[D'un système de particules de type Kac à l'équation de Landau pour des potentiels durs et des molécules maxwelliennes]
Nous prouvons des résultats quantitatifs de convergence d'un système de particules conservatif vers la solution de l'équation de Landau homogène pour des potentiels durs. Il y a deux principales difficultés : (i) le caractère conservatif du système est un obstacle pour obtenir de l'indépendance (même approchée), comme c'est le cas pour de vrais systèmes de particules physiques ; (ii) les résultats connus de stabilité pour ces équations de Landau concernent des solutions régulières et paraissent difficiles à étendre pour étudier la vitesse de convergence de mesures empiriques. Pour le point (i), nous procédons à un double couplage. Nous couplons d'abord notre système avec des processus non linéaires non indépendants dont la loi résout en un certain sens l'équation de Landau. Nous construisons ensuite un second couplage afin de montrer que ces processus non linéaires ne sont pas loin d'être indépendants. Pour résoudre (ii), nous établissons de nouveaux résultats de stabilité pour l'équation de Landau pour des potentiels durs et des solutions de type mesure très générales. Finalement, en utilisant des idées de Rousset [26], nous montrons que dans le cas des molécules maxwelliennes, la convergence du système de particules est uniforme en temps.
We prove a quantitative result of convergence of a conservative stochastic particle system to the solution of the homogeneous Landau equation for hard potentials. There are two main difficulties: (i) the conservativeness of the particle system is an obstacle for approximate independence, as is the case for true physical particle systems; (ii) the known stability results for this class of Landau equations concern regular solutions and seem difficult to extend to study the rate of convergence of some empirical measures. Due to (i), we have to use a double-coupling. We first couple our particle system with some non independent nonlinear processes, of which the law solves, in some sense, the Landau equation. We then introduce a second coupling to prove that these nonlinear processes are not so far from being independent. To overcome (ii), we prove a new stability result for the Landau equation for hard potentials concerning very general measure solutions. Using finally some ideas of Rousset [26], we show that in the case of Maxwell molecules, the convergence of the particle system is uniform in time.
DOI : 10.24033/asens.2318
Mots-clés : Landau equation, Uniqueness, Stability, Kac's particle system, Stochastic particle systems, Propagation of Chaos.
@article{ASENS_2017__50_1_157_0, author = {Fournier, Nicolas and Guillin, Arnaud}, title = {From a {Kac-like} particle system to the {Landau} equation for hard potentials and {Maxwell} molecules}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {157--199}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {1}, year = {2017}, doi = {10.24033/asens.2318}, mrnumber = {3621429}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2318/} }
TY - JOUR AU - Fournier, Nicolas AU - Guillin, Arnaud TI - From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 157 EP - 199 VL - 50 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2318/ DO - 10.24033/asens.2318 LA - en ID - ASENS_2017__50_1_157_0 ER -
%0 Journal Article %A Fournier, Nicolas %A Guillin, Arnaud %T From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 157-199 %V 50 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2318/ %R 10.24033/asens.2318 %G en %F ASENS_2017__50_1_157_0
Fournier, Nicolas; Guillin, Arnaud. From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 157-199. doi : 10.24033/asens.2318. http://www.numdam.org/articles/10.24033/asens.2318/
A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Comm. Partial Differential Equations, Volume 38 (2013), pp. 155-169 (ISSN: 0360-5302) | DOI | MR | Zbl
A review of Boltzmann equation with singular kernels, Kinet. Relat. Models, Volume 2 (2009), pp. 551-646 (ISSN: 1937-5093) | DOI | MR | Zbl
, Wiley Series in Probability and Statistics, Wiley-Interscience, Hoboken, NJ, 2003, 721 pages (ISBN: 0-471-36091-0) | MR | Zbl
Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems, J. Statist. Phys., Volume 88 (1997), pp. 1183-1214 (ISSN: 0022-4715) | DOI | MR | Zbl
From particle systems to the Landau equation: a consistency result, Comm. Math. Phys., Volume 319 (2013), pp. 683-702 (ISSN: 0010-3616) | DOI | MR | Zbl
Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules, Kinet. Relat. Models, Volume 9 (2016), pp. 1-49 (ISSN: 1937-5093) | DOI | MR
Estimates for the large time behavior of the Landau equation in the Coulomb case (preprint arXiv:1510.08704 ) | MR
Quantitative propagation of chaos for generalized Kac particle systems, Ann. Appl. Probab., Volume 26 (2016), pp. 892-916 (ISSN: 1050-5164) | DOI | MR
Entropy dissipation estimates for the Landau equation in the Coulomb case and applications, J. Funct. Anal., Volume 269 (2015), pp. 1359-1403 (ISSN: 0022-1236) | DOI | MR
On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness, Comm. Partial Differential Equations, Volume 25 (2000), pp. 179-259 (ISSN: 0360-5302) | DOI | MR | Zbl
On the spatially homogeneous Landau equation for hard potentials. II. -theorem and applications, Comm. Partial Differential Equations, Volume 25 (2000), pp. 261-298 (ISSN: 0360-5302) | DOI | MR | Zbl
, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986, 534 pages (ISBN: 0-471-08186-8) | DOI | MR | Zbl
Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff, Comm. Math. Phys., Volume 316 (2012), pp. 307-344 (ISSN: 0010-3616) | DOI | MR | Zbl
On the rate of convergence in Wasserstein distance of the empirical measure, Probab. Theory Related Fields, Volume 162 (2015), pp. 707-738 (ISSN: 0178-8051) | DOI | MR
Measurability of optimal transportation and convergence rate for Landau type interacting particle systems, Probab. Theory Related Fields, Volume 143 (2009), pp. 329-351 (ISSN: 0178-8051) | DOI | MR | Zbl
Propagation of chaos for the Landau equation with moderately soft potentials, Ann. Probab., Volume 44 (2016), pp. 3581-3660 | DOI | MR
Rate of convergence of the Nanbu particle system for hard potentials and Maxwell molecules, Ann. Probab., Volume 44 (2016), pp. 589-627 (ISSN: 0091-1798) | DOI | MR
Particle approximation of some Landau equations, Kinet. Relat. Models, Volume 2 (2009), pp. 451-464 (ISSN: 1937-5093) | DOI | MR | Zbl
A class of Wasserstein metrics for probability distributions, Michigan Math. J., Volume 31 (1984), pp. 231-240 (ISSN: 0026-2285) | DOI | MR | Zbl
Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach, Stochastic Process. Appl., Volume 101 (2002), pp. 303-325 (ISSN: 0304-4149) | DOI | MR | Zbl
, Seminar on Stochastic Processes, 1989 (San Diego, CA, 1989) (Progr. Probab.), Volume 18, Birkhäuser, 1990, pp. 75-122 | MR | Zbl
Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, University of California Press, Berkeley and Los Angeles (1956), pp. 171-197 | MR | Zbl
, Stochastic Modelling and Applied Probability, 14, Springer, Berlin, 2009, 308 pages (ISBN: 978-3-540-70913-8) | MR | Zbl
Kac's program in kinetic theory, Invent. math., Volume 193 (2013), pp. 1-147 (ISSN: 0020-9910) | DOI | MR | Zbl
On the Kac model for the Landau equation, Kinet. Relat. Models, Volume 4 (2011), pp. 333-344 (ISSN: 1937-5093) | DOI | MR | Zbl
A N-uniform quantitative Tanaka's theorem for the conservative Kac's N-particle system with Maxwell molecules (preprint arXiv:1407.1965 )
On existence and stability of weak solutions of multidimensional stochastic differential equations with measurable coefficients, Stochastic Process. Appl., Volume 37 (1991), pp. 187-197 (ISSN: 0304-4149) | DOI | MR | Zbl
, Grundl. math. Wiss., 233, Springer, Berlin-New York, 1979, 338 pages (ISBN: 3-540-90353-4) | MR | Zbl
Équations de type de Boltzmann, spatialement homogènes, Z. Wahrsch. verw. Gebiete, Volume 66 (1984), pp. 559-592 (ISSN: 0044-3719) | DOI | MR | Zbl
Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. verw. Gebiete, Volume 46 (1978/79), pp. 67-105 (ISSN: 0044-3719) | DOI | MR | Zbl
, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 71-305 | DOI | MR | Zbl
, Graduate Studies in Math., 58, Amer. Math. Soc., Providence, RI, 2003, 370 pages (ISBN: 0-8218-3312-X) | DOI | MR | Zbl
On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., Volume 143 (1998), pp. 273-307 (ISSN: 0003-9527) | DOI | MR | Zbl
On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., Volume 8 (1998), pp. 957-983 (ISSN: 0218-2025) | DOI | MR | Zbl
Cité par Sources :