HHn.A/ of a ring A is always understood in the derived sense (see Section 2.2). Secondly,
THHn.A/ denotes the topological Hochschild homology groups of a ringA, while TRrn.AIp/
denotes the homotopy groups of the fixed point spectrum TRr .AIp/ for the action of the
cyclic group Cpr�1 on the topological Hochschild homology spectrum THH.A/. It is
known that TRrn.AIp/ is naturally a module over the p-typical Witt ring Wr .A/. Note that
W1.A/ D A and TR1.A; p/ D THH.A/. The obvious notation will be used for the
p-completed, or finite coefficient, versions of these theories, and for their extensions to
quasi-separated, quasi-compact schemes following [9].

Our main finite generation result is the following, where Abp D lim
 �s

A=psA denotes the
p-completion of a ring A:

T 1.2 (see Corol. 4.8). – Let A be a Noetherian, F-finite Z.p/-algebra, and
n � 0, r � 1. Then HHn.AIZp/ and THHn.AIZp/ are finitely generated Abp-modules, and
TRrn.AIp;Zp/ is a finitely generated Wr .Abp/-module.

The key step towards proving Theorem 1.2 is the following finite generation result for the
André-Quillen homology of Fp-algebras:

T 1.3 (see Thm. 4.6). – Let A be a Noetherian, F-finite Fp-algebra. Then the
André-Quillen homology groups Di

n.A=Fp/ are finitely generated for all n; i � 0.

Next we turn to “degree-wise continuity” for the homology theoriesHH , THH , and TRr ,
by which we mean the following: given an ideal I � A, we examine when the natural map of
pro A-modules

fHHn.A/˝A A=I
s
gs �! fHHn.A=I

s/gs

is an isomorphism, and similarly for THH and TRr . This question was first raised by
L. Hesselholt in 2001 [4], who later proved with T. Geisser the THH isomorphism in the
special case that A D RŒX1; : : : ; Xd � and I D hX1; : : : ; Xsi for any ring R [12, §1].

In Section 5.1 we prove the following:
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FINITE GENERATION AND CONTINUITY 203

T 1.4 (see Thm. 5.3). – Let A be a Noetherian, F-finite Z.p/-algebra, and I � A
an ideal. Then, for all n � 0 and v; r � 1, the canonical maps

fHHn.AIZ=pv/˝A A=I sgs �! fHHn.A=I sIZ=pv/gs
fTRrn.AIp;Z=p

v/˝Wr .A/ Wr .A=I
s/gs �! fTR

r
n.A=I

s
Ip;Z=pv/gs

are isomorphisms of pro A-modules and pro Wr .A/-modules respectively.

Applying Theorem 1.4 simultaneously to A and its completion bA D lim
 �s

A=I s with
respect to the ideal I , we obtain Corollary 5.4, stating that both the maps

HHn.AIZ=pv/˝A bA �! HHn.bAIZ=pv/ �! lim
 �
s

HHn.A=I
s
IZ=pv/

are isomorphisms, and similarly for THH and TRr .

Of a more topological nature than such degree-wise continuity statements are spectral
continuity, namely the question of whether the canonical map of spectra

THH.A/ �! holim
s

THH.A=I s/

is a weak equivalence, at least after p-completion. The analogous continuity question
for K-theory was studied for discrete valuation rings by A. Suslin [36], I. Panin [28], and
the first author [7], and for power series rings A D RŒŒX1; : : : ; Xd �� over a regular, F-finite
Fp-algebraR by Geisser and Hesselholt [12], with I D hX1; : : : ; Xd i. Geisser and Hesselholt
proved the continuity of K-theory in such cases by establishing it first for THH and TRr .

We use the previous degree-wise continuity results to prove the following:

T 1.5 (see Thm. 5.5). – Let A be a Noetherian, F-finite Z.p/-algebra, and I � A
an ideal; assume thatA is I -adically complete. Then, for all r � 1, the canonical map of spectra

TRr .AIp/ �! holim
s

TRr .A=I sIp/

is a weak equivalence after p-completion. Similarly for THH , TR, TC r , and TC .

There are two important special cases in which the results so far can be analysed further:
when p is nilpotent, and when p generates I . Firstly, if p is nilpotent in A, for example if
A is a Noetherian, F-finite, Fp-algebra, then Theorem 1.2 – Theorem 1.5 are true integrally,
without p-completing or working with finite coefficients; see Corollaries 4.9 and 5.6 for
precise statements. Secondly, if I D pA, then Theorems 1.4 and 1.5 simplify significantly;
see Corollary 5.8 for the precise statement and Remark 5.9 for related work.

We present our pro Hochschild-Kostant-Rosenberg (HKR) theorems in Section 5.2.
Given a geometrically regular (e.g., smooth) morphism k ! A of Noetherian rings, the
classical HKR theorem, combined with Néron-Popescu desingularisation, states that the
antisymmetrisation map �n

A=k
! HH k

n .A/ is an isomorphism of A-modules for all n � 0.
In Theorem 5.11 we establish its pro analogue: if I � A is an ideal, then the canonical map
of pro A-modules

f�n.A=I s/=kgs �! fHH
k
n .A=I

s/gs

is an isomorphism for all n � 0.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



204 B. I. DUNDAS AND M. MORROW

In the special case of finite type algebras over fields, this was proved by G. Cortiñas,
C. Haesemeyer, and C. Weibel [5, Thm. 3.2]. The stronger form presented here has recently
been required in the study of infinitesimal deformations of algebraic cycles [2, 26].

The analogue of the HKR theorem for THH and TRr was established by Hesselholt [15,
Thm. B]: IfA is a regular Fp-algebra, then there is a natural isomorphism ofWr .A/-modulesLn
iD0Wr�

i
A ˝Wr .Fp/ TR

r
n�i .FpIp/

'
! TRrn.AIp/, where Wr��A denotes the de Rham-Witt

complex of S. Bloch, P. Deligne, and L. Illusie. In the limit over r , Hesselholt moreover
showed that the contribution from the left side vanishes except in top degree i D n, giving
an isomorphism of pro abelian groups fWr�nAgr Š fTR

r
n.AIp/gr which deserves to be called

the HKR theorem for the pro spectrum fTRrgr .
We prove the following pro versions of these HKR theorems:

T 1.6 (see Thm. 5.14 & Corol. 5.15). – Let A be a regular, F-finite Fp-algebra,
and I � A an ideal. Then, for all n � 0 and r � 1, the canonical map of pro Wr .A/-modules

nM
iD0

fWr�
i
A=I s ˝Wr .Fp/ TR

r
n�i .FpIp/gs �! fTR

r
n.A=I

s
Ip/gs;

and the canonical map of pro pro abelian groups˚
fWr�

n
A=I s gs

	
r
�!

˚
fTRrn.A=I

s
Ip/gs

	
r

are isomorphisms.

Finally, in Section 6, the earlier finite generation and continuity results are extended to
proper schemes over Noetherian, F-finite Z.p/-algebras. These are obtained by combining
the results in the affine case with Zariski descent and Grothendieck’s formal functions
theorem for coherent cohomology. Our main finite generation result is the following:

T 1.7 (see Corol. 6.4). – Let A be a Noetherian, F-finite, finite Krull-dimensional
Z.p/-algebra, X a proper scheme over A, and n � 0, r � 1. Then HHn.X IZp/ and
THHn.X IZp/ are finitely generated Abp-modules, and TRrn.X Ip;Zp/ is a finitely generated
Wr .A

b
p/-module.

Given an ideal I � A and a proper scheme X over A, we next consider the natural
map of pro A-modules fHHn.X/˝A A=I sgs �! fHHn.Xs/gs , where Xs WD X �A A=I s ,
and similarly for THH and TRr . In this situation we establish the exact analogues of
Theorem 1.4 and its Corollary 5.4 mentioned above; see Theorem 6.6 and Corollary 6.7 for
precise statements. As in the affine case, we use these degree-wise continuity statements to
deduce continuity of topological cyclic homology for proper schemes over our usual base
rings:

T 1.8 (see Thm. 6.8). – Let A be a Noetherian, F-finite Z.p/-algebra, I � A an
ideal, and X be a proper scheme over A; assume A is I -adically complete. Then, for all r � 1,
the canonical map of spectra

TRr .X Ip/ �! holim
s

TRr .XsIp/

is a weak equivalence after p-completion. Similarly for THH , TR, TC r , and TC .
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FINITE GENERATION AND CONTINUITY 205

As in the affine case, it is particularly interesting to consider the cases that p is nilpotent
or is the generator of I ; see Corollaries 6.9 and 6.10.

Notation, etc.

With the strict exception of Proposition 5.1 (which holds also in the non-commutative
case), all rings from Section 3 onwards are commutative. Modules are understood to be
symmetric bimodules whenever a bimodule structure is required for Hochschild homology.

Given a positive integer n, the n-torsion of an abelian group M is denoted by MŒn�.

Acknowledgements

The second author would like to thank the Department of Mathematics at the University
of Bergen for providing such a hospitable environment during two visits.

2. Review of Artin-Rees properties and homology theories

2.1. Pro abelian groups and Artin-Rees properties

Here we summarise some results and notation concerning pro abelian group and pro
modules which will be used throughout the paper.

If A is a category, then we denote by Pro A the category of pro objects of A indexed
over N. That is, an object of Pro A is an inverse system M1 D fMsgs D “M1  M2  � � � ”,
where the objects Mi and the transition maps belong to A ; the morphisms are given by

HomPro A .M1; N1/ WD lim
 �
r

lim
�!
s

Hom A .Ms; Nr /:

If A is abelian then so is Pro A , and a pro object M1 2 Pro A is isomorphic to zero
if and only if it satisfies the trivial Mittag-Leffler condition: that is, that for all r � 1 there
exists s � r such that the transition map Ms !Mr is zero.

We will be particularly interested in the cases A D Ab andA -mod, whereA is a commu-
tative ring, in which case we speak of pro abelian groups and pro A-modules respectively.
When it is unlikely to cause any confusion, we will occasionally use1 notation in proofs for
the sake of brevity; for example, if I is an ideal of a ring A and M is an A-module, then

M ˝A A=I
1
D fM ˝A A=I

s
gs; HHn.A=I

1;M=I1M/ D fHHn.A=I
s;M=I sM/gs :

We now state the fundamental Artin-Rees result which will be used repeatedly, see [1,
Prop. 10 & Lem. 11] and [32, Lem. 9.9] (note that (ii) is simply a reformulation of (i)):

T 2.1 (André, Quillen). – Let A be a commutative, Noetherian ring, and I � A

an ideal.

(i) If M is a finitely generated A-module, then the pro A-module fTorAn .A=I
s;M/gs

vanishes for all n > 0.
(ii) The “completion” functor � ˝A A=I1 W A -mod �! ProA -mod is exact on the

subcategory of finitely generated A-modules.

C 2.2. – Let A be a commutative, Noetherian ring, I � A an ideal, and M
a finitely generated A-module. Then the pro A-module fTorAn .A=I

s;M=I s/gs vanishes for
all n > 0.
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206 B. I. DUNDAS AND M. MORROW

Proof. – For each r � 1 we may apply the previous theorem to the module M=I r to see
that there exists s � r such that the second of the following arrows is zero:

TorAn .A=I
s;M=I s/! TorAn .A=I

s;M=I r /! TorAn .A=I
r ;M=I r /:

Hence the composition is zero, completing the proof.

C 2.3. – LetA be a commutative, Noetherian ring, I � A an ideal,M a finitely
generated A-module, and G a finite group acting A-linearly on M . Then the canonical map of
pro group homologies fHn.G;M/˝AA=I

sgs ! fHn.G;M=I
sM/gs is an isomorphism for all

n � 0.

Proof. – Considering Z as a left ZŒG�-module via the augmentation map,A=I s as a right
A-module, and M as an A � ZŒG�-bimodule, there are first quadrant spectral sequences
of A-modules with the same abutement by [39, Ex. 5.6.2]:

E2ij .s/ D TorAi .A=I
s;TorZŒG�j .M;Z//; 0E2ij .s/ D TorZŒG�i .TorAj .A=I

s;M/;Z/:

These assemble to first quadrant spectral sequences of pro A-modules with the same abute-
ment:

E2ij .1/ D fTorAi .A=I
s;TorZŒG�j .M;Z//gs; 0E2ij .1/ D fTorZŒG�i .TorAj .A=I

s;M/;Z/gs :

Since TorZŒG�j .M;Z/ is a finitely generatedA-module for all j � 0, Theorem 2.1(i) implies
that E2ij .1/ D 0 for i > 0; so the E.1/-spectral sequence degenerates to the edge map

isomorphism. Theorem 2.1(i) similarly implies that TorAj .A=I
s;M/ D 0 for j > 0, and hence

the 0E.1/-spectral sequence also degenerates to the edge map isomorphism.

Composing these edge map isomorphisms, we arrive at an isomorphism of proA-modules

fTorZŒG�n .M;Z/ ˝A A=I sgs
'
! fTorZŒG�n .M=I sM;Z/gs for all n � 0, which is exactly the

desired isomorphism.

C 2.4. – LetA be a commutative, Noetherian ring, I � A an ideal,M a finitely
generated A-module, and m � 1. Then the canonical maps

fMŒm�˝A A=I
s
gs �! fM=I

sM Œm�gs; fM=mM ˝A A=I
s
gs �! fM=.mM C I

sM/gs

are isomorphisms of pro A-modules.

Proof. – These isomorphisms follow by Theorem 2.1(ii) from the exact sequence

0! fMŒm�˝A A=I
s
gs ! fM=I

sM g
�m
��! fM=I sM g ! fM=mM ˝A A=I

s
gs ! 0:
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FINITE GENERATION AND CONTINUITY 207

2.2. André-Quillen and Hochschild homology

Let k be a commutative ring. We briefly review the André-Quillen and Hochschild
homologies of k-algebras, though we assume that the reader has some familiarity with these
theories. Let A be a commutative k-algebra, let P� ! A be a simplicial resolution of A
by free commutative k-algebras, and set LA=k WD �1

P�=k
˝P� A. Thus LA=k is a simplicial

A-module which is free in each degree; it is called the cotangent complex of the k-algebra A.
Given simplicial A-modules M�, N�, the tensor product and alternating powers are the
simplicial A-modules defined degreewise. We set Li

A=k
WD

Vi
A LA=k for each i � 1. The

André-Quillen homology [1, 33, 34] of A, with coefficients in an A-module M , is defined by

(n; i � 0) Di
n.A=k;M/ WD �n.LiA=k ˝AM/:

When M D A the notation is simplified to Di
n.A=k/ WD D

i
n.A=k;A/ D �nLiA=k .

For Hochschild homology [24], A can be a possibly non-commutative k-algebra. For an
A-bimodule M , the “usual” Hochschild homology of A as a k-algebra with coefficients
in M is defined to be HH usual;k

n .A;M/ WD �n.C
k
� .A;M// for n � 0, where C k� .A;M/ D

fŒn� 7! M ˝ A˝kng is the usual simplicial k-module. However, we will work throughout
with the derived version of Hochschild homology, which we now explain; more details may
be found in [27, §3]. Letting P� ! A be a simplicial resolution of A by flat k-algebras,
letHH k.A;M/ denote the diagonal of the bisimplicial k-module C k� .P�;M/; the homotopy
type of HH k.A;M/ does not depend on the choice of resolution, and we set

(n � 0) HH k
n .A;M/ WD �nHH

k.A;M/:

The canonical map HH k
n .A;M/ ! HH

usual;k
n .A;M/ is an isomorphism if A is flat over k.

When A D M we write HH k.A/ D HH k.A;A/ and HH k
n .A/ D HH k

n .A;A/, and when
k D Z we omit it from the notation.

2.3. Topological Hochschild and cyclic homology

The manipulations of topological Hochschild and cyclic homology contained in this
paper are of a mostly algebraic nature, using only the formal properties of the theory. We
collect various spectral sequences, long exact sequences, etc. which we need; we hope that
the algebraic nature of this exposition will be accessible to non-topologists since the results
of this paper will be later applied to problems in arithmetic and algebraic geometry.

2.3.1. Topological Hochschild homology. – If A is a ring and M is an A-bimodule then
THH.A;M/ denotes the associated topological Hochschild homology spectrum, as
constructed in, e.g., [8]. Its homotopy groups are the topological Hochschild homology
of A with coefficients in M , namely

(n � 0) THHn.A;M/ WD �nTHH.A;M/:

If A is commutative and M is a symmetric A-module, then these are A-modules. When
M D A, one writes THH.A/ D THH.A;A/ and THHn.A/ D THHn.A;A/.

Algebraic properties of THH may be extracted from the following two results:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



208 B. I. DUNDAS AND M. MORROW

(i) Pirashvili-Waldhausen’s [29, Thm. 4.1] first quadrant spectral sequence of abelian
groups (of A-modules if A is commutative and M is a symmetric A-module)

E2ij D HHi .A; THHj .Z;M// H) THHiCj .A;M/;

which compares THH with its algebraic counterpart HHn.A;M/ D HHZ
n .A;M/.

(ii) M. Bökstedt’s [8, Thm. 4.1.0.1] calculation of the groups THHn.Z;M/:

THHn.Z;M/ Š

(
M=mM n D 2m � 1

MŒm� n D 2m:

For example, ifA is a commutative, Noetherian ring for whichHHn.A/ is a finitely generated
A-module for all n � 0, then (i) & (ii) easily imply the same for THHn.A/.

2.3.2. The fixed point spectra TRr . – An essential fact is that THH.A/ is a cyclotomic spec-
trum in the sense of [18]. This means that THH.A/ is an S1-spectrum (it carries a “nice”
action by the circle group S1, ensuring the existence of so-called Frobenius and Verschiebung
maps), together with additional pro structure ensuring the existence of restriction maps. The
intricacies of cyclotomic spectra and the construction of their homotopy fixed points, homo-
topy orbits, etc. are irrelevant for this paper; we only need certain algebraic consequences
which we now list.

Let p be a fixed prime number and, for r � 1, let Cpr�1 be the cyclic subgroup of S1 of
order pr�1. The Cpr�1 -fixed point spectrum of THH.A/ is denoted by

TRr .AIp/ WD THH.A/
C

pr�1

(note that TR1.AIp/ D THH.A/), and its homotopy groups by TRrn.AIp/ WD �nTR
r .AIp/.

Formal algebraic properties of the groups TRrn.AIp/may be obtained from the following
two facts, which are non-trivial consequences of THH.A/ being a cyclotomic spectrum; see,
e.g., Lems. 1.4.5 & 2.0.6 of [8, §VI], or Thm. 1.2 and the proof of Prop. 2.3 of [18]:

(i) There is a natural homotopy fibre sequence of spectra

THH.A/hCpr �! TRrC1.AIp/
R
�! TRr .AIp/

where THH.A/hCpr is the spectrum of homotopy orbits for the action of Cpr

on THH.A/, and R is known as the restriction map.
(ii) There is a first quadrant spectral sequence

E2ij D Hi .Cpr ; THHj .A// H) �iCj .THH.A/hCpr /;

where Hi .Cpr ; THHj .A// is the homology of Cpr with trivial coefficients THHj .A/.

2.3.3. Witt structure. – Assuming that A is commutative, the various aforementioned
groups inherit natural algebra or module structures: THHn.A/ is a module over A, and
TRrn.AIp/ and �n.THH.A/hC

pr�1
/ are modules over the p-typical Witt ring Wr .A/. The

Witt vector structure appears in the following way: firstly, TRr .AIp/ is a ring spectrum (and
R is a map of ring spectra) and so the homotopy groups TRrn.AIp/ and �n.THH.A/hC

pr�1
/

are modules over the ring TRr0.AIp/ (this does not require A to be commutative), and
secondly it is a theorem of Hesselholt and Madsen [18, Thm. F] that there is a natural

isomorphism of rings Wr .A/
'
! TRr0.AIp/. Moreover, by [15, §1.3] we have the following

structure:

4 e SÉRIE – TOME 50 – 2017 – No 1



FINITE GENERATION AND CONTINUITY 209

(i) The long exact sequence of homotopy groups from 2.3.2(i) above is a long exact
sequence of WrC1.A/-modules, where the action of WrC1.A/ on the Wr .A/-module
TRrn.AIp/ is via the restriction map R W WrC1.A/! Wr .A/.

(ii) The group homology spectral sequence from 2.3.2(ii) above is a spectral sequence
of WrC1.A/-modules, where the action of WrC1.A/ on the E2-page, whose terms are
clearly A-modules, is via the r th power of the Frobenius F r W WrC1.A/! A.

2.3.4. Topological cyclic homology. – The homotopy limit over the restriction maps
RWTRrC1.AIp/! TRr .AIp/, namely

TR.AIp/ WD holimr TR
r .AIp/;

is a ring spectrum whose homotopy groups TRn.AIp/ WD �n.TR.AIp// fit into short
exact sequences 0 ! lim

 �

1

r
TRrnC1.AIp/ ! TRn.AIp/ ! lim

 �r
TRrn.AIp/ ! 0. If A is

commutative then the groups TRn.AIp/ are naturally modules over W.A/ D lim
 �r

Wr .A/.

The so-called Frobenius map F WTRrC1.AIp/ ! TRr .AIp/ is the inclusion of the
Cpr -fixed point spectrum of THH.A/ into the Cpr�1 -fixed point spectrum. The Frobenius
commutes with the restriction, and thus induces a map F WTR.AIp/ ! TR.AIp/. The
p-typical topological cyclic homology spectrum of A is, by definition,

TC.AIp/ WD hofib.TR.AIp/
id�F
����! TR.AIp//:

One may additionally define a p-typical topological cyclic homology spectrum for a fixed

level r � 1 by setting TC r .AIp/ WD hofib.TRr .AIp/
R�F
���! TRr�1.AIp//:

2.4. Finite coefficients and p-completions

Given a prime number p and a simplicial abelian group M�, its (derived) p-completion
is by definition the simplicial abelian group .M�/bp WD holimv.M� ˝

IL
Z Z=pv/. We write

�n.M�IZ=pv/ D �n.M ˝IL
Z Z=pv/ and �n.M�IZp/ D �n..M�/bp/, and recall the short exact

seqences

0 �! �n.M�/˝Z Z=pv �! �n.M�IZ=pv/ �! �n�1.M�/Œp
v� �! 0

0! Ext1Z.Qp=Zp; �n.M�//! �n.M�IZp/! HomZ.Qp=Zp; �n�1.M�//! 0:

Similarly, if X is a spectrum then its p-completion is by definition Xb
p WD holimv.X ^ S=p

v/,
where S=pr denotes the pr th Moore spectrum; the same short exact sequences as for
a simplicial abelian group apply, and we point out that H..M�/bp/ D H.M�/

b
p for any

simplicial abelian group M�, where H.�/ denotes the Eilenberg-Maclane construction.
We remark that if M is an abelian group then Mb

p denotes the usual p-adic completion
of M , namely Mb

p D lim
 �v

M=pvM , and not the derived p-completion of M as a constant
simplicial abelian group.

Now let A be a commutative ring, and M an A-module. We will use the notation

HH.A;M IZ=pv/ WD HH.A;M/˝IL
Z Z=pv HH.A;M IZp/ WD HH.A;M/bp

THH.A;M IZ=pv/ WD THH.A;M/ ^ S=pv THH.A;M IZp/ WD THH.A;M/bp
TRr .AIZ=pv/ WD TRr .AIp/ ^ S=pv TRr .AIp;Zp/ WD TR.AIp/bp:
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and similarly forTR,TC r , andTC ; the homotopy groups are denoted in the obvious manner.
To make the already overburdened notation more manageable, we have chosen to write
TRr .AIZ=pv/, TC r .AIZ=pv/, etc., rather than TRr .AIp;Z=pv/, TC r .AIp;Z=pv/, etc.

There is an exact sequence of simplicial A-modules 0 ! †AŒpv� ! A ˝IL
Z Z=pv !

A=pvA ! 0 (where † denotes suspension, i.e., �1 shift in the language of complexes), and
this induces a long exact sequence of A-modules

� � � �! HHn�1.A;AŒp
v�/ �! HHn.AIZ=pv/ �! HHn.A;A=p

vA/ �! � � � ;

and likewise for THH .

Smashing the homotopy fibre sequence of Section 2.3.2(i) with S=pv yields a new homo-
topy fibre sequence, and hence a long exact sequence of the homotopy groups with finite
coefficients. Moreover THH.A/hCpr ^ S=p

v ' .THH.A/ ^ S=pv/hCpr , and hence there is
a homotopy orbit spectral sequence, as in Section 2.3.2(ii), with finite coefficients.

Next, HH.AIZ=pv/ is a simplicial module over HH.A/; THH.AIZ=pv/ is a module
spectrum over THH.A/; and TRr .AIZ=pv/ is a module spectrum over TRr .AIp/. Hence
their homotopy groups are naturally modules over A, A, and Wr .A/ respectively. The Witt
structure outlined in Section 2.3.3 thus remains true with finite coefficients.

2.5. Finite generation of p-completions

We explain how finite generation results with finite coefficients lead to similar finite gener-
ation statements after p-completing. We claim no originality for these results, but could not
find such algebraic statements summarised in the literature.

L 2.5. – LetA be a commutative, Noetherian ring, andM anA-module. Then (i) H)
(ii) H) (iii) H) (iv), where

(i) M is flat or finitely generated over A.
(ii) The p-power torsion of M is bounded, i.e., there exists c � 1 such that any p-power

torsion element of M is killed by pc .
(iii) The pro A-module fMŒpr �gr vanishes.
(iv) lim
 �

1

r
MŒpr � and HomZ.Qp=Zp;M/ are zero.

Proof. – Suppose first that M is a finitely generated A-module. Then M satisfies the
ascending chain condition on submodules, so the chain MŒp� � MŒp2� � MŒp3� � � � � is
eventually constant, meaning exactly that all p-power torsion in M is killed by pc for some
fixed c � 1. This proves (ii) for finitely generated M .

In particular, taking M D A, there exists c � 1 such that AŒpr � D AŒpc � for all r � c;

in other words, the sequence 0 ! AŒpc � ! A
�pr

��! A is exact. So, if M is flat, then the

sequence 0! AŒpc �˝AM ! M
�pr

��! M is also exact, whence pcMŒpr � D 0 for all r � c;
this proves (ii) for flat M .

(ii))(iii): Let c � 1 be as in part (ii). Then, for each r � 1, the transition map

MŒprCc �
�pc

���! MŒpr � is zero, as required to prove the vanishing of fMŒpr �gr . Using the
identification HomZ.Qp=Zp;M/ D lim

 �r
MŒpr �, (iii))(iv) is immediate.
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L 2.6. – Let A be a commutative, Noetherian ring, and M an A-module. If M=pM
(resp. MŒp�) is a finitely generated A-module, then Ext1Z.Qp=Zp;M/ (resp. HomZ.Qp=Zp;M/)
is a finitely generated Abp-module.

Proof. – (i): Assume M=pM is finitely generated. There exists a finitely generated
A-submodule N � M such that N=pN ! M=pM is surjective; let ƒ D M=N , which is
p-divisible. The long exact ExtZ.Qp=Zp;�/ sequence for 0! N !M ! ƒ! 0 contains

Ext1Z.Qp=Zp; N /! Ext1Z.Qp=Zp;M/! Ext1Z.Qp=Zp; ƒ/;

and we claim that the final term vanishes. Indeed, it is equivalent to show that both lim
 �

1

r
ƒŒpr �

and ƒbp vanish, and this easily follows from the p-divisibility of ƒ.

Moreover, it follows from Lemma 2.5 that lim
 �

1

r
NŒpr � D 0, whence Ext1Z.Qp=Zp; N / D Nb

p ,

which is a finitely generatedAbp-module; sinceNb
p surjects onto Ext1Z.Qp=Zp;M/, we deduce

that the latter is also finitely generated.

(ii): Assume MŒp� is finitely generated. The map

HomZ.Qp=Zp;M/˝Z Z=pZ ,!MŒp� f ˝ 1 7! f .1=p/

is injective, whence the left side is finitely generated over Abp. Applying part (i) to the module
HomZ.Qp=Zp;M/, we therefore deduce that Ext1Z.Qp=Zp;HomZ.Qp=Zp;M// is a finitely
generated Abp-module, hence that its quotient HomZ.Qp=Zp;M/bp is also a finitely generated
Abp-module. But HomZ.Qp=Zp;M/ D lim

 �r
MŒpr � is evidently already p-adically complete,

so that HomZ.Qp=Zp;M/bp D HomZ.Qp=Zp;M/.

P 2.7. – Let A be a commutative, Noetherian ring, and p a prime number.
SupposeX is a connective ring spectrum and thatA! �0.X/ is a ring homomorphism such that
the homotopy groups ofX ^S=p are finitely generatedA-modules; then �n.X IZp/ is naturally
a finitely generated Abp-module for all n � 0. Similarly for simplicial rings.

Proof. – The p-completionXb
p is again a ring spectrum and so the groups �n.X IZp/ are

naturally �0.X IZp/-modules. Moreover, there is a canonical ring homomorphism

Abp D Ext1Z.Qp=ZpIA/ �! Ext1Z.Qp=ZpI�0.X// D �0.X IZp/;

where the first equality follows from Lemma 2.5 with M D A, and the second from the fact
that X is connective. Hence �n.X IZp/ is naturally an Abp-module, and

(†) 0 �! Ext1Z.Qp=Zp; �n.X// �! �n.X IZp/ �! HomZ.Qp=Zp; �n�1.X/// �! 0

is an exact sequence ofAbp-modules. By assumption�n.X/˝ZZ=pZ and�n.X/Œp� are finitely
generated A-modules for all n � 0, so the previous lemma implies that the outer terms of (†)
are finitely generated Abp-modules; this completes the proof.
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3. Preliminaries on Witt rings and F-finiteness

3.1. Witt rings

We establish some preliminary results on Witt rings of commutative rings; some similar
material may be found in [10]. We will use the language of both big Witt rings WS .A/ asso-
ciated to truncation sets S � N, and of p-typical Witt rings Wr .A/ D Wf1;p;p2;:::;pr�1g.A/

when a particular prime number p is clear from the context. The p-typical case is classical,
while the language of truncation sets is due to [19]; a more detailed summary, to which we
will refer for various Witt ring identities, may be found in [35, Appendix].

Given an inclusion of truncation sets S � T , there are the associated Restriction and
Teichmüller maps

RT WWS .A/!WT .A/; Œ��S W A!WS .A/;

which are a ring homomorphism and multiplicative respectively. If m � 1 is an integer one
defines the truncation set S=m WD fs 2 S W sm 2 Sg and writes Rm instead of RS=m; then
there are moreover the associated Frobenius and Verschiebung maps

Fm WWS .A/!WS=m.A/; Vm WWS=m.A/!WS .A/;

which are a ring homomorphism and additive respectively. In thep-typical case we follow the
standard abuse of notation, writing R; F W Wr .A/! Wr�1.A/ and V W Wr�1.A/! Wr .A/

in place of Rp; Fp, and Vp.
If S is finite then each element of WS .A/ may be written uniquely as

P
i2S Vi Œai �S=i for

some ai 2 A; we will often use this to reduce questions to the study of terms of the form
Vi Œa�S=i , which we will abbreviate to Vi Œa� when the truncation set S is clear.

If I is an ideal of A, then WS .I / denotes the ideal of WS .A/ defined as the kernel of
the quotient map WS .A/ � WS .A=I /. Alternatively, WS .I / is the Witt vectors of the
non-unital ring I . An element ˛ 2 WS .A/ lies in WS .I / if and only if, in its expansion
˛ D

P
i2S Vi Œai �, the coefficients ai 2 A all belong to I .

L 3.1. – Let A be a ring, I; J � A ideals, and S a finite truncation set. Then:

(i) WS .I /WS .J / �WS .IJ /.
(ii) WS .I /

N �WS .I
N / for all N � 1.

(iii) WS .I /CWS .J / DWS .I C J /.
(iv) Assume I is a finitely generated ideal; then for any N � 1 there exists M � 1 such

that WS .I
M / �WS .I /

N .

Proof. – (i): It is enough to show that ˛ˇ 2 WS .IJ / in the case that ˛ D Vi Œa� and
ˇ D Vj Œb� for some i; j 2 S , a 2 I , and b 2 J , since such terms additively generate
WS .I / and WS .J /. But this follows from the standard Witt ring identity Vi Œa� Vj Œb� D
gVij=g Œa

i=gbj=g �, where g WD gcd.i; j / [35, A.4(v)]. Now (ii) follows from (i) by induction.

(iii): The surjection J ! ICJ
I

induces a surjection WS .J / � WS .
ICJ
I
/ Š WS .ICJ/

WS .I /
,

whence WS .I C J / �WS .I /CWS .J /. The reverse inclusion is obvious.
(iv): By assumption we have I D ht1; : : : ; tmi for some t1; : : : ; tm 2 A. For any M � 1,

we will write I .M/ WD htM1 ; : : : ; t
M
m i � I

M . Note that I .M/ � Im.M�1/C1, so it is enough to
find M � 1 such that WS .I

.M// �WS .I /
N ; we claim that M D N` suffices, where ` is the
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least common multiple of all elements of S . To prove the claim we first use (iii) to see that
WS .I

.M// D WS .At
M
1 / C � � � CWS .At

M
m /, and then we note that WS .At

M
j / is additively

generated by terms Vi ŒatMj � where i 2 S and a 2 A; so it is enough to prove the claim for
such terms. WritingM D N` D N 0i for someN 0 � N , this claim follows from the standard
Witt ring identity [35, A.4(vi)]

Vi Œat
M
j � D Vi Œat

N 0i
j � D Œtj �

N 0Vi Œa� 2WS .I /
N 0
�WS .I /

N :

R 3.2. – The proof of part (iv) of Lemma 3.1 establishes a stronger result: namely
that for any N � 1 and any set of generators t1; : : : ; tm of I , there exists M � 1 such that
WS .I

M / � hŒt1�; : : : ; Œtm�i
N . In particular, if f W A! B is a ring homomorphism, then we

have WS .f .I
M /B/ � f .WS .I /

N /WS .B/.

L 3.3. – Let A be a ring, I � A a finitely generated ideal, and S a finite truncation
set; let bA WD lim

 �s
A=I s be the I -adic completion of A. Then the canonical maps

lim
 �
s

WS .A/=WS .I /
s
�! lim
 �
s

WS .A/=WS .I
s/ �WS .bA/

are isomorphisms.

Proof. – The left arrow is an isomorphism since the two chains of ideals WS .I
s/ and

WS .I /
s are intertwined by Lemma 3.1. Regarding the right arrow, note that WS commutes

with arbitrary inverse systems of rings (since WS .�/, as a functor from rings to sets, is simply
R 7! RS ) and so, in particular,

WS .bA/ DWS .lim
 �
s

A=I s/
'
! lim
 �
s

WS .A=I
s/ D lim

 �
s

WS .A/=WS .I
s/:

The p-adic completion of a ring R is denoted by Rbp WD lim
 �s

R=psR.

L 3.4. – Let A be a ring, p a prime number, and r � 1. Then there is a natural
isomorphism of rings Wr .A/bp Š Wr .Abp/.

Proof. – By Lemma 3.3, it is enough to show that the ideals pWr .A/ and Wr .pA/ each
contain a power of the other. It is well-known that Wr .Fp/ D Z=prZ, whence Wr .A=pA/ is
a Z=prZ-algebra; in other words, prWr .A/ � Wr .pA/. By Remark 3.2 there exists M � 1
such that Wr .pMA/ � Œp�pWr .A/; so Wr .pA/

M � Wr .p
MA/ � Œp�pWr .A/, where

the first inclusion is by Lemma 3.1(ii). Hence we can complete the proof by showing that
Œp�2 2 pWr .A/. Since Rr�1.Œp�/ D p 2 A, and since there is a short exact sequence

0 �! Wr�1.A/
V
�! Wr .A/

Rr�1

���! A �! 0;

we deduce that Œp� � p 2 V Wr�1.A/, whence Œp�2 2 pWr .A/ C .V Wr�1.A//2. Finally, it
follows from standard Witt vector identities that the square of the ideal V Wr�1.A/ lies inside
pWr .A/, e.g., [35, Prop. A.4(v)].

Now we turn to the Frobenius:

L 3.5. – Let A be a ring, I � A a finitely generated ideal, and r � 1.

(i) The ideal of A generated by F r�1Wr .I / contains IM for M � 0.
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(ii) The natural ring homomorphisms A ˝Wr .A/ Wr .A=I
s/ ! A=I s , induced by the

commutative diagrams of rings

Wr .A/ //

F r�1

��

Wr .A=I
s/

F r�1

��

A // A=I s;

induce an isomorphism of pro rings fA˝Wr .A/ Wr .A=I
s/gs

'
! fA=I sgs .

Proof. – (i): If I is generated by t1; : : : ; tm 2 A, then I .M/ D htM1 ; : : : ; t
M
m i contains

Im.M�1/C1; so it is enough to show that I .M/ � hF r�1Wr .I /i for M � 0. But M D pr�1

clearly has this property, since for any a 2 I we have F r�1Œa� D ap
r�1

.

(ii): Since Wr .A/ ! Wr .A=I
s/ is surjective with kernel Wr .I s/, the tensor product

A˝Wr .A/Wr .A=I
s/ is simply A=hF r�1Wr .I s/i. Thus the claimed isomorphism of pro rings

is the statement that the chains of ideals I s and F r�1Wr .I s/A, for s � 1, are intertwined;
one inclusion is obvious and the other is (i).

To say more we will focus on Z.p/-algebras A which are F-finite in the sense of Defini-
tion 1.1. The following results of Langer and Zink may be found in [23, appendix]:

T 3.6 (Langer-Zink). – Let A be an F-finite Z.p/-algebra and r � 1. Then:

(i) The Frobenius F W WrC1.A/ ! Wr .A/ is a finite ring homomorphism; i.e., Wr .A/ is
finitely generated as a module over its subring FWrC1.A/.

(ii) If B is a finitely generated A-algebra, then B is also F-finite and Wr .B/ is a finitely
generated Wr .A/-algebra.

(iii) If A is Noetherian then Wr .A/ is also Noetherian.

We now reach the main result of this section, relating the Frobenius with pro completion;
this is our primary algebraic tool for extending results from THH to TRr :

T 3.7. – Let A be a Noetherian, F-finite Z.p/-algebra, I � A an ideal, and r � 1.
Consider the “completion” functor ˆr WWr .A/ -mod �! ProWr .A/ -mod given by ˆr .M/ WD

M ˝Wr .A/ Wr .A=I
1/ D fM ˝Wr .A/ Wr .A=I

s/gs . Then:

(i) The functor ˆr is exact on the subcategory of finitely generated Wr .A/-modules.
(ii) The following diagram commutes up to natural isomorphism:

A -mod

.F r�1/�

��

ˆ1 // ProA -mod

.F r�1/�

��

Wr .A/ -mod
ˆr // ProWr .A/ -mod :

In other words, if M is an A-module, viewed as a Wr .A/-module via the Frobenius
F r�1 W Wr .A/! A, then there is a natural isomorphism ˆr .M/ Š fM ˝A A=I

sgs .
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Proof. – (i): We must prove that the pro abelian group fTorWr .A/
n .Wr .A=I

s/;M/gs
vanishes for any finitely generated Wr .A/-module M and integer n > 0. According to
Lemma 3.1(ii)+(iv), the chain of ideals Wr .I s/ is intertwined with the chain Wr .I /

s , so
it is sufficient to prove that the pro abelian group fTorWr .A/

n .Wr .I /
s;M/gs vanishes. But

according to Langer-Zink, Wr .A/ is Noetherian, so this vanishing claim is covered by the
Artin-Rees Theorem 2.1(i).

(ii) is a restatement of Lemma 3.5(ii).

3.2. F-finiteness

In this section we prove some basic properties surrounding F-finiteness (Definition 1.1),
for which we claim no originality but for which we know of no suitable reference. We fix a
prime number p for the next three lemmas.

L 3.8. – Let A be a Noetherian, F-finite Z.p/-algebra. Then the following are also
Noetherian, F-finite Z.p/-algebras:

(i) Any finitely generated A-algebra.
(ii) Any localisation of A at a multiplicative system.

(iii) The completion of A at any ideal.
(iv) The Henselisation of A at any ideal.
(v) The strict Henselisation of A at any maximal ideal.

Proof. – The claim that operations (i)–(v) preserve the Noetherian property is standard
commutative algebra, so we need only prove the F-finiteness assertion, for which we may
replace A by A=pA and therefore assume that A is an Fp-algebra. Let a1; : : : ; an generate A
as an algebra over its p-th powers Ap.

(i): IfB D AŒb1; : : : ; bm� is a finitely generatedA-algebra, then it is generated by a1; : : : ; an,
b1; : : : ; bm over its p-th powers, hence is F-finite. (ii): If B is a localisation of A then B is
also generated by a1; : : : ; an over its p-th powers. (iii): Let bA be the completion of A at an
ideal I � A. Picking generators t1; : : : ; td 2 I for the ideal I , there is a resulting surjection
AŒŒX1; : : : ; Xd ��! bA and so the F-finiteness of bA follows from that of AŒŒX1; : : : ; Xd �� (it is
generated by a1; : : : ; an; X1; : : : ; Xd over its p-th powers).

We omit the proofs of (iv) and (v) as they are not required in the paper.

L 3.9. – Let A be a Z.p/-algebra and r � 1. Then:

(i) Wr .A/ is a Z.p/-algebra.
(ii) If p is nilpotent in A then p is nilpotent in Wr .A/.

(iii) If A is F-finite then Wr .A/ is also F-finite.

Proof. – (i): If an integer is invertible in A then it is also invertible in WS .A/ for any
truncation set S ; see e.g., [16, Lem. 1.9].

(ii): It is well-known thatWr .Fp/ D Z=prZ, whencepr D 0 inWr .A=pA/; since the kernel
ofWr .A/! Wr .A=pA/ is nilpotent by Lemma 3.1(ii) and the assumption, it follows thatp is
also nilpotent in Wr .A/.

(iii): The formula FV D p, e.g., [35, A.4(vi)], implies that the Frobenius F induces

a ring homomorphism A Š WrC1.A/=V Wr .A/
F
�! Wr .A/=pWr .A/, which is a finite
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morphism by Langer-Zink; since A is F-finite by assumption, it follows from Lemma 3.8(i)
that Wr .A/=pWr .A/ is also F-finite.

Finally we observe that F-finiteness is a sufficient (and, in fact, necessary) condition for
the finite generation of Kähler differentials; this fact underlies the finite generation of André-
Quillen homology which we will prove in Theorem 4.6:

L 3.10. – LetA be a Noetherian, F-finiteZ.p/-algebra andn � 0. Then�nA˝AA=pA
is a finitely generatedA-module. If furthermorep is nilpotent inA, then�nA is a finitely generated
A-module.

Proof. – It is enough to treat the case n D 1. Let a1; : : : ; am generate A=pA as a module
over its p-th powers. Then any b 2 A may be written as a sum b D pb0 C

P
i b
p
i ai for some

b0; b1; : : : ; bm 2 A, and so we deduce that

db D p db0 C
X
i

.b
p
i dai C pb

p�1
i ai dbi / �

X
i

b
p
i dai mod p:

That is, �1
A=k
˝A A=pA is generated by da1; : : : ; dam. Multiplying by pe, it follows that

pe�1A=p
eC1�1A is also finitely generated; so if p is nilpotent then pe�1A, e � 1, defines a

finite filtration on �1A with finitely generated steps, whence �1A is finitely generated.

4. Finite generation results for HH , THH , and TRr

The primary aim of this section is Theorem 4.7, which states that the algebraic and
topological Hochschild homology groups, with finite coefficients, of a Noetherian, F-finite
Z.p/-algebra A are finitely generated over A, and that the groups TRrn.AIZ=pv/ are finitely
generated over Wr .A/. From this we deduce additional finite generation results for the
p-completed theories, and for rings in which p is nilpotent. We believe these are the first
general finite generation results for topological Hochschild homology.

The key step is similar finite generation results for the André-Quillen homology of A;
indeed, the following lemma reduces the problem to André-Quillen homology:

L 4.1. – Let A be a Noetherian ring and I � A an ideal. Then (i) ” (i0) H)
(ii)” (ii0)” (iii)” (iii0), where

(i) Di
n.A=Z; A=I / is a finitely generated A-module for all n; i � 0.

(i0) Di
n.A=Z;M/ is a finitely generated A-module for all n; i � 0 and all finitely generated

A-modules M killed by a power of I .
(ii) HHn.A;A=I / is a finitely generated A-module for all n � 0.

(ii0) HHn.A;M/ is a finitely generated A-module for all n � 0 and all finitely generated
A-modules M killed by a power of I .

(iii) THHn.A;A=I / is a finitely generated A-module for all n � 0.
(iii0) THHn.A;M/ is a finitely generated A-module for all n � 0 and all finitely generated

A-modules M killed by a power of I .
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Proof. – The implications (i))(i0), (ii))(ii0), and (iii))(iii0) (whose converses are
trivial) follow in the usual way using universal coefficient spectral sequences and long
exact homology sequences; we will demonstrate the argument in the case of André-Quillen
homology. Let M be a finitely generated A-module killed by a power of I ; by induction on
the power of I killing M , and using the long exact sequence

� � � �! Di
n.A=Z; IM/ �! Di

n.A=Z;M/ �! Di
n.A=Z;M=IM/ �! � � � ;

we may clearly assume that IM D 0. Thus M ˝A A=I D M and so there is a universal
coefficient spectral sequence

E2st D TorAs .M;D
i
t .A=Z; A=I // H) Di

sCt .A=Z;M/:

Assuming (i), the A-modules on the left are finitely generated, hence the abutment is also
finitely generated, proving (i0).

Implication (i))(ii) is an immediate consequence of the André-Quillen-to-Hochschild-
homology spectral sequence E2ij D D

j
i .A=Z; A=I /) HHiCj .A;A=I /.

Implication (ii0))(iii) follows from the results recalled in Section 2.3.1. Indeed, the
Pirashvili-Waldhausen spectral sequence E2ij D HHi .A; THHj .Z; A=I //) THHiCj .A;A=I /

will prove this implication if we know that THHj .Z; A=I / is a finitely generated A-module
for all j ; fortunately Bökstedt’s calculation shows that this is indeed the case:

THHj .Z; A=I / Š

8̂̂<̂
:̂
A=I j D 0

A=.I CmA/ j D 2m � 1

.A=I /Œm� j D 2m > 0:

It remains to prove (iii0))(ii0), although we will not need this implication in the remainder
of the paper. To proceed by induction, fix n � 0 and suppose we have shown thatHHi .A;M/

is finitely generated for all i < n and for all finitely generatedA-modulesM killed by a power
of I ; note that the base case of the induction is covered by the identityHH0.A;M/ DM . To
prove the desired implication, it is now enough to fix an A-moduleM killed by a power of I
and to show that HHn.A;M/ is finitely generated. The inductive hypothesis and Bökstedt’s
calculation shows that, in the Pirashvili-Waldhausen spectral sequence

E2ij D HHi .A; THHj .Z;M// H) THHiCj .A;M/;

theA-modulesE2ij are finitely generated for all i < n. Since THHn.A;M/ is finitely generated
by assumption, it easily follows, e.g., by working in the Serre quotient category ofA-modules
modulo the finitely generated modules, that E2n0 D HHn.A;M/ is also finitely generated, as
required.

Given a commutative ring A, let sA -mod denote the category of simplicial A-modules,
which is equivalent via the Dold-Kan correspondence to the category of chain complexes
vanishing in negative degrees. We will be particularly interested in those simplicialA-modules
having finitely generated homotopy over A; i.e., those M� 2 sA -mod for which �n.M�/ is a
finitely generated A-module for all n � 0.

L 4.2. – Let A be a Noetherian ring. Then:
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(i) If L� ! M� ! N� is a homotopy cofibre sequence of simplicial A-modules such that
two of L�, M�, N� have finitely generated homotopy over A, then so does the third.

(ii) If L� 2 sA -mod consists of flat A-modules in each degree and has finitely generated
homotopy, and B is a Noetherian A-algebra, then L� ˝A B has finitely generated
homotopy over B.

(iii) If L�;M� 2 sA -mod have finitely generated homotopy, and L� consists of flat
A-modules in each degree, then L� ˝AM� has finitely generated homotopy.

Proof. – (i) is an obvious consequence of the long exact sequence of A-modules

� � � �! �n.L�/ �! �n.M�/ �! �n.N�/ �! � � � :

(ii): The flatness assumption implies that there is a spectral sequence of B-modules
E2ij D TorAi .�j .L�/; B/ ) �iCj .L� ˝A B/, so it is enough to show that the Tors are
finitely generated B-modules; since �j .L�/ is finitely generated over A by assumption,
we may pick a resolution P� of it by finitely generated, projective A-modules, and then
TorAi .�j .L�/; B/ D Hi .P� ˝A B/ is evidently finitely generated over B.

(iii): The flatness assumption implies that there is a spectral sequence of A-modules
E1ij D Li ˝A �j .M�/) �iCj .L�˝AM�/, whose E2-page is E2ij D �i .L�˝A �j .M�//. But
these terms on the E2-page are finitely generated thanks to our assumption and the spectral
sequences 0E2st D TorAs .�t .L�/; �j .M�//) �sCt .L� ˝A �j .M�// for each j � 0.

The second tool to prove the required results about finite generation of André-Quillen
homology is a spectral sequence due originally to C. Kassel and A. Sletsjøe [21, Thm. 3.2].
We state it here as a filtration on the cotangent complexes, rather than as the resulting spectral
sequence:

L 4.3 (Kassel-Sletsjøe). – Let A! B ! C be homomorphisms of rings. Then it is
possible to choose the cotangent complexes LC=A, LC=B , and LB=A to be degree-wise projective
modules and, for all i � 0, such that Li

C=A
has a natural filtration

LiC=A D F0LiC=A � F1LiC=A � � � � � FiLiC=A D LiB=A ˝B C � FiC1LiC=A D 0

of length i by simplicial C -modules, with graded pieces

(j D 0; : : : ; i ) grj LiC=A Š .L
j

B=A
˝B C/˝C Li�j

C=B
:

Sketch of proof. – One chooses simplicial resolutions in the usual way [33, Thm. 5.1] to
ensure that the Jacobi-Zariski sequence

0! LB=A ˝B C ! LC=A ! LC=B ! 0

is actually a short exact sequence of simplicialC -modules which are projective in each degree.
Then observe that whenever 0 ! L ! M ! N ! 0 is a short exact sequence
of projective modules over C , there is a resulting filtration on

Vi
M with graded piecesVj

L˝C
Vi�j

N .
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D 4.4. – Let m � 0 be an integer. We say that a homomorphism k ! A of
Noetherian rings is m-AQ-finite, or that A is m-AQ-finite over k, if and only if the André-
Quillen homology groupsDi

n.A=k;A=mA/ are finitely generatedA-modules for all n; i � 0.
In the casem D 0we omit the “0-”; soA is AQ-finite over k if and only ifDi

n.A=k/ is finitely
generated for all n; i � 0. In the case k D Z we omit the “over Z”, and say simply that A is
m-AQ-finite or AQ-finite.

L 4.5. – Assume all rings in the following are Noetherian, and let m � 0. Then:

(i) A finite type morphism is m-AQ-finite.
(ii) Localising at a multiplicative system is m-AQ-finite.

(iii) A composition of two m-AQ-finite morphisms is again m-AQ-finite.

Proof. – Since AQ-finiteness implies m-AQ-finiteness (this follows from the implication
(i))(i0) of Lemma 4.1), it is enough to prove (i) and (ii) in the case m D 0.

Then (i) is a result of Quillen, obtained by constructing a simplicial resolution of the
finitely generated k-algebra A by finitely generated, free k-algebras; see [33, Prop. 4.12].
Claim (ii) is another result of Quillen: if S is a multiplicative system in k, then [33, Thm. 5.4]
states that Di

n.S
�1k=k/ D 0.

(iii): Let A ! B ! C be homomorphisms of Noetherian rings such that A ! B

and B ! C are m-AQ-finite. Pick the cotangent complexes according to Lemma 4.3, and
fix i � 0. Since all the simplicial modules appearing in the statement of Lemma 4.3 are
degree-wise projective, the description of the filtration remains valid after tensoring by any
C -module. In particular, we deduce that Li

C=A
˝C C=mC has a decreasing filtration with

graded pieces

grj .LiC=A ˝C C=mC/ Š .L
j

B=A
˝B C/˝C Li�j

C=B
˝C C=mC

Š ..Lj
B=A
˝B B=mB/˝B=mB C=mC/˝C=mC .Li�jC=B

˝C C=mC/

for j D 0; : : : ; i . By the m-AQ-finiteness assumption, Lj
B=A
˝B B=mB and Li�j

C=B
˝C C=mC

have finitely generated homotopy over B and C , respectively; so Lemma 4.2(ii)+(iii) imply
that the above graded pieces have finitely generated homotopy. Applying Lemma 4.2(i)
i times, it follows that Li

C=A
˝C C=mC has finitely generated homotopy, as desired.

The following finite generation result is the first main result of the paper; it states, in
particular, that if A is a Noetherian, F-finite Fp-algebra, then the André-Quillen homology
groups Di

n.A=Fp/ are finitely generated A-modules for all n; i � 0:

T 4.6. – Let p be a prime number and e � 1.

(i) Any Noetherian, F-finite Z=peZ-algebra is AQ-finite over Z=peZ and over Z.
(ii) Any Noetherian, F-finite Z.p/-algebra is p-AQ-finite over Z.p/ and over Z.

Proof. – First let A be a Noetherian, F-finite Fp-algebra. Let F W A! A be the absolute
Frobenius x 7! xp. The homomorphism F may be factored as a composition of Fp-algebra

homomorphisms A
�
�! Ap

e
�! A, where Ap is the subring of A consisting of p-th

powers, �.x/ WD xp, and e is the natural inclusion. Our proof will be based on the following
observations. Firstly, � and e are finite type homomorphisms between Noetherian rings
(indeed,Ap is a quotient of the Noetherian ringA, and the fact that e is of finite type is exactly
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our assumption that A is F-finite). Secondly, the absolute Frobenius F W Li
A=Fp

! Li
A=Fp

is

zero for i � 1 (indeed, in any Fp-algebra, we have F.dˇ/ D dˇp D pˇp�1 dˇ D 0).

We will now prove the following statement by induction on i � 0:

If A is a Noetherian, F-finite Fp-algebra, then Li
A=Fp

has finitely generated homotopy
over A.

The claim is trivial for i D 0 since L0
A=Fp

' A, so assume i � 1. We remark that, in
the inductive proof that follows, we will need to choose different models of the cotangent
complex LA=Fp

. Apply Lemma 4.3 to the composition Fp ! Ap
e
�! A to see that it is possible

to pick the cotangent complexes LA=Fp
, LA=Ap , and LAp=Fp

in such a way that Li
A=Fp

has a

descending filtration F�Li
A=Fp

with graded pieces

(†) grj LiA=Fp
Š .Lj

Ap=Fp
˝Ap A/˝A Li�j

A=Ap

for j D 0; : : : ; i . For each j D 0; : : : ; i � 1, the simplicial Ap-module Lj
Ap=Fp

has finitely
generated homotopy overAp by the inductive hypothesis (note thatAp is also a Noetherian,
F-finite Fp-algebra since it is a quotient of A); meanwhile, Li�j

A=Ap has finitely generated
homotopy over A by Lemma 4.5(i). Applying Lemma 4.2(ii)+(iii) we deduce that the right
side of (†) has finitely generated homotopy over A for j D 0; : : : ; i � 1; from Lemma 4.2(i)
it follows that X WD Li

A=Fp
=FiLi

A=Fp
has finitely generated homotopy. In summary, we have

a homotopy cofibre sequence

gri LiA=Fp
D LiAp=Fp

˝Ap A
e
�! LiA=Fp

�! X;

where X has finitely generated homotopy over A.

We now apply a similar argument to the composition Fp ! A
�
�! Ap, after first picking

new models for the cotangent complexes LAp=Fp
, LAp=A, and LA=Fp

such that Li
Ap=Fp

has a

descending filtration F�Li
Ap=Fp

with graded pieces

grj LiAp=Fp
Š .Lj

A=Fp
˝A A

p/˝Ap Li�j
Ap=A

for j D 0; : : : ; i . The inductive hypothesis implies that Lj
A=Fp

has finitely generated homo-

topy over A for j D 0; : : : ; i � 1, and Lemma 4.5(i) implies that Li�j
Ap=A

has finitely
generated homotopy over Ap. So by the same argument as in the previous paragraph,
Li
Ap=Fp

=FiLi
Ap=Fp

has finitely generated homotopy over Ap. Using Lemma 4.2(ii) to base

change along Ap
e
�! A, we deduce that there is a homotopy cofibre sequence

LiA=Fp
˝A A

p
˝Ap A

�
�! LiAp=Fp

˝Ap A �! Y

of simplicial A-modules, where Y has finitely generated homotopy over A.
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In conclusion, we have a diagram in the homotopy category of simplicial A-modules

Y

Li
Ap=Fp

˝Ap A
e //

OO

Li
A=Fp

// X

Li
A=Fp

˝A A
p ˝Ap A

�

OO

in which the row and column are both homotopy cofibre sequences, and in which X and Y
have finitely generated homotopy. There is therefore a resulting homotopy cofibre sequence

Y �! hocofib.LiA=Fp
˝A A

p
˝Ap A

eı�
�! LiA=Fp

/ �! X;

and so Lemma 4.2(i) implies that the simplicial A-module in the centre of this sequence also
has finitely generated homotopy. But eı� D F is nulhomotopic on the cotangent complexes,
so this means that both Li

A=Fp
˝A A

p ˝Ap A and Li
A=Fp

must have finitely generated over
homotopy over A, which completes the proof of the inductive step.

We have proved that any Noetherian, F-finite Fp-algebra is AQ-finite over Fp; the
remaining claims of the theorem will all follow from this. Firstly let k denote either Z=peZ
or Z.p/, and note that any Noetherian, F-finite Fp-algebra is also AQ-finite over k; this
follows from Lemma 4.5.

Now let A be a Noetherian, F-finite k-algebra. We will prove by induction on i � 0

that Li
A=k
˝A A=pA has finitely generated homotopy over A=pA. We apply Lemma 4.3

to the composition k ! A ! A=pA and note the following, similar to the earlier
part of the proof: Li

.A=pA/=k
has finitely generated homotopy by what we have already

proved, while grj Li
.A=pA/=k

Š .Lj
A=k
˝A A=pA/ ˝A=pA Li�j

.A=pA/=A
has finitely generated

homotopy over A=pA for j D 0; : : : ; i � 1 by Lemma 4.2 and the inductive hypoth-
esis. By Lemma 4.2 again, it follows that the remaining part of the filtration, namely
gri Li

.A=pA/=k
Š Li

A=k
˝A A=pA, also has finitely generated homotopy over A=pA, as

required.
We have proved that any Noetherian, F-finite k-algebra is p-AQ-finite over k, hence also

over Z by Lemma 4.5.
From now on k D Z=peZ for some e � 1. All that remains to be shown is that if a

Noetherian k-algebra A is p-AQ-finite over k, then it is actually AQ-finite over k. By impli-
cation (i))(i0) of Lemma 4.1 with I D pA, it follows that Di

n.A=k;M/ is finitely gener-
ated for any finitely generated A-module M which is killed by a power of p; in particular,
taking M D A D A=peA we deduce that Di

n.A=k/ is finitely generated for all n; i � 0, as
required.

The following is our main finite generation theorem forHH , THH , and TRr , from which
others will follow:

T 4.7. – Let A be a Noetherian, F-finite Z.p/-algebra, and v > 0. Then:

(i) HHn.AIZ=pv/ and THHn.AIZ=pv/ are finitely generated A-modules for all n � 0.
(ii) TRrn.AIZ=pv/ is a finitely generated Wr .A/-module for all n � 0 and r � 1.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



222 B. I. DUNDAS AND M. MORROW

Proof. – (i): As explained in Section 2.4, there is a long exact sequence of A-modules

� � � �! HHn�1.A;AŒp
v�/ �! HHn.AIZ=pv/ �! HHn.A;A=p

vA/ �! � � � :

The A-modules HHn.A;AŒpv�/ and HHn.A;A=pvA/ are finitely generated for all n � 0 by
Theorem 4.6 and Lemma 4.1, whenceHHn.AIZ=pv/ is also finitely generated. The argument
for THH is verbatim equivalent.

(ii): The fundamental long exact sequence

� � � �! �n.THH.AIZ=pv/hCpr / �! TRrC1n .AIZ=pv/ �! TRrn.AIZ=p
v/! � � �

is one of WrC1.A/-modules, as explained in Sections 2.3.3 and 2.4. Since the ring WrC1.A/
is Noetherian by Langer-Zink (Theorem 3.6), it is enough by the five lemma and induc-
tion (recall that TR1n.AIZ=pv/ D THHn.AIZ=pv/ to start the induction) to show that
�n.THH.AIZ=pv/hCpr / is a finitely generated WrC1.A/-module for all n; r � 0.

To show this, recall the group homology spectral sequence

E2ij D Hi .Cpr ; THHj .AIZ=pv// H) �iCj .THH.AIZ=pv/hCpr /;

which is a spectral sequence of WrC1.A/-modules, where WrC1.A/ acts on the A-modules
on the E2-page via F r W WrC1.A/ ! A. But each A-module E2st is finitely generated by
part (i), hence is also finitely generated as a WrC1.A/-module since F r is a finite morphism
(again by Langer-Zink). Thus the abutment of the spectral sequence is also finitely generated
over WrC1.A/, as required.

C 4.8. – Let A be a Noetherian, F-finite Z.p/-algebra, and n � 0, r � 1.
Then HHn.AIZp/ and THHn.AIZp/ are finitely generated Abp-modules, and TRrn.AIp;Zp/
is a finitely generated Wr .Abp/-module.

Proof. – Letting v ! 1, this follows from Theorem 4.7 via Proposition 2.7; note that
Wr .A/

b
p Š Wr .A

b
p/ by Lemma 3.4.

In the case in whichp is nilpotent inA, for example whenA is an Fp-algebra, it is evidently
not necessary to p-complete:

C 4.9. – LetA be a Noetherian, F-finiteZ.p/-algebra in whichp is nilpotent, and
n � 0, r � 1. Then HHn.A/ and THHn.A/ are finitely generated A-modules, and TRrn.AIp/
is a finitely generated Wr .A/-module.

Proof. – Since p is nilpotent in A, it is also nilpotent in Wr .A/ by Lemma 3.9(ii); hence
HHn.A/, THHn.A/, and TRrn.AIp/ are all groups of bounded p-torsion. It follows that
HHn.A/ D HHn.AIZp/, similarly for THH and TR, and that Abp D A. So the claim follows
from Corollary 4.8 (or it can be deduced directly from Theorem 4.7 without passing via the
p-completion).

R 4.10. – The assertions of Corollary 4.9 are true whenever A is a Noetherian,
F-finite, AQ-finite Z.p/-algebra (e.g., an essentially finite type Z.p/-algebra).

Firstly, the HH and THH assertions follow immediately from Lemmas 4.5 and 4.1. To
prove the TRr assertion, one then repeats the proof of Theorem 4.7(ii), except working
directly with THH.A/ and TRr .AIp/ instead of THH.AIZ=pv/ and TRr .AIZ=pv/.
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5. Continuity and the pro HKR theorems

Let A be a Noetherian ring and I � A an ideal. In [4] it was asked when the canonical
map of pro A-modules

fTHHn.A/˝A A=I
s
gs �! fTHHn.A=I

s/gs;

is an isomorphism. It was shown by Geisser and Hesselholt [12, §1] to be an isomorphism
in the case that A D RŒX1; : : : ; Xd � is a polynomial algebra over any (even non-Noetherian)
ring R and I D hX1; : : : ; Xd i. Under our usual hypotheses including F-finiteness, we will
show in Section 5.1 that it is an isomorphism for any ideal I , at least working with finite
coefficients.

5.1. Degree-wise continuity and continuity of HH , THH , TRr , etc.

A key tool in our forthcoming proof of continuity properties is the following restriction
spectral sequence for Hochschild homology. The case of topological Hochschild homology
was established by M. Brun [3, Thm. 6.2.10]; the case of derived Hochschild homology is new
but unsurprising, and may be proved in a purely algebraic way via simplicial methods (see
[27, Prop. 3.4] for the details of the proof).

P 5.1. – Let k be a commutative ring, A! B a morphism of k-algebras, and
M a B-bimodule. Then there is a natural spectral sequence of k-modules

E2ij D HH
k
i .B;TorAj .B;M// H) HH k

iCj .A;M/;

and similarly for THH .

Combining Proposition 5.1 with our earlier finite generation results and the Artin-Rees
theorem, we may now establish our “degree-wise continuity” results, starting with the
following lemma:

L 5.2. – Let A be a Noetherian ring, I � A an ideal, M a finitely generated
A-module, and n � 0. Consider the canonical maps:

fHHn.A;M/˝A A=I
s
gs

.ii/
��! fHHn.A;M=I

sM/gs
.i/
�! fHHn.A=I

s;M=I sM/gs

fTHHn.A;M/˝A A=I
s
gs

.ii/
��! fTHHn.A;M=I

sM/gs
.i/
�! fTHHn.A=I

s;M=I sM/gs :

The maps (i) are isomorphisms. IfA is furthermore assumed to bem-AQ-finite for somem � 0,
and M is annihilated by m, then the maps (ii) are also isomorphisms.

Proof. – (i): By Proposition 5.1 there is a first quadrant spectral sequence of A-modules

E2ij .s/ D HHi .A=I
s;TorAj .A=I

s;M=I sM// H) HHiCj .A;M=I
sM/

for each s � 1. These assemble to a spectral sequence of pro A-modules

E2ij .1/ D fHHi .A=I
s;TorAj .A=I

s;M=I sM//gs H) fHHiCj .A;M=I
sM/gs :

By Corollary 2.2 fTorAj .A=I
s;M=I sM/gs D 0 for all j � 1, so this spectral sequence

collapses to edge isomorphisms fHHn.A;M=I sM/gs
'
! fHHn.A=I

s;M=I sM/gr of pro
A-modules for all n � 0; this proves isomorphism (i) for HH . The proof for THH is the
same.
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(ii): Now assume further that A is m-AQ-finite and that M is killed by m. Universal
coefficient spectral sequences for HH assemble to a spectral sequence of pro A-modules

0E2ij .1/ D fTorAi .A=I
s;HHj .A;M//gs H) fHHiCj .A;M=I

sM/gs :

But the A-modules HHj .A;M/ are finitely generated for all j � 0 by assumption and
Lemma 4.1, so fTorAi .A=I

s;HHj .A;M//gs D 0 for i � 1 by the Artin-Rees Theorem 2.1(i).

Thus we again obtain edge map isomorphisms fHHn.A;M/˝A A=I
sgs

'
! fHHn.A;M=I

sM/gs ,
completing the proof of isomorphism (ii) for HH . The proof for THH is verbatim equiva-
lent.

We now reach our main degree-wise continuity results, which establishes Theorem 1.4 of
the Introduction:

T 5.3. – Let A be a Noetherian, F-finite Z.p/-algebra, and I � A an ideal. Then
the canonical maps

(i) fHHn.AIZ=pv/˝A A=I sgs �! fHHn.A=I sIZ=pv/gs
(ii) fTRrn.AIZ=pv/˝Wr .A/ Wr .A=I

s/gs �! fTR
r
n.A=I

sIZ=pv/gs

are isomorphisms for all n � 0 and v; r � 1.

Proof. – (i): This follows from theHH part of Lemma 5.2 in a relatively straightforward
way: to keep the proof clear we will use1 notation for all the proA-modules. As in the proof
of Theorem 4.7(i), there is a long exact sequence of A-modules

� � � �! HHn�1.A;AŒp
v�/ �! HHn.AIZ=pv/ �! HHn.A;A=p

vA/ �! � � � ;

all of which are finitely generated. Hence we may base change byA=I1, as in the Artin-Rees
Theorem 2.1(ii), to obtain a long exact sequence of pro A-modules

(1) � � � ! HHn�1.A;AŒp
v�/˝A A=I

1

! HHn.AIZ=pv/˝A A=I1 ! HHn.A;A=p
vA/˝A A=I

1
! � � � :

Replacing A by A=I1, and using the isomorphisms of Corollary 2.4 with M D A, there
is also a long exact sequence of pro A-modules

(2) � � � ! HHn�1.A=I
1; AŒpv�˝A A=I

1/

! HHn.A=I
1
IZ=pv/! HHn.A=I

1; A=pvA˝A A=I
1/! � � � :

The obvious map from (1) to (2) induces an isomorphism on all the terms with coefficients
in AŒpv� and A=pvA, by Theorem 4.6 and Lemma 5.2, hence also induces an isomorphism
on the Z=pv terms, as desired.

(ii): If r D 1 then the claim is that the canonical map fTHHn.AIZ=pv/ ˝A A=I sgs !
fTHHn.A=I

sIZ=pv/gs is an isomorphism; the proof of this is verbatim equivalent to part (i).
So now assume r > 1 and proceed by induction.
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We may compare the fundamental long exact sequences with finite coefficients for bothA
and A=I s as follows:

� � � // �n.THH.AIZ=pv/hCpr / //

��

TRrC1n .AIZ=pv/ //

��

TRrn.AIZ=pv/ //

��

� � �

� � � // �n.THH.A=I
sIZ=pv/hCpr / // TRrC1n .A=I sIZ=pv/ // TRrn.A=I

sIZ=pv/ // � � �

As we saw in the proof of Theorem 4.7(ii), the top row consists of finitely generated
WrC1.A/-modules; so by Theorem 3.7(i), it remains exact after base changing by the
pro WrC1.A/-algebra WrC1.A=I1/. Simultaneously assembling the bottom row into pro
WrC1.A/-modules therefore yields a map of long exact sequences of pro WrC1.A/-modules;
by the five lemma and the inductive hypothesis, it is therefore enough to prove that

�n.THH.AIZ=pv/hCpr /˝WrC1.A/ WrC1.A=I
1/ �! �n.THH.A=I

1
IZ=pv/hCpr /

is an isomorphism for all n � 0. Both sides are the abutment of natural group homology
spectral sequences, so it is now enough to check that the map of spectral sequence is an
isomorphism on the second page, namely that the canonical map

(†) Hi .Cpr ; THHj .AIZ=pv//˝WrC1.A/ WrC1.A=I
1/ �! Hi .Cpr ; THHj .A=I

1
IZ=pv//

is an isomorphism for all i; j � 0. Since Hi .Cpr ; THHj .AIZ=pv// is a finitely gener-
ated A-module, the left side of (†) is precisely Hi .Cpr ; THHj .AIZ=pv// ˝A A=I1 by
Theorem 3.7(ii); meanwhile, the right side is Hi .Cpr ; THHj .AIZ=pv/ ˝A A=I1/ by the
isomorphism for THH which has already been established.

Therefore it is finally enough to prove that the map

Hi .Cpr ; THHj .AIZ=pv//˝A A=I1 �! Hi .Cpr ; THHj .AIZ=pv/˝A A=I1/

is an isomorphism; this follows from the finite generation of THHj .AIZ=pv/ and Corol-
lary 2.3.

C 5.4. – Let A be a Noetherian, F-finite Z.p/-algebra, and I � A an ideal; letbA denote the I -adic completion ofA. Then all of the following maps (not just the compositions)
are isomorphisms for all n � 0 and v; r � 1:

HHn.AIZ=pv/˝A bA �! HHn.bAIZ=pv/ �! lim
 �
s

HHn.A=I
s
IZ=pv/

TRrn.AIZ=p
v/˝Wr .A/ Wr .

bA/ �! TRrn.
bAIZ=pv/ �! lim

 �
s

TRrn.A=I
s
IZ=pv/:

Proof. – We claim that each of the following canonical maps is an isomorphism:

HHn.AIZ=pv/˝A bA �! lim
 �
s

HHn.AIZ=pv/˝A A=I s �! lim
 �
s

HHn.A=I
s
IZ=pv/:

Firstly, HHn.AIZ=pv/ is a finitely generated A-module by Theorem 4.7, and A is Noethe-
rian, so standard commutative algebra, e.g., [25, Thm. 8.7], implies that the first map is an
isomorphism. Secondly, Theorem 5.3(i) implies that the second map is an isomorphism.
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However, Lemma 3.8 implies that bA is also a Noetherian, F-finite Z.p/-algebra, so
applying the same argument to bA with respect to the ideal I bA we obtain another composi-
tion of isomorphisms

HHn.bAIZ=pv/˝ bA bA �! lim
 �
s

HHn.bAIZ=pv/˝ bA bA=I s bA �! lim
 �
s

HHn.bA=I s bAIZ=pv/:
Since bA=I s bA Š A=I s and HHn.bA/ ˝ bA bA Š HHn.bA/, the desired isomorphisms for HH
follow.

The proofs of the isomorphisms for TRr are exactly the same as for HH , except that
for TRr one must also note that Wr .A/ is Noetherian by Langer-Zink (Theorem 3.6) and
use Lemma 3.3.

Whereas the previous two continuity results have concerned individual groups, we now
prove the spectral continuity of THH , TRr , etc. under our usual hypotheses; this establishes
Theorem 1.5 of the Introduction:

T 5.5. – LetA be a Noetherian, F-finite Z.p/-algebra, and I � A an ideal; assume
that A is I -adically complete. Then, for any r � 1, the canonical map of spectra

TRr .AIp/ �! holim
s

TRr .A=I sIp/

is a weak equivalence after p-completion. Similarly for THH , TR, TC r , and TC .

Proof. – To prove the desired result for TRr we must show that the map TRr .AIZ=pv/!
holims TR

r .A=I sIZ=pvZ/ is a weak equivalence for all v � 1. Firstly, fixing r � 1, the
homotopy groups of holims TR

r .A=I sIZ=pv/ fit into short exact sequences

0! lim
 �
s

1TRrnC1.A=I
s
IZ=pv/! �n.holim

s
TRr .A=I sIZ=pv//! lim

 �
s

TRrn.A=I
s
IZ=pv/! 0:

Theorem 5.3(i) implies that the left-most term is lim
 �

1

s
TRrnC1.AIZ=pv/ ˝Wr .A/ Wr .A=I

s/,
which vanishes because of the surjectivity of the transition maps in the pro abelian group
fTRrnC1.AIZ=pv/˝Wr .A/ Wr .A=I

s/gs . In conclusion, the natural map

�n.holim
s

TRr .A=I sIZ=pv// �! lim
 �
s

TRrn.A=I
s
IZ=pv/

is an isomorphism for all n � 0. But since A is already I -adically complete, Corollary 5.4
states that TRrn.AIZ=pv/ ! lim

 �s
TRrn.A=I

sIZ=pv/ is also an isomorphism for all n � 0.
So the map TRr .AIZ=pv/ ! holims TR

r .A=I sIZ=pv/ induces an isomorphism on all
homotopy groups, as required.

The claims for TR, TC r , and TC then follow since homotopy limits commute.

In the remainder of this section we consider straightforward consequences of the previous
three results in special situations. We begin with the case in which p is nilpotent in A:
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C 5.6. – Let A be a Noetherian, F-finite Z.p/-algebra in which p is nilpotent,
and I � A an ideal; let bA denote the I -adic completion of A. Then all of the following maps
(not just the compositions) are isomorphisms for all n � 0 and r � 1:

fHHn.A/˝A A=I
s
gs �! fHHn.A=I

s/gs

fTRrn.AIp/˝Wr .A/ Wr .A=I
s/gs �! fTR

r
n.A=I

s
Ip/gs

HHn.A/˝A bA �! HHn.bA/ �! lim
 �
s

HHn.A=I
s/

TRrn.AIp/˝Wr .A/ Wr .
bA/ �! TRrn.

bAIp/ �! lim
 �
s

TRrn.A=I
s
Ip/:

Moreover, the weak equivalences of Theorem 5.5 hold without p-completing.

Proof. – Note that p is also nilpotent in Wr .A/, by Lemma 3.9(ii). So, fixing r � 1, we
may pick v � 0 such that the groups

HHn.A/; HHn.A=I
s/; THHn.A/; THHn.A=I

s/; TRrn.AIp/; TR
r
n.A=I

s
Ip/

are annihilated by pv for all n � 0, s � 1. Hence the spectra appearing in Theorem 5.5 are all
p-complete, and the isomorphisms follow from Theorem 5.3 and Corollary 5.4 by examining
the short exact sequences for homotopy groups with finite coefficients, in the usual way.

R 5.7. – Some of the statements of Corollary 5.6 hold for rings other than
Noetherian, F-finite Z.p/-algebras in which p is nilpotent. In particular, if A is a Noetherian
ring which is AQ-finite over Z (e.g., an essentially finite type Z-algebra) and I � A is an
ideal, then the pro HH and THH D TR1 isomorphisms of Corollary 5.6 hold; indeed, this
follows immediately from Lemma 5.2 with m D 0 and M D A.

Suppose now, in addition to be being Noetherian and AQ-finite, that A is an F-finite
Z.p/-algebra (e.g., an essentially finite type Z.p/-algebra). Then the pro TRr isomorphisms
of Corollary 5.6 hold: this is proved by verbatim repeating the proof of Theorem 5.3(ii)
integrally instead of with finite coefficients.

Now, in stark contrast with the case in which p is nilpotent, we consider the case where
I D pA; here our methods yield a new proof, albeit under different hypotheses, of a result
of Geisser and Hesselholt, as we will discuss in Remark 5.9:

C 5.8. – Let A be a Noetherian, F-finite Z.p/-algebra. Then the canonical map

HHn.AIZ=pv/ �! fHHn.A=psAIZ=pv/gs

is an isomorphism for all n � 0 and v � 1. Similarly for THH , TRr , and TC r .

Moreover, for all r � 1, the canonical maps (not just the composition) of spectra

TRr .AIp/ �! TRr .AbpIp/ �! holim
s

TRr .A=psAIp/

are weak equivalences after p-completion. Similarly for THH , TR, TC r , and TC .
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Proof. – The groups HHn.AIZ=pv/ and TRrn.AIZ=pv/ are annihilated by pv. Since we
proved in Lemma 3.4 that pvWr .A/ contains Wr .psA/ for s � 0, we deduce that

HHn.AIZ=pv/
'
! fHHn.AIZ=pv/˝A A=psAgs;

TRrn.AIZ=p
v/
'
! fTRrn.AIZ=p

v/˝Wr .A/ Wr .A=p
sA/gs :

Hence the desired pro HH and TRr isomorphisms follow from Theorem 5.3. The pro
TC r isomorphism then follows in the usual way by applying the five lemma to the long exact
sequence relating TC r , TRr , and TRr�1.

SinceAbp is also a Noetherian, F-finite Z.p/-algebra by Lemma 3.8, and sinceAbp=psAbp Š
A=psA, applying the pro TR isomorphism to both A and Abp yields

TRrn.AIZ=p
v/ Š fTRrn.A=p

s
IZ=pv/gs Š TRrn.A

b
pIZ=p

v/

for any integer r � 1. This proves that TRr .AIp/bp ' TRr .AbpIp/bp, and the same follows
for TR, TC r , and TC by taking homotopy limits.

Finally, TRr .AbpIp/! holims TR
r .A=psAIp/ is a weak equivalence after p-completion

by Theorem 5.5, and similarly for TR, TC r , and TC .

R 5.9. – The pro isomorphisms of Corollary 5.8 were proved by Geisser and
Hesselholt [11, §3] for any (possibly non-commutative, non-Noetherian) ringA in which p is

a non-zero divisor. The key assertion is that HHn.AIZ=pv/
'
! fHHn.A=p

sAIZ=pv/gs ,
which can also be proved using our methods as follows: mimicking the proof of Lemma 5.2
via Proposition 5.1 and the Artin-Rees vanishing result fTorAn .A=I

s; A=I s/gs D 0, it is
enough to show that fTorAn .A=p

sA;A=psA/gs D 0 for all n > 0 whenever p is a non-zero
divisor of a possibly non-commutative ring A. But in such a situation we may calculate Tor

using the projective resolution 0 ! A
�ps

��! A ! A=psA ! 0 of A=psA, and from this
calculation it easily follows that the map TorA1 .A=p

2sA;A=p2sA/! TorA1 .A=p
sA;A=psA/

is zero, as required.

5.2. The pro Hochschild-Kostant-Rosenberg theorems

Given a geometrically regular (e.g., smooth) morphism k ! A of Noetherian rings, the
classical Hochschild-Kostant-Rosenberg theorem [24, Thm. 3.4.4], combined with Néron-
Popescu desingularision (see the following remark), states that the antisymmetrisation map
�n
A=k
! HH k

n .A/ is an isomorphism of A-modules for all n � 0.

R 5.10. – Since the notion of a geometrically regular morphism may not be
familiar to all readers, here we offer a brief explanation. A good reference is R. Swan’s
exposition of Néron-Popescu desingularisation [37].

If k is a field, then a Noetherian k-algebra A is said to be geometrically regular over k, or
that k ! A is a geometrically regular morphism, if and only if A˝k k0 is a regular ring for
all finite field extensions k0=k. If k is perfect then this is equivalent to A being a regular ring,
which is equivalent to A being smooth over k if we moreover assume that A is essentially of
finite type over k. If k is no longer necessarily a field, then k ! A is said to be geometrically
regular if and only if it is flat and k.p/! A˝k k.p/ is geometrically regular in the previous
sense for all prime ideals p � k, where k.p/ D kp=pkp.
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The Néron-Popescu desingularisation theorem [30, 31] states that ifA is a k-algebra, with
both rings Noetherian, then A is geometrically regular over k if and only if it is a filtered
colimit of smooth, finite-type k-algebras.

The following establishes the pro Hochschild-Kostant-Rosenberg theorem for algebraic
Hochschild homology in full generality:

T 5.11 (Pro HKR theorem for Hochschild homology). – Let k ! A be a
geometrically regular morphism of Noetherian rings, and I � A an ideal. Then the canonical
map of pro A-modules

f�n.A=I s/=kgs �! fHH
k
n .A=I

s/gs

is an isomorphism for all n � 0.

Proof. – Consider the following commutative diagram of pro A-modules, in which the
vertical arrows are the antisymmetrisation maps:

fA=I s ˝A HH
k
n .A/gs

.1/
// fHH k

n .A;A=I
s/gs

.2/
// fHH k

n .A=I
s/gs

fA=I s ˝A �
n
A=k
gs

OO

.3/
// f�n

.A=I s/=k
gs :

OO

As recalled above, the HKR theorem implies that the antisymmetrization map
�
j

A=k
! HH k

j .A/ is an isomorphism for all j � 0. So the left vertical arrow is an isomor-
phism. Moreover, Néron-Popescu desingularisation implies that A is a filtered colimit
of smooth, finite type k-algebras, and so �j

A=k
Š HH k

j .A/ is a filtered colimit of free
A-modules, hence is a flat A-module.

For any A-module M , the universal coefficient spectral sequence TorAi .M;HH
k
j .A// )

HHiCj .A;M/ therefore collapses to edge map isomorphisms M ˝A �nA=k
'
! HH k

n .A;M/.
In particular, taking M D A=I s shows that arrow (1) is an isomorphism.

Next, Lemma 5.2(i) states that arrow (2) is an isomorphism (to be precise, Lemma 5.2(i)
was stated only for the ground ring Z, but the proof worked verbatim for any ground ring k).
Finally, arrow (3) is easily seen to be an isomorphism using the inclusion d.I 2s/ � I s�n

A=k
.

It follows that the right vertical arrow is also an isomorphism, as desired.

C 5.12 (Pro HKR Theorem for cyclic homology). – Let k ! A be a geomet-
rically regular morphism of Noetherian rings, and I � A an ideal. Then there is a natural
spectral sequence of pro k-modules

E2pq D

(
f�

q

.A=I s/=k
=d�

q�1

.A=I s/=k
gs p D 0

fH
q�p
dR ..A=I s/=k/gs p > 0

H) fHC kpCq.A=I
s/gs :

If k contains Q then this degenerates with naturally split filtration, yielding

fHC kn .A=I
s/gs Š f�

n
.A=I s/=k=d�

n�1
.A=I s/=kgs ˚

M
0�p<

n
2

fH
n�2p
dR ..A=I s/=k/gs :

Proof. – This follows by combining Theorem 5.11 with standard arguments in cyclic
homology.
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R 5.13. – In the special case of certain finite type algebras over fields, the pro
HKR theorem for algebraic Hochschild homology was established by G. Cortiñas, C. Haese-
meyer, and C. Weibel [5, Thm. 3.2]. The full version of the pro HKR theorem presented here
has recently been required in the study of the infinitesimal deformation of algebraic cycles
[2, 26].

Next we turn to topological Hochschild homology, for which we must first briefly review
the de Rham-Witt complex. Given an Fp-algebraA, the existence and theory of the p-typical
de Rham-Witt complex Wr��A, which is a pro differential graded W.A/-algebra, is due to
S. Bloch, P. Deligne, and L. Illusie; see especially [20, Def. I.1.4]. It was later extended by
Hesselholt and Madsen to Z.p/-algebras with p odd, and by V. Costeanu [6] to Z.2/-algebras;
see the introduction to [16] for further discussion. We will only require the classical formu-
lation for Fp-algebras, with which we assume the reader has some familiarity.

If A is an Fp-algebra, then the pro graded ring fTRr�.AIp/gr is a p-typical Witt complex
with respect to its operators F; V;R; by universality of the de Rham-Witt complex, there are
therefore natural maps of graded Wr .A/-algebras [15, Prop. 1.5.8]

Wr�
�
A �! TRr�.AIp/

for r � 0, which are compatible with the Frobenius, Verschiebung, and Restriction maps
(in other words, a morphism of p-typical Witt complexes). Since there is also a natural map
of graded Wr .Fp/-algebras TRr�.FpIp/! TRr�.AIp/, we may tensor these algebra maps to
obtain a natural morphism of graded Wr .A/-algebras

Wr�
�
A ˝Wr .Fp/ TR

r
�.FpIp/ �! TRr�.AIp/

which by Hesselholt’s HKR theorem [15, Thm. B] is an isomorphism for all r � 1.

We now prove the pro HKR theorem for THH and TRr ; since infinite direct sums do not
commute with the formation of pro-abelian groups, we must state it degree-wise:

T 5.14 (Pro HKR Theorem for THH and TRr ). – Let A be a regular, F-finite
Fp-algebra, and I � A an ideal. Then the canonical map

nM
iD0

fWr�
i
A=I s ˝Wr .Fp/ TR

r
n�i .FpIp/gs �! fTR

r
n.A=I

s
Ip/gs

of pro Wr .A/-modules is an isomorphism for all n � 0 and r � 1.

Proof. – Consider the following commutative diagram of pro Wr .A/-modules:

nM
iD0

fWr .A=I
s/˝Wr .A/ Wr�

i
A ˝Wr .Fp/ TR

r
n�i .FpIp/gs //

��

fWr .A=I
s/˝Wr .A/ TR

r
n.AIp/gs

��Ln
iD0fWr�

i
A=I s ˝Wr .Fp/ TR

r
n�i .FpIp/gs // fTRrn.A=I

sIp/gs :

Hesselholt’s HKR theorem implies that the top horizontal arrow is an isomorphism. Corol-
lary 5.6 implies that the right vertical arrow is an isomorphism. Since we wish to establish
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that the bottom horizontal arrow is an isomorphism, it is now enough to show that the left
vertical arrow is an isomorphism, for which it suffices to prove that the canonical map

(†) fWr .A=I
s/˝Wr .A/ Wr�

i
Ags �! fWr�

i
A=I s gs

of proWr .A/-modules is an isomorphism for all i � 0. To show this, note that the maps in (†)
are surjective, so one needs only to show that the pro abelian group arising from the kernels
is zero. This is an easy consequence of Lemma 3.1(iv) and the Leibnitz rule; see, e.g., [12,
Prop. 2.5].

Next we let r !1 to prove the pro HKR theorem for fTRrgr . This takes the form of an
isomorphism of pro pro abelian groups; that is, an isomorphism in the category Pro.ProAb/.
We note that, by taking the diagonal in the result, we also obtain a weaker isomorphism of

pro abelian groups fWr�nA=I r gr
'
!
˚
TRrn.A=I

r Ip/gr .

C 5.15 (Pro HKR Theorem for TR). – With notation as in the previous
theorem, the canonical map of pro pro abelian groups˚

fWr�
n
A=I s gs

	
r
�!

˚
fTRrn.A=I

s
Ip/gs

	
r

is an isomorphism for all n � 0.

Proof. – By [15, Thm. B] or [18, Thm. 5.5], there are isomorphisms Wr .Fp/Œ�r � Š
TRr�.FpIp/ of graded Wr .Fp/-algebras, where the polynomial variable �r has degree 2 and
R.�r / D p�r�r�1 for some unit �r 2 Wr�1.Fp/ (it fact, it is now known that one may take
�r D 1 [17, Rmk. 4.3]). In particular, it follows that Rr W TR2rn .FpIp/! TRrn.FpIp/ is zero
for all n; r � 1. Thus the inverse system of pro abelian groups

� � �
R
�! fWrC1�

i
A=I s ˝WrC1.Fp/ TR

rC1
n�i .FpIp/gs

R
�! fWr�

i
A=I s ˝Wr .Fp/ TR

r
n�i .FpIp/gs

R
�! � � �

is trivial Mittag-Leffler unless i D n. So the isomorphisms of Theorem 5.14 assemble
over r � 1 to the desired isomorphism.

6. Proper schemes over an affine base

In this section we extend the finite generation results of Section 4 and the continuity results
of Section 5 to proper schemes over an affine base. The key idea is to combine the already-
established results with Zariski descent and Grothendieck’s formal function theorem for
coherent cohomology, which we will recall in Theorem 6.5 for convenience.

For a quasi-compact, quasi-separated scheme X , the spectra THH.X/, TRr .X Ip/,
TC r .X Ip/, TR.X Ip/, and TC.X Ip/ were defined by Geisser and Hesselholt in [9] in
such a way that all these presheaves of spectra satisfy Zariski descent (see the proof of [9,
Corol. 3.3.3]). In particular, assuming that X has finite Krull dimension, there is a bounded
spectral sequence

E
ij
2 D H

i .X; T H H�j .X// H) THH�i�j .X/

where the caligraphic notation T H Hn.X/ denotes the sheafification of the Zariski presheaf
on X given by U 7! THHn. OX .U //; the same applies to TRr .�Ip/ and TC r .�Ip/, and we
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will always use caligraphic notation to denote such Zariski sheafifications, including when
working with finite coefficients.

Moreover, the relations between the theories in the affine case explained in Section 2.3
continue to hold for schemes [9, Prop. 3.3.2], and analogous comments also apply to alge-
braic Hochschild homology, thanks to Weibel [40, 38].

We recall the scheme-theoretic version of Witt vectors; further details may be found in
the appendix of [23]. Given a ring A and an element f 2 A, there is a natural isomorphism
Wr .Af / Š Wr .A/Œf � where Œf � is the Teichmüller lift of f ; this localisation result means
that, for any scheme X , we may define a new scheme Wr .X/ by applying Wr locally. The
restriction map induces a closed embedding of schemes Rr�1 W X ,! Wr .X/, which is an
isomorphism of the underlying topological spaces if p is nilpotent on X . In the presence of
F-finiteness (a Z.p/-scheme is said to be F-finite if and only if it has a finite cover by spectra
of F-finite Z.p/-algebras), many properties of X are inherited by Wr .X/; see Prop. A.1 –
Corol. A.7 of [23]: in particular, ifX is separated (resp. Noetherian and F-finite), thenWr .X/
is separated (resp. Noetherian), and if X ! Y of finite type and Y F-finite (resp. proper and
Y F-finite), then Wr .X/! Wr .Y / is of finite type (resp. proper).

Our first aim is to prove that the sheaves arising from HH , THH , and TRr are quasi-
coherent; this is a standard result for HH and THH , but we could not find a reference
covering the TRr sheaves. We note that the following lemma remains true when working with
finite Z=pv-coefficients; this follows from the lemma as stated using the usual short exact
sequences for finite coefficients.

L 6.1. – Let X be a quasi-compact, quasi-separated scheme and n � 0, r � 1. Then
H Hn.X/ and TH Hn.X/ are quasi-coherent sheaves onX , andRr�1� T R

r
n.X Ip/ is a quasi-

coherent sheaf on Wr .X/.

Proof. – Let SpecR � X be any affine open subscheme of X ; we must show that for any
f 2 R, the canonical maps

HHn.R/˝R Rf ! HHn.Rf /; TRrn.RIp/˝Wr .R/ Wr .Rf /! TRrn.Rf Ip/

are isomorphisms for all n � 0, r � 1. Firstly, Rf is flat over R, so the spectral sequence

of Prop. 5.1 degenerates to edge map isomorphisms HHn.R;Rf /
'
! HHn.Rf ; Rf ˝R Rf /.

But Rf ˝R Rf D Rf , and its flatness over R implies that HHn.R;Rf / D HHn.R/˝R Rf ;
this proves the claim for HH . The proof for THH D TR1 is similar.

We prove the claim for TRrn by induction on r ; we have just established the case r D 1.
Since Wr .Rf / D Wr .R/Œf � is flat over Wr .R/, we may base change by WrC1.Rf / the
fundamental long exact sequence of Section 2.3.2(i) forWrC1.R/, and compare it to the long
exact sequence for Rf ; this yields a map of long exact sequences, and so by the five lemma
and induction on r it is enough to prove that

�n.THH.R/hCpr /˝WrC1.R/ WrC1.Rf / �! �n.THH.Rf /hCpr /

is an isomorphism. Moreover, the domain and codomain of this map are compatibly
described by group homology spectral sequences, so it is now enough to prove that the
canonical map

Hi .Cpr ; THHj .R//˝WrC1.R/ WrC1.Rf / �! Hi .Cpr ; THHj .Rf //
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is an isomorphism for all i; j � 0 and r � 1. Since WrC1.Rf / is flat over WrC1.R/, we may
identify the left side with Hi .Cpr ; THHj .R/ ˝WrC1.R/ WrC1.Rf //, and so it remains only
to show that the map THHj .R/ ˝WrC1.R/ WrC1.Rf / ! THHj .Rf / is an isomorphism,
where WrC1.R/ is acting on THHj .R/ via F r W WrC1.R/ ! R. But this follows from the
observation that the diagram

WrC1.R/ //

F r

��

WrC1.Rf /

F r

��

R // Rf

is cocartesian: indeed, the pushout along F r W WrC1.R/! R of the localisation at Œf � is the
localisation at F r Œf � D f r .

As a consequence of the lemma and our earlier finite generation results, we therefore
obtain the fundamental coherence results we will need:

C 6.2. – Let A be a Noetherian, F-finite Z.p/-algebra, X an essentially finite-
type A-scheme, and n � 0, v; r � 1. Then H Hn.X IZ=pv/ and TH Hn.X IZ=pv/ are
coherent sheaves on X , and Rr�1� T R

r
n.X IZ=pv/ is a coherent sheaf on Wr .X/.

Proof. – The specified sheaves are quasi-coherent by the finite coefficient version of
Lemma 6.1, so we must prove that if SpecR is an affine open subscheme of X , then
HHn.RIZ=pv/ and THHn.RIZ=pv/ are finitely generated R-modules, and that TRrn.RIZ=pv/
is a finitely generated Wr .R/-module. But Lemma 3.8 implies that R is also a Noetherian,
F-finite, Z.p/-algebra, so this follows from Theorem 4.7.

We now obtain the generalisation to proper schemes of our earlier finite generation results:

T 6.3. – Let A be a Noetherian, F-finite, finite Krull-dimensional Z.p/-algebra,X
a proper scheme over A, and v � 1. Then:

(i) HHn.X IZ=pv/ and THHn.X IZ=pv/ are finitely generated A-modules for all n � 0.
(ii) TRrn.X IZ=pv/ is a finitely generated Wr .A/-module for all n � 0 and r � 1.

Proof. – The coherence assertion of Corollary 6.2 and the properness ofX overA implies
that H i .X; H Hn.X IZ=pv// is a finitely generated A-module for all i; n � 0.

Since the presheaf of spectra HH ^ S=pv satisfies Zariski descent by the results
of Geisser-Hesselholt recalled at the start of the section, and since X has finite Krull
dimension by assumption, there is a right half-plane, bounded, Zariski descent spec-
tral sequence E

ij
2 D H

i .X; H H�j .X IZ=pv//) HH�i�j .X IZ=pv/ (with differentials
E
ij
r ! E

iCr j�rC1
r ) of A-modules. This evidently completes the proof for HH .

The proof for TRr is similar: there is an analogous descent spectral sequence, and the
properness ofWr .X/ overWr .A/, by [23, Corol. A.7], implies thatH i .X; T R

r
�j .X IZ=pv//

is a finitely generated Wr .A/-module.

Now, Proposition 2.7 gives that Theorem 6.3 implies Theorem 1.7 of the Introduction:
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C 6.4. – Let A be a Noetherian, F-finite, finite Krull-dimensional Z.p/-algebra,
X a proper scheme overA, and n � 0, r � 1. ThenHHn.X IZp/ and THHn.X IZp/ are finitely
generated Abp-modules, and TRrn.X Ip;Zp/ is a finitely generated Wr .Abp/-module.

Next we generalise our degree-wise continuity result of Theorem 5.3 to the case of a proper
scheme. Consider a proper scheme X over an affine base A, fix an ideal I � X , and write
Xs WD X �A A=I

s . The following theorem of Grothendieck will be required:

T 6.5 (Grothendieck’s Formal Functions Theorem [13, Cor. 4.1.7])
Let A be a Noetherian ring, I � A an ideal, X a proper scheme over A, and N a coherent

OX -module. Then the canonical map of pro A-modules

fHn.X;N /˝A A=I
s
gs
'
! fHn.Xs; N=I

sN/gs

is an isomorphism for all n � 0.

Proof/Remark. – In fact, Grothendieck’s theorem is more frequently stated as the

isomorphism lim
 �s

H s.X;N /˝AA=I
s '! lim
 �s

Hn.Xs; N=I
sN/, but a quick examination of

the cited proof in EGA shows that the stronger isomorphism of pro A-modules holds.

Combining Grothendieck’s formal function theorem with the already-established
degree-wise continuity results proves the following formal function theorems for HH ,
THH , and TRr :

T 6.6. – Let A be a Noetherian, F-finite, finite Krull-dimensional Z.p/-algebra,
I � A an ideal, and X a proper scheme over A. Then the canonical maps

(i) fHHn.X IZ=pv/˝A A=I sgs �! fHHn.Xs;Z=pv/gs
(ii) fTRrn.X IZ=pv/˝Wr .A/ Wr .A=I

s/gs �! fTR
r
n.XsIZ=pv/gs

are isomorphisms for all n � 0 and v; r � 1.

Proof. – We prove (ii). The proof of (i) is similar, but simpler. Firstly, as at the end of
the proof of Theorem 6.3, there is a bounded Zariski descent spectral sequence of finitely
generated Wr .A/-modules Eij2 D H i .X; T R

r
�j .X IZ=pv// ) TRr

�i�j .X IZ=p
v/. By

Theorem 3.7(i), we may base change by Wr .A=I1/ to obtain a bounded spectral sequence
of pro Wr .A/-modules

E
ij
2 .1/ D fH

i .X; T R
r
�j .X IZ=p

v//˝Wr .A/ Wr .A=I
s/gs

H) fTRr�i�j .X IZ=p
v/˝Wr .A/ Wr .A=I

s/gs :

There is also a bounded Zariski descent spectral sequence for TRr associated to each
scheme Xs , for s � 1, and these assemble to a spectral sequence of pro Wr .A/-modules

0E
ij
2 .1/ D fH

i .Xs; T R
r
�j .XsIZ=p

v//gs H) fTRr�i�j .XsIZ=p
v/gs :

The E.1/-spectral sequence maps to the 0E.1/-spectral sequence, and so to complete the
proof it is enough to show that the canonical map of proWr .A/-modules on the second pages

(†) fH i .X; T R
r
�j .X IZ=p

v//˝Wr .A/ Wr .A=I
s/gs �! fH

i .Xs; T R
r
�j .XsIZ=p

v//gs;

is an isomorphism for all i � 0.
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To do this we first transfer the problem to the scheme Wr .X/ by rewriting

H i .X; T R
r
�j .X IZ=p

v// D H i .Wr .X/;R
r�1
� T R

r
�j .X IZ=p

v//

and

H i .Xs; T R
r
�j .XsIZ=p

v// D H i .Wr .Xs/; R
r�1
� T R

r
�j .XsIZ=p

v//

since the cohomology of a sheaf is unchanged after pushing forward along a closed embed-
ding [14, Lem. III.2.10]. We now factor (†) as a composition

fH i .Wr .X/;R
r�1
� T R

r
�j .X IZ=p

v//˝Wr .A/ Wr .A=I
s/gs

�! fH i .Wr .X/;R
r�1
� T R

r
�j .X IZ=p

v/˝Wr . OX / Wr . OX=I
s OX /gs

�! fH i .Wr .Xs/; R
r�1
� T R

r
�j .XsIZ=p

v//gs :

Since Wr .X/ is a proper scheme over Wr .A/, we may apply Grothendieck’s formal func-
tions theorem to the coherent (by Corollary 6.2) sheaf Rr�1� T R

r
�j .X IZ=pv/ and ideal

Wr .I / � Wr .A/ (whose powers are intertwined with Wr .I s/, s � 1, by Lemma 3.1) to
deduce that the first arrow is an isomorphism. The second arrow is an isomorphism since
the underlying map of pro sheaves is an isomorphism by Theorem 5.3 (note that all the affine
open subschemes of X are Noetherian, F-finite Z.p/-algebras, by Lemma 3.8).

By almost exactly the same proof as of Corollary 5.4 we obtain the following:

C 6.7. – Let A be a Noetherian, F-finite, finite Krull-dimensional Z.p/-algebra,
I � A an ideal, and X a proper scheme over A. Then all of the following maps (not just the
compositions) are isomorphisms for all n � 0 and v; r � 1:

HHn.X IZ=pv/˝A bA �! HHn.X �A bAIZ=pv/ �! lim
 �
s

HHn.XsIZ=pv/

TRr .X IZ=pv/˝Wr .A/ Wr .
bA/ �! TRr .X �A bAIZ=pv/ �! lim

 �
s

TRr .XsIZ=pv/:

We finally reach the scheme-theoretic analogue of Theorem 5.5, namely spectral conti-
nuity of THH , TRr , etc. Again, the proof is identical to that of the affine case.

T 6.8. – Let A be a Noetherian, F-finite, finite Krull-dimensional Z.p/-algebra,
I � A an ideal, and X a proper scheme over A; assume that A is I -adically complete. Then,
for all r � 1, the canonical map of spectra

TRr .X Ip/ �! holim
s

TRr .XsIp/

is a weak equivalence after p-completion. Similarly for THH , TR, TC r , and TC .

As in the affine case, we now present corollaries of the previous results in the cases in which
p is either nilpotent or the generator of I ; we begin with the nilpotent case:

C 6.9. – LetA be a Noetherian, F-finiteZ.p/-algebra in whichp is nilpotent,X a
proper scheme over A, and n � 0, r � 1. Then HHn.X/ and THHn.X/ are finitely generated
A-modules, and TRrn.X Ip/ is a finitely generated Wr .A/-module.
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Now let I � A be an ideal. Then all of the following maps are isomorphisms:

fHHn.X/˝A A=I
s
gs �! fHHn.Xs/gs;

fTRrn.X Ip/˝Wr .A/ Wr .A=I
s/gs �! fTR

r
n.XsIp/gs;

HHn.X/˝A bA �! HHn.X �A bA/ �! lim
 �
s

HHn.Xs/;

TRrn.X Ip/˝Wr .A/ Wr .
bA/ �! TRrn.X �A

bAIp/ �! lim
 �
s

TRrn.XsIp/:

Moreover, the weak equivalences of Theorem 6.8 hold without p-completing.

Proof. – As in the proof of Corollary 5.6, the groupsHHn.X/,THHn.X/, andTRrn.X Ip/
are all bounded p-torsion. Hence the spectra are p-complete, and our finite generation and
isomorphism claims follow from the already established versions with finite coefficients,
namely Theorems 6.3 and 6.6, and Corollary 6.7.

Note that we have not assumed that A has finite Krull dimension. This is because a
Noetherian, F-finite Z.p/-algebra in which p is nilpotent automatically has finite Krull
dimension: indeed, it suffices to show thatA=pA has finite Krull dimension, and this follows
from a theorem of E. Kunz [22, Prop. 1.1].

Considering the special case I D pA we obtain the following result, proved from
Theorem 6.6 by the exact same argument by which Corollary 5.8 was deduced from
Theorem 5.3:

C 6.10. – LetA be a Noetherian, F-finite, finite Krull-dimensionalZ.p/-algebra,
and X a proper scheme over A. Then the canonical map

HHn.X IZ=pv/ �! fHHn.X �A A=psAIZ=pv/gs
is an isomorphism for all n � 0 and v � 1. Similarly for THH , TRr , and TC r .

Moreover, for all r � 1, the maps (not just the composition) of spectra

TRr .X Ip/ �! TRr .X �A A
b
pIp/ �! holim

s
TRr .X �A A=p

sAIp/

are weak equivalences after p-completion. Similarly for THH , TR, TC r , and TC .
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