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FROM A KAC-LIKE PARTICLE SYSTEM TO
THE LANDAU EQUATION FOR HARD POTENTIALS
AND MAXWELL MOLECULES

BY NicorLas FOURNIER aAnD ArRNaUD GUILLIN

ABSTRACT. — We prove a quantitative result of convergence of a conservative stochastic particle
system to the solution of the homogeneous Landau equation for hard potentials. There are two main
difficulties: (i) the conservativeness of the particle system is an obstacle for approximate independence,
as is the case for true physical particle systems; (ii) the known stability results for this class of Landau
equations concern regular solutions and seem difficult to extend to study the rate of convergence of
some empirical measures. Due to (i), we have to use a double-coupling. We first couple our particle
system with some non independent nonlinear processes, of which the law solves, in some sense, the
Landau equation. We then introduce a second coupling to prove that these nonlinear processes are
not so far from being independent. To overcome (ii), we prove a new stability result for the Landau
equation for hard potentials concerning very general measure solutions. Using finally some ideas of
Rousset [26], we show that in the case of Maxwell molecules, the convergence of the particle system is
uniform in time.

RESUME. — Nous prouvons des résultats quantitatifs de convergence d’un systéme de particules
conservatif vers la solution de I’équation de Landau homogéne pour des potentiels durs. Il y a deux
principales difficultés : (i) le caractére conservatif du systéme est un obstacle pour obtenir de I'indépen-
dance (méme approchée), comme c’est le cas pour de vrais systemes de particules physiques ; (ii) les
résultats connus de stabilité pour ces équations de Landau concernent des solutions réguliéres et pa-
raissent difficiles a étendre pour étudier la vitesse de convergence de mesures empiriques. Pour le point
(1), nous procédons a un double couplage. Nous couplons d’abord notre systéme avec des processus non
linéaires non indépendants dont la loi résout en un certain sens ’équation de Landau. Nous construi-
sons ensuite un second couplage afin de montrer que ces processus non linéaires ne sont pas loin d’étre
indépendants. Pour résoudre (ii), nous établissons de nouveaux résultats de stabilité pour I'équation de
Landau pour des potentiels durs et des solutions de type mesure tres générales. Finalement, en utilisant
des idées de Rousset [26], nous montrons que dans le cas des molécules maxwelliennes, la convergence
du systeme de particules est uniforme en temps.
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158 N. FOURNIER AND A. GUILLIN

1. Introduction and main results
1.1. The Landau equation
The homogeneous Landau equation reads

M s = g [ a@ = o)A@V A0 = LOV S dv.).

The unknown f; : R3 > R stands for the velocity-distribution in a plasma and the initial
condition fy is given. We denote by S3+ the set of symmetric nonnegative 3 x 3 matrices. The
function a : R3 — S3Jr is given, for some y € [-3, 1], by

aw) = [v|*""M ., where T, =1TI3— %
v
is the projection matrix onto v+. The only physically relevant case, namely y = —3 which

corresponds to a Coulomb interaction, is unfortunately the most difficult. For mathematical
results, let us mention the recent papers by Desvillettes [9] and Carrapatoso, Desvillettes
and He [7] and the references therein. The other cases are interesting mathematically and
numerically. In particular, the Landau equation can be seen as an approximation of the
Boltzmann equation in the asymptotic of grazing collisions, as rigorously shown by Villani
[31] for all values of y € [—3, 1]. We are concerned here with Maxwell molecules (y = 0) and
hard potentials (y € (0, 1]). The well-posedeness, regularization properties and large-time
behavior of the Landau equation have been studied in great details by Villani [32] for Maxwell
molecules and by Desvillettes and Villani [10, 11] for hard potentials. We finally refer to the
long reviews paper of Villani [33] and Alexandre [1] on the Boltzmann and Landau models.

1.2. Notation

We denote by 2(R3) the set of probability measures on R3. When f € (R?) has a
density, we also denote by f € L1(R?) this density.

Forq > 0, weset P,(R?) = {f € PR} : my(f) < oo}, where my(f) =
Jg3 0|9 f(dv) < oo. Fora > 0and f € P(R?), we put Eo(f) = [paexp(|v]®) f(dv).
The entropy of f € P(R3) is defined by H(f) = Jr3 f(v)log f(v)dv if f has a density
and by H(f) = oo else.

We will use the Wasserstein distance defined as follows. For £, g € &2,(R3), we introduce
SUf.g) = {R € P(R*xR3) : R has marginals / and g} and we set

Wr(f.g) = inf{([;@xﬂ@ |v—w|2R(dv,dw))1/2 " Re C%(f,g)}.

See Villani [34] for many details on this distance.
We also define, for v € R3,

b(v) =diva(v) = =2[v|’v and o) = [a(v)]'/? = |v|"TY/?10,,.
For f € PR3) and v € R3, we set
1/2 12
bf0)i= [ b= v fr). atfo)i= [ aw-vof@v). a(f)=[atfo]
R3 R3
More generally, we will write ¢(f,v) = fR3 o(v — vs) f(dvy) when ¢ @ R® — R. We
emphasize that a'/2(f,v) is [a( £, v)]/2 and is not [p3 a/2(v — v4) f(dvy).
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KAC’S PARTICLE SYSTEM FOR THE LANDAU EQUATION 159

Finally, for A and B two 3 x 3 matrices, we put || A||> = Tr(AA*) and (4, B)) = Tr(AB*).

1.3. Well-posedness

We will use the following notion of weak solutions.

DErFINITION 1. — Let y € [0,1]. We say that f = (fi)t>o0 is a weak solution to (1) if it
belongs to L2 ([0,00), Paty (R?)) and if for all ¢ € CZ(R?), allt > 0,

loc

) /R3 @) fr(dv) = [1;3 @(v) fo(dv) +/0 /};{3 /R3 Lo(v, vy) £5(dv) fi(dvy)ds,

where
3

3
1
Lo, va) = 2 ) ar (v =v)35,0(0) + D bie(v = v2)dig(v).
k,l=1 k=1
A weak solution f is conservative if it conserves momentum and energy, that is [g3 v f;(dv) =

Jr3 vfo(dv) and ma(f;) = ma(fo) for allt > 0.

An important remark is that [Lo(v, vs)| < Co(1 + |v| + [v«|)**? for ¢ € CZ(R?) and
since f € L2 ([0,00), Paty (R3)), every term makes sense in (2). Our first result concerns

well-posedness and stability.

THEOREM 2. — (i) If y = 0, then for any fy € Po(R3), (1) has a unique weak solution
f = (ft)e>o starting from fy. This solution is conservative. If moreover H( fy) < oo, then
H(f;) < H(fo) forallt = 0. If fo € Py(R>) for some q > 2, then SUPJ0,00) Mg (f1) < 00.
Finally, for any other weak solution g = (g¢)¢>0 to (1), it holds that W, ( f;, g:) < Wa(fo, o)
forallt > 0.

(i) I y € (0, 1], consider fo € P (R3) with E4(fo) < oo forsomea € (y,2). Then (1) has
a unique weak solution f = (fi)i>o0 Starting from fo. Moreover, this solution is conservative
and sup,-q Eq(fr) < oo. If H(fo) < oo, then H(f;) < H(fo) for allt > 0. Finally, for
alln € (0,1), all T > 0 and any other weak solution to g = (g¢)¢>0 to (1), it holds that
suppo. 7] Wa(fi.81) < Cp.r(Wa(fo.80))' ™", the constant Cy 1 depending only on . Ty, a
and on (upper bounds of) E4( fo) and supyy r1m2+y(g1)-

Point (i) is well-known, even if we found no precise reference for all the claims of the
statement. The well-posedness, propagation of moments and entropy dissipation have been
checked by Villani [32] when f, has a density and the well-posedness when f, € P, (R?)
has been established by Guérin [20]. The noticeable fact that %%/, decreases along solutions
was discovered by Tanaka [30] for the Boltzmann equation for Maxwell molecules, see also
Carrapatoso [6, Lemma 4.15].

Similarly, the existence part in point (ii) is more or less standard: the well-posedness,
propagation of moments and entropy dissipation can be found in [10] when H(fy) < oo,
but H( fp) < oo is mainly assumed for simplicity. The propagation of exponential moments
seems to be new, but far from surprising: it is well-known (and more complicated) for the
Boltzmann equation for hard potentials, as was discovered by Bobylev [5], see also Alonso
et al. [2].

On the contrary, the uniqueness/stability part in point (ii) seems to be new and rather
interesting. As far as we know, the best available uniqueness result is the one of Desvillettes

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



160 N. FOURNIER AND A. GUILLIN

and Villani [10, Theorem 7], where fo € 2,(R3) is assumed to have a density satisfying
Jr3 JE@)(A + [v[¥)dv < oo for some s > 15 + 5y. Thus, we assume much less regularity,
but much more localization. Furthermore, our stability result holds in the class of all weak
solutions. Actually, a stability result in the class of all weak solutions (at least with finite
entropy) can also be derived using the ideas of Desvillettes and Villani, but this would use the
regularization properties of the equation which guarantee that any weak solution is smooth.
On the contrary, we use no such regularization. This is crucial for propagation of chaos,
since then the approximate solution consists of empirical measures which, by nature, are
not smooth. Similarly, it is very important for us that the stability result does not involve
any exponential moment of the second solution g, because we are not able to propagate the
exponential moments of our particle system.

1.4. The particle system

We now introduce an approximating particle system, in the spirit of Kac [22], who was
dealing with the Boltzmann equation. More precisely, consider N particles entirely charac-
terized by their velocities (vy, ..., vy) € (R*)Y, where each pair of particles (with velocities
v; and v;) collide at some rate proportional to |v; — vj|”. Assume that these collisions are
elastic. Then in the limit of grazing collisions, that is, when collisions occur very frequently
but generate very small deviations, we find, at least formally, the following diffusive system.
See Carrapatoso [6] when y = 0 and Miot, Pulvirenti and Saffirio [24] when y = —3

We fix N > 2 and con51der an exchangeable (R3)" -valued random variable (V ), L.,
independent of a family (B )1<,<,<N >0 of i.i.d. 3D Brownian motions. For 1 < j <i <
N,weset BY = —B/'. Wealso put Bi* = 0foralli = 1,..., N and we consider the system

(€)

viN =N 4 — Z/ b(VIN —VINYds 4 — Zf o(VIN —vIiNydBY i =1,...,N.

PROPOSITION 3. — Fixy € [0,1]and N > 2. The system (3) has a pathwise unique solution
(Vzl’N)i=1,...,N,tzo, which is furthermore exchangeable. The system is conservative. a.s., for all
t >0, it holds that ZZIV viN = Zfl\’ VO”N and Zf’ ViNpE = Ziv |V01,N|2.

In [13], Fontbona, Guérin and Méléard consider, when y = 0, the same system of
equations, but with a fully i.i.d. family (Bi'i )1<i,j<N,r>0 of Brownian motions. Such a system
also approximates the Landau equation but is not conservative (one only has ]E[Zf’ Vti’N ] =
E[YN 175 Nand B[N vV 2 = B[N 1Z% N 2]) and thus physically less relevant.

1.5. Propagation of chaos

The main result of the paper is the following.

THEOREM 4. — Fix y € [0,1] and fo € P,(R3). If y € (0,1], assume moreover
that E4(fo) < oo for some a € (y,2). Consider the unique weak solution (f;);>0 to (1)
built in T heorem 2. For each N > 2, consider an exchangeable (R3)N -valued random vari-
able (V()”N),-zl ,,,,, ~ and the corresponding unique solution (V,”N),-:L,,_,N,,Zo to (3). Set

=N"1 Z{V 5Vti,1v. Assume that for all p > 2, My := mp( fo) +SUpy>» IE[|V01’N|P] < o0.
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(1) Ify = 0, then for all n € (0, 1), there is a constant C,, depending only on n, on (some
upper bounds of) {M,, p > 2} and on (some upper bound of) H(fy) when H( fy) < oo such
that

CW(E[GZZ)g(/L{)V, foOl + N~V iy general,
Cy Bl W3 (g, fo)] + N7V if H(fo) < oo.
(i) If'y € (0, 1], then for all T > 0, all n € (0, 1), there is a constant Cy  depending only

onn, T,y,a, on (some upper bounds of) E4(fo) and {My, p > 2} and on (some upper bound
of) H( fo) when H( fy) < oo such that

Cn,T(E[GZZ)g(MoN» Jo)] + N=YHI=1 jin general,
Co.r BIWS (1l . fo)] + N~YHIif H(fp) < oo.

sup E[W5 (1) . )] <

sup E[%5 (ul, f)] <
[0,T]

As already mentioned in the abstract, there are two main difficulties. First, and this is
the main issue, the conservativeness of the particle system is an obstacle for approximate
independence. This is an important point because even if we deal here with a toy model,
one of the main difficulties when trying to derive the Landau (or Boltzmann) equation
from true physical particle systems, conservative collisions (by pairs) produce the intrinsic
correlations, and the main challenge is to show that these correlations are small. To overcome
this difficulty, we use a double coupling. Next, in the case of hard potentials, we really need
the new stability result established in Theorem 2-(ii): the previous available results were
concerning regular solutions, which is not well-adapted to the study of empirical measures.
CN~'/2 and that N=1/2 is generally the best rate we can hope for when comparing an
empirical measure of an i.i.d. sample to the common distribution. Here we obtain a rate
in N=1/3 (or N~/ without entropy), up to an arbitrarily small loss. Let us mention that
the double coupling is responsible for this loss, because we have to apply a (quantitative) law
of large numbers for non independent variables, see Subsection 8§.5.

Let us finally mention that in point (i), the time uniformity really uses that we are in
dimension d > 2.

1.6. References on propagation of chaos

Showing the convergence of a toy particle system to the Boltzmann equation was
proposed by Kac [22] as a step to its rigorous derivation. He called propagation of chaos
such a convergence. Getting some uniform in time convergence is quite relevant, since then
the large time behavior of the PDE indeed describes that of the particle system. Another
important motivation is the numerical resolution of the Boltzmann equation without cutoff:
indeed, it may be relevant to replace grazing collisions by a diffusive Landau-like term.
Choosing the right threshold level requires to know quite well the rates of convergence.
See [15] for a complete study, in this spirit, of the 1D Kac equation.

To our knowledge, the only result directly comparable to Theorem 4 is the one of Carrap-
atoso [6, Theorem 4.2] which concerns Maxwell molecules (y = 0): he obtains (under some
different conditions on fp), a uniform in time rate of convergence in (almost) N ~'/972 for
another distance, strictly controlled by supyg o) E[ W3 (N, £)]"/2, which we can bound by
(almost) N~1/6.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



162 N. FOURNIER AND A. GUILLIN

In the much more difficult Coulomb case y = —3, Miot, Pulvirenti and Saffirio [24]
have studied a similar conservative particle system and obtained a weak result, namely,
up to extraction of subsequences, the convergence to the Landau hierarchy. Also, Bobylev,
Pulvirenti and Saffirio [4] study some true physical particle systems, expected to converge to
the Landau equation with Coulomb interaction, and prove some convergence results in very
small time (more precisely, concerning the time derivative at time 0).

Concerning the non-conservative particle system approximating the Landau equation,
Maxwell molecules have been studied by Fontbona, Guérin and M¢éléard [13] (there it is
proved that supyg 7 ]E[%)g(uiv, )] < CrN72/7), see also [14]. Moderately soft potentials
are investigated in the companion paper [17] (supjo, 7y E[%g(uf’ . f)] < CrN7Y2 when
y € (—1/4,0), a less good rate when y € (—1,—1/4] and a convergence without rate
when y € (—2,—1]). As compared to [17], the present situation is simpler, because hard
potentials are rather easier than soft potentials, but more complicated, because we study the
conservative particle system.

Sznitman [29] was the first to prove the convergence (without rate) of Kac’s conservative
particle system to the Boltzmann equation for hard spheres (y = 1). Some recent progresses
have been made by Mischler and Mouhot [25] (from which [6] is inspired) where, using an
abstract and purely analytic method, a uniform in time quantitative convergence of Kac’s
particle system was derived, for the Boltzmann equation for Maxwell molecules (y = 0,
with a rate in N ~¢ for some very small ¢) and hard spheres (y = 1, with a rate in (log N)™¢
for some very small ¢). Even if these rates are clearly far from being sharp, these results
are impressive. However, the method uses some smoothness of the solution (f;);>0 With
respect to fo (something like one or two derivatives, in some sense, required), which is
closely related to uniqueness/stability theory. Such a theory is completely understood only
for Maxwell molecules (where the kinetic cross section is constant) and hard spheres (where
the angular cross section is integrable). Finally, let us mention the paper of Cortez and
Fontbona [8], who considered the simplest model (the 1D Kac equation), but who obtained
by coupling methods a good rate of convergence (although probably not optimal, in N ~1/3)
for a conservative particle system (D,

1.7. Scheme of the proofs

Interpreting a solution (f;):>o to a kinetic equation in terms of the time-marginals of
a 3D process (Vi)¢>o solving some nonlinear Poisson SDE was initiated by Tanaka [30]
for the Boltzmann equation for Maxwell molecules. Roughly, (V;);>0 represents the time-
evolution of the velocity of a typical particle. A similar process was proposed by Guérin
[20] for the Landau equation, with a white noise-driven SDE. Here and in [17], we rather
use a Brownian SDE. We show that for any weak solution ( f;);>0 and for Vo ~ fo, the
SDE V; = Vo + [o[b(fs. Vs)ds + a'/>(fs, Vi)d B is well-posed and V; ~ f; forall ¢ > 0.
We call (Vi)r>0 a (fr)r>0-Landau process. To prove uniqueness/stability, we will consider
two weak solutions ( f;);>0 and (g;):>0 and we will couple a ( f;);>o-Landau process and
a (gr)r>o0-Landau process in such a way that they remain as close as possible. Using the

(D These authors told us that, putting together the ideas of [8] and of [18], they are now treating the case of Kac’s
conservative system for the 3D Boltzmann equation for hard potentials.
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same Brownian motion for both processes, sometimes called synchronous coupling, does
not provide sufficiently good estimates. We will use a finer coupling, based on some ideas
of Givens and Shortt [19] about the optimal coupling of (multidimensional) Gaussian
random variables (for %%/, distance). Such a finer coupling is crucial, in particular to obtain
a stability result that requires exponential moments of only one of the two solutions. As
already mentioned, this is important because we are not able to propagate exponential
moments of the particle system.

Similarly, we will finely couple our particle system (ViV),—;
WoNYior,
implies that the family ( Wti’N )i=1,..,n is not independent. But we will use a second coupling
to show thatfor 1 « K < N, (W,"’N)izl,m, k are approximately independent. The idea of
using two couplings is already present in the paper by Cortez and Fontbona [8].

,,,,, Ny with a family
~ of (fz)s>o-Landau processes. The conservativeness of our particle system

Let us mention that the finer coupling would also be crucial if studying some non conser-
vative system.

The time uniformity we obtain in the case of Maxwell molecules relies on a recent
noticeable argument of Rousset [26] for the Boltzmann equation. For two solutions
(ft)e>0 and (g¢)r>0, Tanaka’s theorem [30] tells us (roughly) that (d/dt) W, (fr, g:) < O.
Rousset manages to prove, in dimension d > 3, something like (d/dt)U>(f,g:) =<
—Ke 622)%“( ft, g:) for all ¢ > 0. This implies that f; tends to a unique equilibrium as ¢ — oo
at some arbitrarily fast polynomial speed. Much better, he gets a similar result for the
particle system, uniformly in N. Previously, the large time behavior of the Landau equation
for Maxwell molecules was already well understood, see Villani [32], but the only known
uniform in N convergence to equilibrium for the particle system had been obtained by
Carrapatoso [6], with some weaker distance and, more importantly, some much lower rate
(namely, some very small polynomial rate). Again, extending this strategy to the Landau
equation really uses a fine coupling with suitable different Brownian motions.

1.8. Plan of the paper

In the next section, we quickly prove the existence part of Theorem 2. In Section 3, we
study the regularity of b,a,0 and b(f,-),a(f.-),a'’?(f.-). We prove Proposition 3 (well-
posedness of the particle system) and the well-posedness of the Landau process in Section 4.
Section 5 is devoted to the proof of a central inequality, which is used a first time in Section 6
to prove the uniqueness/stability part of Theorem 2. We next show in Section 7 that all the
moments of the particle system propagate, uniformly in N and in time. This allows us to
handle the proof of Theorem 4 (propagation of chaos) in Section §, based on a second use of
our central inequality, except the time-uniformity (when y = 0) which is verified in Section 9.

2. Existence, moments and exponential moments
As we will use several times in the paper, the explicit expressions of ¢ and b yield

Tra(v —vs) = 2|v — v |27,
4 a( —v)v-v = v = vl (VP [ve]? = (V- v4)?),

b(v—v4) v ==2|v —v|"(JV]? — V- Vs).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



164 N. FOURNIER AND A. GUILLIN

The existence part of Theorem 2 is, as already mentioned, more or less well-known.

PROPOSITION 5. — Let y € [0,1] be fixed and let fo € Patry(R*). Then there exists a
conservative weak solution (f;)¢>o in the sense of Definition I enjoying the following properties.

() If H(fo) < oo, then H(f;) < H(fo) forallt > 0.

(i) If m4(fo) < oo for some q > 2, then supg ooy My (fr) < Cg4, for some finite constant
depending only on y, q and on (an upper bound of) mg( fo).

(iii) If'y € (0,1] and E4(fo) < oo for some a € (0,2), then supjg o) Cu(fi) < Ca, for
some finite constant C,, depending only on a, y and on (an upper bound of) €4 ( fo).

Proof. — If y = 0, the existence (and uniqueness) of a weak solution ( f;);>¢ to (1) has
been checked by Guérin [20, Corollaries 6 and 7]. Point (i) is proved by Villani [32, Section 8]
as well as point (i1) (see [32, Theorem 1]): he assumes additionally but does not use that
fo € LY(R?).

Ify € (0,1 and if fo € Payy,(R?) with H(fo) < oo, then we know from Desvil-
lettes and Villani [10, Theorems 1 and 3] that (1) has a weak solution (f;);>0 satisfying
points (i) and (ii). If we only know that fy € P52, (R?), we introduce fJ' = fo * G, with
Gn(v) = (n/27)*? exp(—n|x|?/2). Then H(fJ') < oo and we consider a corresponding
weak solution (f/*);>o, satisfying points (i) and (ii). In particular, we have
SUP,>1 SUP[g 00) M2+2y (f1) < o0. We thus infer from (2) that for all ¢ € CZ(R?),
P21 SUP,0c) [(d/d1) [z 9(0) £ (dv)] < 001 the family {( ) z0.n > 1} € C([0. 00). P(R?)
is equicontinuous (with P(R?) endowed with the topology of weak convergence). We
thus can find (f;);>0 € C([0,00), P(R3)) so that, up to extraction of a subsequence,
limy, supyg 7 |fR3 e()(f" — fi)(dv)] = Oforallp € Cp(R?) and all T > 0. This func-
tion (f;):>0 also satisfies point (ii), because point (ii) is satisfied by (f;")s>o uniformly in 7.
Thus (f)i=0 € L%([0,00), Partay (R3)). Finally, it is not difficult to pass to the limit,
for each ¢ € CZ(R?), each r > 0, in the equation i3 @(v) /" (dv) = [ps @(v) f§'(dv) +
fot Jw3 Jz3 Lo, vs) f1(dv) £ (dvs), to deduce that (f;);>o is a weak solution to (1): the
only difficulty is that L¢ is not bounded, but this problem is fixed using that
L. va)| < Co(1+ [v] + [vx )2+ and that Sup,- , SUP[p o) M2y (i + f71) < 00.

We now assume that y € (0, 1], we fix & € (0,2), and we give a formal proof of point (iii)
without justifying the computations: this probably does not prove that every weak solution
propagates exponential moments, but certainly shows that it is possible to build such weak
solutions. We consider ¢(v) = exp((1 + [v|2)%/2), we set Eo(f) = Jr3 @(v) f(dv) and we
observe that Eq(f) < Eal(f) < eEu(f). Itholds that dp(v) = avy (1+|v]|2)*2 1p(v) and
1o () = al(1+ [ Mg—py + (@ = 2)vevy (1 + [0[)* 272 + avevs (14 [v[2)*2p(v),
whence

Lo, v2) = 2 [201+ o220 b = v2) + (1 + o) Tr a(v = v.)
_l’_

((@=2)(1+ 0|22 + a(1 + [v|*)* 2)a(v — vi)v - v]fp(v).
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Recalling (4), we find
Lo(v.v) = S|o = val? (14 )22 =201+ )0l + 2(1 + [o)los
+ (@ =2) +a( + P2 (oo = - 0)?) o).
Using that [v — v«|? > |v|” — |v«|” and that |[v — v«|” < |v|¥ + |v«|”, we deduce that
Lo, v) = —a[ (1 4+ o) 27 = (1L + D)2 ol o)
+ S0l + loa )+ 0272200+ P o
+ (@ =2 + a1+ PY2) (0 Pos2 = - v2)%) o)
< —a(l+ P2 P o)
+ C((+ )2 + (L o) 2R (1 [0a ) (v)

for some constant C depending only on y, a. By the weak formulation of (1), we get

Sl = [ [ati+ et pe

R3
+ (1 + P2 + 1+ P21 (1 4 may (f) e @) fi(@v).

But we know from point (ii) that supyg o) 2+ (f;) is bounded by some constant depending
only on y and m,4, (fo) (which is itself controlled by €4 (fo)). We end with

S = [ [ =t R P 4 R 4+ O+ 2 o o),
R3

For large values of |v|, we have (1 + [v|>)¥? 1v|>*Y =~ |v|*t” and (1 + |[v|>)%/2
+ (14?21 ~ |p|maxey+2e=2} Bytg+y > o (because y > 0)anda+y > y+2a—2
(because o < 2), so that we can find some constants K, L > 0 so that for all v € R3,

—a(1+ A2 P £ + )2 4+ C(1 + [v)7? 7! < -1 4 Kjy<Ly-

Consequently,
d % ~ ~
GE) = =8 + K [ Muienyp)fi@o) = =Ealf) + Ko(L),

We classically deduce that supyy ga (fr) < max{ g’a (fo), Keo(L)} as desired. O

3. Regularity estimates

The following estimates can be found in [14, Lemma 11] (with C = 1, but with another
norm). Let S3+ be the set of symmetric nonnegative 3 x 3-matrices with real entries.

LEMMA 6. — There is a constant C such that for any A, B € S3+,

|AY? — B2 < CllA- B|I"* and |AY?— B2 <C(|AT' | AIBTH)/?|A - B].

We will sometimes need the ellipticity estimate of Desvillettes and Villani [10, Proposi-
tion 4].
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LEmMMA 7. — Let y € [0,1]. For all A > 0, there is Cyq depending only on A and y
such that for all f € P,(R3) satisfying H(f) < A and ma(f) < A, for all v € R3,
lfa(£ )7 < Ca(l + [v]) 7

We next observe that the coefficients @, b and ¢ are locally Lipschitz continuous.

LEMMA 8. — Fix y € [0,1]. There is C depending only on y such that for all v,w € R3,
[b(v) —bw)| = Clv —w|(jv]” + [w]”), lo@) — o) < Clv —w|(v""> + [w["/?),

and la() —a)| = Clv—w| (o] + [w]"*7).

Proof. — Since b(v) = —2|v|"v, since o (v) = |[v]|"/> 1 = [v|"/> 115 — |v|%v ® v)
and since a(v) = |[v[*T7(I3 — |v|2v ® v), one easily checks that |Db(v)| < C|v|, that
|Do(v)| < Clv]”/? and that | Da(v)| < C|v|'*?, from which the results follow. O

Our main results are based on the use of a SDE of which we now study roughly the
coefficients.

LEMMA 9. — Fix y € [0,1]. There is C depending only on y such that for every
fe 3324_;,(]1%3) and every v,w € R3,

) Ib(fo)] = C(I™ 4+ miyy, (),

(i) [b(f,v) = b(fow)] = Clo —w|(jv]” + [w]” + my, (1))

(ii)) la (£, v)| < C(wPPTY + maty (),

(i) lla(fov) —a(fw)ll = Clo = wl(o"F + [w'* + mipy, (),

V) la (£, )12 < C(oPHY + mayy (),

i) la'2(f,v) —a'2(f,w)|* < Clo = wP(1 + may (S + 0] + [w]?).

Proof. — First, we have |[b(f,v)| <2 [ps [v — w|'t f(dw) < C(|v|**Y 4+ m14,(f)) and
la(fo)] < lla'2(f)lI> = Tra(fiv) = fps Tra(u—w) f(dw) =2 fps [v—w[**Y f(dw) <

C([0PHY + mayy (f)).
Next, |b(f,v) —b(f,w)| = | fR3 (b(v—2z)—b(w —2))f(dz)], so that by Lemma 8,

Ib(f,v)=b(f w)| < Clv—wlAS(IU—ZI“rIw—ZIy)f(dZ) = Clo—w|(P]” +w|” +my (/).

With the same arguments, one finds [a(f,v) — a(fiw)| < Clv — w| fps(jv — 2|1

+|w —z|'*) f(dz) < Clv —w|([v]"* + [w|"* + mity, ().
Point (vi) is more difficult, although probably far from being optimal. Stroock and
Varadhan [28, Theorem 5.2.3] state that there is C > 0 such that for all 4 : R?® — S3Jr ,

ID(AY?)||so < C||D2A||X?, which we apply to A(v) = (1 + |v|?)~"/2a(f,v). Observing

that ||a(z)| < C|z|?>*7, that || Da(z)|| < C|z|'*” and that || D?a(z)| < C|z|”, we find

1024 = [+ WPy [ o=z faz) + o+ Py [ oz paz)

F P72 [ o= 2P )]
R3

< C(1 4 maiy (/).
Thus | D(A'/2)[|2, < C(1 + may,(f)) and
1(A@)Y2 = (AN V2|2 < C(1 + masy (S| — w2,
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We now write, using that (A(v))Y/2 = (1 + [v]?)"/4a'/2(f,v),
la'2(f,v) —a'2(fw)]? < 2(1 + )2 (A@)? — (Aw)) /2|2
F2(1+ w72+ [P = (L w4 Plla 2 w))2.

Recalling (v) and using that |(1 4+ |w]?)"/*4 — (1 + [v]?)"/*| < C|v — w|, we get

la'2(fov) = a'2(fw)]?
= Clo=wP[(1+ P20+ may () + (14 P72 P+ masy (/)]

This can be bounded by C v — w|*(1 4+ mat, (f))(1 + |[v|* + |w|?) as desired. O

4. Well-posedness of the particle system and of the Landau process

We first verify that the particle system (3) is well-posed.

Proof of Proposition 3. — Since b and o are locally Lipschitz continuous by Lemma 8§,
the system classically admits a pathwise unique /ocal solution (V,i’N )i=1,....N,te[0,r) With
T = sup;s;k and . = inf{r > 0 Y 1vIN12 > k). We now show that as.,
SNV =N yEN and YN (VN2 = YV (WY 2 forall ¢ € [0, 7). This will of course
imply that © = oo and thus end the proof.

Summing (3) overi = 1,..., N, using that b(—x) = —b(x), that o(—x) = o(x), that
0(0) = Oand that BY = —B/i foralli # j, weimmediately find that Y V" = "N vV
for all ¢+ € [0, 7). We next apply the Itd formula, which is licit on [0, 7), to get, using that
o(x)o™(x) = a(x),

N N N
) . 1 o ) . . .
Z |th,N|2 — Z |VOZ,N|2 + N Z / [2VS1,N . b(Vsl,N _ VS],N) + TI'CZ(VSI’N _ VSJ’N)]dS
i=1 i=1 i,j=170
2 X
+—= > / ViN o WiN —VINYaBY .
VN ij=1"0

But since b(x) = —2|x|"x and Tr a(x) = 2|x|" 2,

N . . . . .

S RVIN VN —VIN) £ Tra(VEN — VPN
i,j=1
N . . . . . .
= Y (VN =Py (VN —VIN) 4 Tra(VIN - Vi) = 0.
i,j=1
Using next that o(—x) = o(x) and that BY = —BJ/ we also have
N

Yo VEN o —viNaBY = Y (VPN = VIN) o (VN — VN )aBY

i,j=1 1<i<j<N
which a.s. vanishes beqause o(x) = |x|'*v/ 21,1 (so that x*o(x) = 0). We conclude that
SN N2 = 8 AN 12 on [0, 1), which ends the proof. O
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We next build our Landau process.

ProroSITION 10. — Fix y € [0,1] and [ = (ft)i=0 € L7.([0, 00), ,@2+y(R3)), as well
as go € P,(R3) and a go-distributed random variable Vy independent of a 3D Brownian
motion (B;)s>o.

(i) The SDEV; =V, —l—fé b(fs, Vs)ds + fot a'l2( fy, Vs)d By has a pathwise unique solution.

(i) If f is a weak solution to (1) and if go = fo, then V; is f; distributed for all t > 0.

Proof. — We start with point (i). Since the coefficients v — b(fy, v) and v — a'/2( f, v)
are locally Lipschitz continuous (uniformly on compact time intervals) by Lemma 9 and
because f € L ([0,00), Pty (R3)) by assumption, the SDE under study classically has a
pathwise unique local solution (V;);e[o,r), Where T = supy; 7 and 7z = inf{t > 0 : |V;| > k}.
We thus only have to verify that © = oo a.s. Using the It6 formula and taking expectations,
one easily checks that for all k > 1, all # > 0, E[|V,rq, [2] = E[|Vol?] + E[fy"™ k(s, Vs)ds],
where «(s,v) = 2x - b(fs,v) + Tr a(fs, v). Recalling that b(v) = —2|v|Yv and Tr a(v) =
2|v[**?, we find thatk (s, v) = 2 fg3 [v—w|” (|w*—=|v]?) fs(dw) < 2[5 [v—w|"|w]? fs(dw).
It is not hard to deduce that k (s, v) < C(1 + ma4y(f5))(1 + |v|?) and then that

t
El[Vene, [?] < ma(g0) + C fo (1 + Moy (A)EI + |Vong, Plds

for all# > 0 and all kK > 1. Since m24,, (fy) is locally bounded by assumption, the Gronwall
lemma implies that for all T > 0, Cr := supy; supjo 77 E[|Viag |*] < oo. Hence for all T,
Pr(te < T) = k2E[|Ve |* Iy, <7] < E[|[Vrag 2] < Crk™2 — 0as k — oo. We conclude
that t = oo a.s.

We now prove (ii). For t > 0 and ¢ € CZ(R?), we introduce

3 3
Arp(v) = /R Lo@.vo) fildva) = (1/2) D7 ara(fe. 0)0) + Y bic(fr.0)dkcp(v).
k=1

k=1
Then g, = Z(V;) solves

= t 23
(5) /R3 p(v)g:(dv) = /}R3 p(v)p(dv) +/0 /]R3 Asp(v)gs(dv)ds forall p € C2(R?),

with & = go. But (f;)¢>0, being a weak solution to (1), also solves (5) with . = fy. Horowitz
and Karandikar [21, Theorem B.1], who generalize Ethier and Kurtz [12, Chapter 4,
Theorem 7.1], tell us that (5) has a unique solution (for any given u € (R?)). Since
Jfo = go by assumption, we thus have (f;);>0 = (g¢)¢>0-

To apply [21, Theorem B.1], we need to verify the following conditions:

(a) C2(R?) is dense in Co(R?) (the set of continuous functions vanishing at infinity) for
the uniform convergence;

(b) for each ¢ € C2(R?), (t,v) = H,¢(v) is measurable;

(c)foreacht > 0,if ¢ € CC2 attains its maximum at v, then o#;¢(vg) < 0;

(d) there is a countable family {¢y }x>1 C C.(R?) such that forallz > 0, {(¢k, #Z:9k)}k>1
is dense in {(¢, H¢), ¢ € C2(R?)} for the bounded-pointwise convergence;

(e) for any deterministic (¢g, vo) € [0, 00) x R3, there exists a unique (in law) continuous
R3-valued process (X;):ss, such that X,, = wvo and for all ¢ € C2(R?), the process
(X)) — ftto Asp(Xs)ds is a martingale.
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Points (a) and (b) are obvious, as well as point (c) (simply because Vo(vg) = 0, because
the Hessian (dx;¢(vo))x; is non-positive and because a( f7, vg) is nonnegative). Point (e) is
equivalent to the existence and uniqueness in law, for each (¢, vg) € [0, 00) x R3, for the
SDE V; = vo + [y, b(fs, Ve)ds + [; a'/>(fs. Vs)dBs. If 1o = 0, this follows from point (i)
(choose go = &y,). The generalization to all positive values of #o is clearly not an issue.
For (d), consider a countable family {¢x}r>1 C Cc(R?) so that for any ¢ € C2Z(R?) with,
say Supp ¢ C B(0, R), there is a subsequence (k,),>1 so that Supp ¢, C B(0,2R) and
limy[|¢k, — ¢loo + |Vek, — V@loo + | D¢k, — D?>@loo] = 0. Then for each 7 > 0, we clearly
have limy, || # ¢k, — A 1¢lloo = 0. O

5. A central inequality

As already explained in Subsection 1.7, our uniqueness, stability and propagation of chaos
results are based on some coupling between SDEs, and using similar Brownian motions
is not sufficient to our purposes. We recall the following fact: the best coupling between
two multidimensional Gaussian distributions ¢/ (0, £1) and ¢/(0, £5) does not, in general,
consist in setting X; = E}/ZY and X, = E;/ZY for the same Y with law ¢/(0, I3). As shown
by Givens and Shortt [19], the optimal coupling is obtained when setting X; = E}/ %y and
X, = £2U(S,, £,)Y, where

(6) U(Z1,52) = 5,251 V2(2)?5,51/2)1/2

is an orthogonal matrix. Point (i) below, proved in [17], is an immediate consequence of [19].

LEmMMA 11. — (1) Let m be a probability measure on some measurable space F, consider a
pair of measurable families of 3 x 3 matrices (01(x))xer and (02(x))xer and set
3 = [p0i(x)o(x)m(dx). If 1 and 2, are invertible,

=12 = =)2UE), %) 5/ lo1(x) — 02 (x)[|*m(dx).
F

(1) Let ¢ € (0,1). With the same notation as in (i) but without assuming that ¥, and %,
are invertible, setting U,(X1, Xp) = U(Z; + el3, Ty + €l3),

|21 = 22U (21. 2| < CVe(l + |1Z1 + S V) + [ o1 (x) — 02(x) | 2m(dx),
F

where C is a universal constant.

(iii) For each ¢ € (0, 1), the map (X1, X3) — Uc(X1, X3) is locally Lipschitz continuous
on Sy xS

Of course, we introduced U, to avoid some technical problems, because we will generally
not be able to control the invertibility of the matrices we will study.

Proof. — Point (i) is nothing but [17, Lemma 3.1] and point (iii) is obvious. To check (ii),
we introduce the space F’ = F U {A} (where A ¢ F is some abstract point), the probability
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measurem’ = (1—¢)lpm+e65 on F’, and the maps o] = (1 —&) V26,15 +15 I¢a; from F’
to cM3x3(R). It holds that [, o/(c/)*dm’ = X; + €3, so that point (i) yields

(21 + eI3) V2 — (25 + el3)2UL (21, ,) ||2
< / o} (x) — 0 ()2 (dx) = / 01 (x) — 02 () Pm(dx).
F/ F

It then easily follows, using that Ug,(X;,X,) is orthogonal (whence ||Us(Z;,X7)]|?
= Tr I = 3) and Lemma 6 (which gives ||(Z; + ¢I3)"/2 — E,-l/zH < C /¢), that

”E}/z - E;/ZUS(EI, Z2)” <Ce+ ”(21 + el3) V2 — (35 + el3)2U (2, E2)”
5 1/2
= e+ ([ o) - ot Pmian)
F
The conclusion follows: it suffices to take squares and to note that [ [o1(x)—02(x) |I2m(dx)
<2 [p(lo1 () + lo2(x)[P)m(dx) = 2Tr (21 + E2) < C|Z1 + . O

The following proposition, to be used several times for both uniqueness and propagation
of chaos, plays a central role in the paper. The ¢ present in the statement is here only for
technical reasons and may be disregarded at first read.

PROPOSITION 12. — Let y € [0,1] be fixed, let f,g € Pryy(R?) and R € SH(f.g).
Fore € (0,1), let

L = [ (1020 - e o) Uialfo)ate ) P
+2(v = w) - (b(f.v) - b(g.w)) ) R(dv, dw).

() If y = 0, there is a universal constant C such that Te(R) < C /e(1 +ma(f + g))"/2.
(i) If'y € (0, 1], then we fix o > y. There are some constants k > 0 and C depending only
on y,a, such that for all M > 0,

Te(R) < C/e(1 4+ may, (f + )2

M [ o= wPR@Y, dw) + C(1 + My () + EalfNe™ M.
R>XR-

As already mentioned, it is important that no exponential moment of g is required in (ii).
Proof. — We thusfix y € [0, 1], f,g € Payy(R?), R € SH(f.g)and e € (0, 1).
Step 1. We first verify that for all x, y € R3,

loGo) —oWI? < 20x P77 + 20y P77 — 4(|xl[y)"?(x - y).

Recall that o(x) = |x|'*?/2I1,. and that |o(x)|> = Tr a(x) = 2|x|**”: we have to
check that ((o/(x),0(»)) = 2(|x|[y])*/?(x - y). ie, that (T, TT,1) > 2(x - y)/(Ix][y)).
A computation shows that TT, 1 TT,,1 = I3 —|x|2xx* —|y|7?yy* + (x.y)|x|?|y|2xy* and
thus (I, T, )) = Tr I, 11,0 =1+ (x-y)?/(|x|*|y|*). The conclusion follows.

Step 2. We fix v and w and we apply Lemma 11-(ii) with F = R3 xR3, with
m = R(dy,dz), with 01(y,z) = o(v — y) and 02(y,z) = o(w — z). It holds that
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[rorofdm = [psp3a(v — y)R(dy,dz) = a(f,v) (because o(x)o*(x) = a(x) and
R € JU(f.g)) and [ 0205dm = a(g, w). We thus find

la'2(f,v) —a'?(g, w)Up(a( £, v).alg, w)I* < C Vel + a(f,v) +a(g, w)|)'/?
+/ lo(v = y) — o (w — 2)|PR(dy. d=).
R3xR3

Next, it holds that b( f,v) —b(g, w) = fR3xR3 (b(v—y)—b(w—2z))R(dy, dz) simply because
R € S(f, g). Recalling finally that [|a(f,v)|| < C(ma4y(f) + [v[**?) by Lemma 9, we get

Te(R) < Ce | (L [0+ [w* - masy (f + )2 R(dv, dw)

R3xR3

+/ / A, y,w,z)R(dy,dz)R(dv, dw)
R3xR3 JR3xR3

< CVE+my(f e+ [ [ Ay R@y.aR@dw)

3xR3

where

A,y w,2) = |lo( = y) —o(w —2)|> +2(v —w) - (b(v — y) = b(w — 2)).

Step 3. The goal of this step is to check that A(v, y, w, z) = A(v, y, w, 2)+Az(v, y, w, z),
where
A,y w,z)=@W—-—w+y—2z)-(b(v—y)—bw—2))
is antisymmetric (i.e., A1 (y,v,z,w) = —A1(v, y, w, z)) and where
if y =0,
Ar(v,y,w,z) < 1 v
A(v—wl? + |y —zP)v—yr ify e (0,1].

We introduce the shortened notation A, = A,(v,y,w,z), X =v—yandY = w — z.
By definition, we have A, = (X —Y) - (b(X) — b(Y)) + ||o(X) — o(Y)|?>. Using that
b(X) = —2|X|” X and Step 1, we find

Ay < =2(X = Y)-(IXI"X = [Y]'Y) +2|X P + 2]V 2T —4(IX||Y])Y/*(X - Y)
=2(X - Y)(|I X2 =Y ["/?)2

If y = 0, this gives A, < 0. If now y € (0, 1], we use that (x v y)!=%/2|x?/2 — y¥/2| < |x —y|
(for x, y > 0) to write

Ay 2AX|YI(IX)P= Y722 < 20X [|Y[(IX|VIY DY (X =Y D < 20X [AIY ] [X =Y .
We conclude noting that (| X |A|Y )Y < |X|Y = [v—y|” and | X =Y |? < 2(lv—w|*+|y—z|?).

Step 4. We now observe that L := [p3, 53 [p3xp3s A1(v, y, w, z)R(dy,dz)R(dv, dw) = 0.
Indeed, A; being antisymmetric, we have

L:/ / Al(y’U’Z’w)R(dyvdZ)R(dU,dw):_L.
R3xR3 JR3XR3
Step 5. When y = 0, it suffices to gather Steps 2, 3, 4 to conclude the proof.
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Step 6. Finally, gathering Steps 2, 3, 4 when y € (0, 1] yields
Te(R) < C/e(l + mayy (f + 2>
+4[ (v —w)®> + |y — z|*)|v — y|Y R(dy. dz) R(dv, dw)
R3xR3 JR3xR3
= CVe(l +may, (f +)'/?
w8 Pl =yl Sy R dw).
R3xR3 JR3xR3

For the last equality, we used a symmetry argument and that the first marginal of R is f.
Finally, we recall that & > y is fixed and we write, for any M > 0,

8/ fIv—w|2|v—y|yf(dy)R(dv,dw)SM/ v — w2R(dv, dw) + Iy,
R3xR3 JR3 R3xR3
where

Bu =8 [ [ o= wPlo = By f(@) R@v. dw)
R3xR3 JR3

<16 [ [P PO + ) B + Tirsmnal Fd) R, du).
We then write, for a > 0 to be chosen later,
o = 166MNO0 [ [ ol 4 o) ol + e + (@) Redv.dw)
R3xR3 JR3

= Ce_a(M/ma/y/ (1 + [w)[e* P 4 e29P1%] £ (dy)R(dv, dw)
R3xR3 JR3

< Co—a(M/16)%/7 / (1 + |w>tY + e%a“"a + e%“lyw)f(dy)R(dv,dw)
R3xR3 JR3

by the Young inequality. Choosing a = (1 +y)/(4+2y), setting k = a/16*/¥ and using that

R € SH(f, g), we conclude that

Iy < Ce™™M™” (1t myy () + Ealf))

as desired. O

6. Well-posedness

We now have all the weapons to give the

Proof of Theorem 2. — We fix y € [0,1]. If y = 0, we assume that f, € P,(R3) and
consider the weak solution ( f7);>0 to (1) built in Proposition 5, which indeed satisfies all the
properties of the statement. If y € (0, 1], we assume that fy € P, (R3) satisfies ¢ ( fo) < 00
for some « € (y,2) and consider the weak solution ( f;)>o to (1) built in Proposition 5, which
also satisfies all the properties of the statement. In particular, sup,- €o(f;) < oo depends
only on y, « and on (an upper bound of) €y ( fo). We consider another weak solution (g;) ;>0
to (1), only assumed to lie in L2 ([0, 00), Pay (R?)).
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Step 1. We consider Vo ~ fo and Wy ~ go such that E[|V, — W|?] = GZz)%(fo, go) and
a 3D Brownian motion (B;);>0, independent of (Vo, Wy). We consider the pathwise unique
solution to

t t
Vt=vo+[ b(fs,Vs)dS+/ a\(f,, V;)dBs,
0 0

see Proposition 10, and we know that V; ~ f; for all ¢+ > 0. Next, we recall that the
matrix U, was introduced in Lemma 11-(ii) and is locally Lipschitz continuous, so that it
is not difficult to verify, as in the proof of Proposition 10-(i), that the SDE (with stochastic
parameter (Vs)s>0)

t t
7 WE=Wet / b(ge WEYds + / a2 (g5, WEUo(a( i, V). algs. WE))d By
0 0

has a pathwise unique local solution. But the matrix U.(a(fs, Vs),a(gs. W)) being
a.s. orthogonal for all s > 0, the process B = f(f Us(a(fs, V), a(gs, WE)dB; is a
3D Brownian motion. We conclude that the SDE (7) is, in law, equivalent to the SDE
W, = W, + fotb(gs, Wi)ds + f;al/z(gs,Ws)st. We know from Proposition 10-(i)
that such a process does not explode in finite time, so that the unique solution to (7) is
global, and from Proposition 10-(ii) that W ~ g; for all ¢+ > 0. Consequently, we have

%)%(f,, g:) < E[|V; — WE|?] for all values of t > 0 and ¢ € (0, 1).

Step 2. We set u¢ = E[|V; — W£|?]. By the It6 formula, we find, for some martingale (M);>0,

t
Ve = WEI? = [Vo— Wol? + / 2(Vs = W) - (b(fs. Vs) — b(gs, W))ds + M7
0

[ ([0 20 0 e WU Vot W)

[al/z(fs, Vs) — al/z(gm W Ue(a( fs, Vs), a(gs, W/Ss))]*)d&

Recalling that || 4||?> = Tr[AA*], taking expectations and differentiating the obtained expres-
sion with respect to time, we find

d
—up = E[|la"2(f1. V) = a2 (g0 W) Una( i Vi) ar W2
2V = WE) - (b(fi Vo) = bler WED) |

Denoting by R¢ € P, (R* x R3) the law of (V;, W) and recalling the notation of Proposi-
tion 12, we realize that (d/dt)uf = I's(R?).

Assume first that y = 0. Then Prop. 12 tells us that (d /dt)ué < C /e(1+ma(f; +g:)"/2.

Recalling that f,g € Ly ([0, 00), P, (R?)), that 6Zz)%(ft,g,) < ufforallt > 0and all
e € (0,1), and that E[|Vy — Wy|?] = %g(fo, go) by construction, we easily deduce that
621)%( fr.8:) < ng( fo.go) for all t > 0. Of course, the uniqueness of the weak solution

starting from f; follows.

When y € (0, 1], we work on [0, T'] for some fixed T > 0. By Proposition 12, for all M > 0,

d o
T < OVl 4 may (fe + 80)7 4 Mu§ 4 C(+ masy(g0) + Eal fi))e ™M
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For the rest of the step, we call Cr a constant, allowed to vary from line to line, depending
only on 7', y and on (some upper bounds) of supyg 77 m2+y(g¢) and Eu(fo). We thus have

d «
U < Cr/e 4 Mu + Crem ™M

whence supyo 7 u§ < [u§ + Cr/e + CTe_"Ma/y]eMT. Recalling that u§), = GZz)g(fo, go) and
that W3 (f;. g:) < u%, we may let ¢ — 0 and find that

—xkMe/
sup W5(fi.80) < [W5(fo, g0) + Cre M 1eMT.
0,T
We now choose M = [k 'log(l + l/GZz)z(fo,go))]”/"‘, which is designed to satisfy
e M = U3 fo. 80)/ (1 + Wi ( fo. 80)) = W5 ( fo. go) and we end with
@ﬁwﬂw<&%UMmer%w+wwm@wM
0,7
We easily conclude, since & > , that for any 5 € (0, 1), supjp 77 Wa( /1. &1) < Co.r(Wa(fo.80)' ",
the constant C; 7 depending only on 7, 7, o and on (some upper bounds) of supyy 7172+, (gr)

and &, (/o). The uniqueness of the weak solution (f;);>o starting from fy clearly follows.
O

7. Moments of the particle system

The goal of this section is to study the moments of the particle system. The following
result uses the fact that the particle system a.s. conserves kinetic energy. Sznitman [29] and
Mischler-Mouhot [25] have handled similar computations for the Boltzmann equation for
hard spheres.

PROPOSITION 13. — Fixy € [0,1], N > 2, consider an exchangeable RN -valued random
variable (V ), 1.~ and the corresponding unique solution (V> )t>0 to (3). Then for all
P > 2, 5UP[g 00) E(|V, NP < CP(E[lVOI’N |PEY)P/PHY) | the constant C, depending only on p
and y.

Proof. — We fix N > 2 and write V;} = V' for simplicity. We recall from Proposition 3
thata.s., forallz > 0, EN := N2V |vi|2 = EN. Wefix p > 2and wesetu? = E[|V,}|?].

Step 1. Starting from (3) and applying the 1t6 formula with ¢(v) = |v|?, for which
dp(v) = plv|?2vg and Ox1 ¢ (v) = p[Mg=p3|v|? > + (p — 2)vgvy[v][P~*], we get, for some
martingale (M7);>o,

N .t
VP = Vol + % Z/ VP2V (v —Vi)ds + MP
i=1 0

N
%2/0 5 Wt V172 + (0 = D VIV, Plaaa(V, = Vs
=1 k=1
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Taking expectations and differentiating the obtained expression with respect to time, we find

N
d D 14 11 p—2y,1 1 J
—ul = ﬁ;:l:E[z'Vt P2y b - V)
+ |th|p_2Tr a(th - th) +(p- 2)|th|p_4a(Vzl - th)th : th]'

Recalling (4), using exchangeability and that everything vanishes when j = 1, we find
4 p_pV-1D
dr ' 2N

+ (P =2V PRIV - 0 V2P |

_ PN ) b4 _
=N ['th—Vt2|y<_|Vt1|p+§|Vt1|p 2|Vtz|2>]'

Dg[ivr - vy (=2 + 22

Step 2. When y = 0, we thus have (d/dt)ul < —(p/2)ul + (p?/2)E[|V,|P72|V2|?]. We
used that 1/2 < (N —1)/N < 1 because N > 2. We then use exchangeability to write

BV, 172V = B[V 17 5 ZIV’ ?]
<2E[|V,!'|P2EN] < 2(uf) P PE[(EN )PP,
But E[(EN)?/?] = E[(E})?/?] < E[|V,}|?] by Jensen’s inequality and exchangeability. We
end with

d p _
Jput = =Juf + PEIVG I Py .

We classically conclude that supg o) u? < max{u. E[|V,'|?](2p)?/2} = E[|V,'|P1(2p)P/2.

Step 3. We suppose next that y € (0, 1]. We know from Desvillettes and Villani [10,
Lemma 1] that there are some constants k, > 0 and C, such that for all x, y > 0,

—-yP+ gxzyp 24 gyle”_2 < —kpx? + Cp(xy?~! 4 yx?71).
We deduce, using exchangeability, that
d PN Do 14 o P _
Tl < B B[V = V2P (= VAP = 21+ DAV P+ 2P|
PN -Dy _ _
= Eo B[V = V2 (=i VAP + GV + GV 1P|

px _
<E[ IV =2 (= B2Iv1P + 206 v |

Changing now the values of k, > 0 and C, (which still depend only on p) and using that
v —wl? > ||v| - |w||y > |[v]Y —|w|” and |[v — w|” < |v|” + |w|?, we easily find
d _ _
%uf < =GBV 1P+ GEV, PIVZY + V217 + VIV 2P
< =BV P+ GEIV PV + VY IVEIPL.
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But

1
N -1

N N
. 1 .
B[V PIV2P) = E[ VAP IV | < B[V 1P Y vir ] < B[P ey
2 1

By Hoélder’s inequality and since E tN = Eév , we deduce that

E[|th|p|V,2|y] < ZE”VZI|p+y]p/(p+y)E[(EéV)(p+y)/2]y/(p+y).
A last application of Hélder’s inequality shows that E[(EY)?+7)/2] < ]E[|V01’N|p+1’],
whence finally

d
Euf < —KPE[IV,IIP+V] + CI,E[|V01’N|1’+”]”/(1’+”)E[|th|p+y]1’/(1’+y)

K
< —ZEIV 1P+ GEIVy Y7
(®) < _%P(uf)(wry)/p + Cp]E[|Vol’N|p+y]’

the value of C, depending only on p,y and changing from line to line. For the second
inequality, we used that for k,a, x > 0, —kx + ax?/®P+Y) < _(k/2)x + (2/k)P/Y @IV
it suffices to separate the cases kx > 2axP/PtY) and kx < 2ax?/PtY) We classi-
cally deduce from (8) that supjg ooy uf < max{ug, QCLE[|Vy N |1217]/k,) P/ PP} Since
ul = E[|VyN|P] < B[V N |p+r]p/(2+Y) | the proof is complete. 0O

8. Propagation of chaos

The goal of this section is to check Theorem 4, except the time uniformity in the Maxwell
case.

8.1. The setting

We consider, in the whole section, ¥ € [0,1] fixed and fy € P,(R?).Ify € (0,1],
we assume moreover that ,(fy) < oo for some o € (y,2). We denote by (f;):>0 the
unique solution to (1), as well as, for each N > 2, the unique solution (V,i’N)i=1,,,.,N,,Zo
to (3) starting from a given exchangeable (R3)"-valued (VJ’N )i=1,...N. We suppose that
M, = mp(fo) + supy E[|V01’N|1’] < oo and we conclude from Theorem 2 and Propo-
sition 13 that for all p > 2, supjg ) M (f7) + SUPN 52 sup[O,OO)E[th’NV’] < oo and
depends only on y, p and on some (upper bound of) M,4,. If y € (0, 1], we know that
sup,sg €a(fi) < oo. If finally H(fy) < oo, then H(f;) < H(fo) for allt > 0, whence, by
Lemma 7,
© sup sup [|(@(fr,v) 7| < o0

t>0 yeRr3
and depends only on y and on (upper bounds of) m,( fo) and H( fo)-

In the whole section, we write C for a constant depending only on y, , on (upper bounds
of) {M,, p > 2} and additionally on (an upper bound of) £4(fo) if y € (0,1]. It is also
allowed to depend on (an upper bound of) H( fy) when the latter is supposed to be finished.
Finally, any other dependence will be indicated in subscript.

4¢ SERIE - TOME 50 — 2017 - N° 1



KAC’S PARTICLE SYSTEM FOR THE LANDAU EQUATION 177

We fix N > 2 for the whole section, we recall that u¥ = N~1 3N 8i.n and we put
) ¢
ey = N~1. By [17, Proposition A.1], we can find (WO”N)i=1,_,,,N ~ 0®N such that
(a) {(VJ’N, W(f’N),i =1,..., N} is exchangeable,
(b) WANL YN 8yin N1 >N Bypin) =N~ SN WEN —wiN 2 as,

.....

8.2. A first coupling

We first rewrite suitably the particle system.

LEmMA 14. — Foreachi =1,..., N, the process

N
. 1 t . . . .
N § N1 (Vi ,
; B Wj=1/() [al/Z(Mé\/’ VSlN)] 10( sl N Vsj N)dB;]

is a 3D Brownian motion. Furthermore, foralli = 1,...,N, allt > 0,
. . t . t . .
VN = [ bl s+ [ a0 vivapis.
0 0

REMARK 15. — Observe that a'?(uN vy = [N} Z]N:la(vsi’N — VN2
with a(x) = [o(x)]* If al/z(uév, I/Si’N) is not invertible, we use Lemma 16 to define
(@ 2(uN VI Yo (VN — Vi), We thus always have

(W) forallj =1,...,N,

a2 Vil P VDT e (VN = VI = o (VN — V)

(i1)
N . . . . . .
NTEY (@2 VIO o (VN = V) (a2 VN T e (VY — VI ) = L,
j=1
LEMMA 16. — For Ay,..., Ay € S§ and M = N1 lev Ajz, we can find some matrices

Bi.....By such that (a) MY?B; = A forall j = 1,....N and (b)) N"' Y B; B} = 1.

We write Bj = M —1/24 i, even in the case where M is not invertible.

Proof. — If M is invertible, it suffices to set B; = M~Y/24;.1f M = 0, the choice B; = I3
is suitable. Assume now that M has exactly two non-trivial eigenvalues A1,A, > 0 (the
last case where M has exactly one non-trivial eigenvalue is treated similarly). Consider an
orthonormal basis e, 5, e3 of eigenvectors, thatis, Me; = A1e1, Me; = Arep and Mesz =0
(so that M = Ajejef + Azeze) and observe that Aje; = 0 for all j. It then suffices to set
B = (A7 2erer + 252 ere5) Aj + ezer. O

We can now give the
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Proof of Lemma 14. — For i fixed, the Brownian motions (B");; are independent.
Hence the (matrix) bracket of the 3D martingale (ﬂ;’N )¢>0 1s given by (recall that o (0) = 0)

N
1 t . B ) ) ' - ' ‘ .
NZ/{) ([al/zwév,vsz,N)] lg(Vvl,N_IG],N))([al/Z(Mi\’,VSI,N)] IU(VYZ’N_VSJ’N)> ds = Ist,
Jj=1

which implies that (ﬁi’N )¢>0 is @ Brownian motion. We used Remark 15-(ii). Rewriting (3)
as in the statement is straightforward, using that

a2l VI (N VI Tle(VEN —VIN) = o (VN — Vi)

by Remark 15-(i). O

We next introduce a (non-independent) family of Landau processes. Recall that the
matrix U was introduced in (6), that U, was defined in Lemma 11-(ii). Denote ey = N 1.

LEMMA 17. — The system of equations (fori =1,...,N)
WY =W [N+ [ RNy el V), 0w B

with vN = N1 Ziv SW;:N, has a pathwise unique solution. Furthermore, W,I’N ~ ft for all

t > 0 and the family {(Vti’N, W,i’N),ZO,i =1,..., N} is exchangeable.

Observe that the fine coupling is necessary to obtain some good results and this is
not related to the fact that we deal with a conservative system. Using the naive coupling
(without U), only Maxwell molecules can be dealt with, see e.g., [14], and even in this case,
the constants increase exponentially fast with time. On the contrary, still in the Maxwell case,
the constants increase polynomially (at most like (1 + 7)°/2) in all the lemmas below and
this will easily be compensated by the fast and uniform (in N) convergence to equilibrium
of the particle system.

Proof. — As usual, the existence of a pathwise unique local solution follows from the
fact that the coefficients are locally Lipschitz continuous (which follows from Lemmas 9
and Lemma 11-(iii)). But for each i, the matrix Ug,, (a (,uév, VSi’N), a(vﬁv, Wsi’N)) being a.s.
orthogonal for all s > 0, the process fot Uey (a(uﬁv, Vsi’N),a(sz, Wsi’N))dﬁé’N is a 3D
Brownian motion. Consequently, the SDE satisfied by W% is equivalent (in law) to the
SDE W, = Vo + [y b(fs, We)ds + [y a'?(fs, Ws)d By (with Vo ~ fp). We know from
Proposition 10-(i) that such a process does not explode in finite time, so that the unique
solution is global, and from Proposition 10-(ii) that W,i’N ~ fy forallt > 0. Exchangeability

is obvious, using that it holds true at time 0 (see point (a) at the end of Subsection 8.1). [
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8.3. A second coupling

Unfortunately, the processes (W,i’N )¢>0 are not independent, so we have to show that they
are almost independent in some sense.

LEMMA 18. — For all K=1,....N, we can find an iid. family of processes
(Z;’N’K)i=1,...,K,tzo such that Z:’N’K ~ fiforallt = 0,alli = 1,....K and such that
forallne (0,1),all T >0,

K

(10) sup [souyp]lE[le’N = Z/MEP = Crr sy
i=1,...,

Moreover, the constant Cy T is of the form C,T if y = 0.

Proof. — Let K € {1,..., N} and n € (0,1/2) be fixed for the whole proof. We also put
§ = (K/N)? > 0. For simplicity, we write V/ = V'Y, wi = WY and zi = z}VX.

Step 1. We recall that the Brownian motions (B")<;<j<y are independent, that
BY = —BJ' and we introduce a new family (B¥);<; j<ny of independent Brownian
motions (also independent of everything else). We recall that the Brownian motions ,Bi’N
were defined in Lemma 14 and we introduce, fori = 1,..., K,

N
- 1 4 —_— . . o g
o= Wi ) / a2l VI o (VEN — VINYd [ <k BY + Tjsky BY].
s 0
j=1

One easily checks, using Remark 15-(ii), that the continuous 3D martingales 1V, ..., BK:N
satisfy (BN, B/N), = I3t1;—j;, so that they are independent 3D Brownian motions. We
next claim that the system of equations (fori = 1,..., K)

t t o
Zi= Wi + / b(for Z1)ds + / A2 (fy ZDXIUIdBEN,
0 0

where we have set Ul = Ug, (a(ul,Vi),awN, W})) and X! = Us(a(fs, W), a(fs, Z1))
for simplicity, has a pathwise unique solution (with the same arguments as usual, see the
proof of Lemma 17) and that foreachi = 1,...,K, Z! ~ f; forallt > 0. Furthermore,
the Brownian motions fot XiUuid ,8~§N being independent (as orthogonal martingales with
deterministic brackets), as well as the initial conditions Wy, the pathwise uniqueness stated
in Proposition 10-(i) implies that the processes (Z!);s0, fori = 1,..., K, are independent.
It only remains to prove (10) and, by exchangeability, it suffices to study E[|W,! — Z}|?].

Step 2. Here we verify that, denoting by RN the law of (W,!, Z}), of which the two
marginals equal f; and using the notation of Proposition 12, we have

d
EEHW; —ZM? < CKN"! 4+ Ts5(RM).
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Recalling the equations satisfied by W! (see Lemma 17) and Z!, as well as the expressions
of BN (see Lemma 14) and BV, we see that

wl-2z) = [ t[b(fs, Wy —b(fs, ZHlds

1/2(fs, W —a'?(f. ZH X,
\/_] ;H/ :|

Ul[a1/2(M£V’ VI,N)]—IO_(VI,N _ Vj,N)dBlj

J_Z/ a2 (f WU 2 VN Lo (VY — VN )dBY

fo a2 (£, ZD XU Vo (VN viN)aBY.

All the Brownian motions appearing in this formula are independent. By the It6 formula, we
find (d/d0)E[|W,}! — Z}|?] = B[l + 1> + I3 + L], with

L =2W! =z - [b(fi. W = b(f;. ZD)],

N
=y Y i) a2 2 VO o v

At

K N 2

SN y1— N B

IFNZH[a“Z(ft WHUM a2 Ve — v

K N 5

SN y1— N B

Ii=~ Z”[a“z(ft,z})U:X}[a“zw,V} oY — v

Using that N=' 0 o (VY = VP2 = (@2l v,5Y)]? and that || 4]? = Tr 44%,
we find

N
1 B . 2
L= 2 |l@ 2 Wh = a2 ZD X0 P R VT e (v = v
j=1

2
= 2w a1 ZHhx !

2
= a2t W = a2 (£ ZH X,

because U, is a.s. an orthogonal matrix. Recalling the notation of Proposition 12 and that
= Us(a(fy, W}),a(fy, Z1)), we conclude that E[I; + I,] < Ts(RY).

By exchangeability, we have, for ¢ > 1 and ¢’ = g/(¢ — 1), by Holder’s inequality,

E[73]

IA

o | AT W PR PR A T T

K 2q11/q _ 2q9’'q1/q’
e ] el o -]

IA
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By Lemma 9, since W,! ~ f; and since SUP[0,00) M (2+y)q (fs) < 0o (see Subsection 8.1), we
have E[[|a'/2(f;, W}!)|?9]"/4 < C,. Next, we have a.s.

N
N y1— 5 , N y1— ) N
a2y VIO e N = PN IR <Y e 2y VO e (Y = v 12 = N
j=1
by Remark 15-(ii) and, by exchangeability,

Ellfa'2(u¥, V"M o (VN — 2N 12

N
= NTER a2 VO e = v P = 1.
=1

Consequently,
K 1/2,,,N 1/ 1,Ny—1 1,N 2N, |12 2(¢’-1) vd' 2(¢’'-1/q'-1
E[L3] = Cy B[ |02 v o v — v e o~ ok ~

Choosing ¢ = 2/, we find that 2(¢’ — 1)/q’ = n, whence E[I5] < C, KN"~!. Finally, I, is
treated exactly as /3 and this ends the step.

Step 3. If y = 0, by Proposition 12-(i), Ts(RN) < CV/8(1 + my(f;))"/? < C+/8, so that
we end with (d/d0)E[|W,' = Z} 2] < CV/E+Cp, KN"™' < C, KN"! (because § = (K/N)?).
Since W' = Z}, we conclude that E[|W,! — Z}?] < C, KN"T as desired.

Step 4. Assume next that y € (0, 1]. We then have supyg o) [m2+y (f1) + Ea(f1)] < 00, see
Subsection 8.1. We thus infer from Proposition 12-(ii) that for all M > 0,
Is(RY) <CVs+ M v — w2RY (dv, dw) + Ce™M*”
R3xR3
But v = KN~'and [3, 53 [v—w[>RY (dv, dw) = E[|W,! — Z}|?], so that we have proved
that (d/d0)E[|W,}! — Z}|?] < C,KN"™! + ME[|W,}! — Z}|?] + Ce=M*"” and thus
sup E[|W,! — Z}%] < [C,TKN""" + CTe™*M*""1eMT
[0,T]
Choosing M = [k !log(1 + K~!N'"M)]"/%, for which e™*M*” = 1/(1 + K-IN'"") <
KN
sup E[[W,! — Z1?] < C, TKN" ' exp (T[K_l log(1 + K—lNl—")]V/“).
[0,7]
Since y < a, thisis easily bounded by C,, 7 (KN )77 < C, 1 KN-0-1% < CyrKN?171,
O

A first consequence of the previous lemma is the following quantitative law of large
numbers.

LeEMMA 19. — Consider a function ¢ : R3> R satisfying |p(x) — o(y)| <
Clx —y|(1 + |x|? + |y]9) for some q > 2. As usual, we set (i, X) = [p3 @(x — y)u(dy) for
any probability measure 1 on R3. Then for all T > 0, all n € (0,1/2),

N N _
[suzp]E[lso(vtN,th ) —o(fir. WP] < Cprp NTV2,
0,
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Moreover, the constant Cy 1., is of the form C,W«/T ify =0.

Proof. — Using exchangeability, we write
1 al 2
N N N i,N N
B[l W) = o (f WP = B[ (Ll = W) — oo W) ]
i=1

- %(h F2N =)+ (N =)+ (N —1)(N — 2)14),

with (we develop the squared sum and separate the cases (a)i = j = 1,(b)i = land j # 1
ori#landj=1)i=j#1,(di#j,i#1,j#1)

I = E[(p(0) — ¢(fe. W;" ")),

I = E[(¢(0) — (1. W," " N@W, N = W2Y) —o(fr. W)

I3 = El(p(W,"" = W) — o (fo. W,"))?]

Iy = EllpW,"N = W2™) — o (/. WMDY = W) — (£ W),
Using only that ¢ has at most polynomial growth, that W,I’N ~ W,Z’N ~ f; and that all the
moments of f; are uniformly (in time) bounded, we easily verify that I, + I + I3 < C,,

whence N™2(I; +2(N — 1)1 + (N — 1)13) < C,N~!. We next use Lemma 18 with K = 3
to write I4 < J; + J5 + J3, with

T =Bz} = 20N — o fi. 2PV ez = 2PN — o £ 2PN,
D = E[(leW! N = w2y =@z = 222 + 1o (fe W) = o(fi. 2D
< oz = 2PN —o(fi. 2V,
I3 =ElloW,"" = w2 —o(fi. W)
< (oW = w2y =z = 22V + 1o (fr. W) = o(fi, 2PV

But J; = 0 because Z tl’N 3.7 tZ’N 373 V-3 are independent and f;-distributed: it suffices to
first take the conditional expectation knowing Z ,I’N 3 and to observe that
IE[(p(Z,l’N’3 — Zf’N’3)|Ztl’N’3] = o(f, Ztl’N’3). Next, using that all the variables W,I’N, W,Z’N,
w? Nz ,l’N 2, Z,Z’N 2.77 V-3 are f,-distributed, that all the moments of f; are uniformly
bounded, that ¢ has at most polynomial growth, the local Lipschitz property of ¢, and that
lp(fr,w) —(fi,2)| < Cyplw — z[(1 + mg(fy) + |w|? + |2]9), we easily get convinced that,
by exchangeability and the Cauchy-Schwarz inequality,

E[J> + J3] < CLE[|W,"N — z V3121172,

This is bounded by C,.7.,N"~'/2 by Lemma 18 with K = 3, and the constant C, 1, is of
the form C,, ,+/T in the case where y = 0. O

8.4. Computation of the error

We now handle the main computation of the proof.
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LEmMA 20. — Forall T > 0,alln € (0,1/4), allt € [0,T],

E[v,"Y — w2

Cy(1+ T 2E[V Y =W N 21+ N7=14)ify =0,

Cy(1+ T2 BV =Wy NP1+ N7712) ify = 0and H(f) < oc,
Cor (ENVyN — W 2] + N-1/4)1T7 if'y € (0,1],

Co1r (EVe YN — WM 12+ N—1/2)1 7 if'y € (0, 1] and H( fp) < oo.

IA

Proof. — For simplicity, we write V; = V"¥ Wi = W/ and U} = U, (a(uN . V"),
a(v,N, W,i’N)). Also, we set uﬁv = IE[|V,1’N - W,I’le]. For each ¢t > 0, we define
¢V = NIYW 8yi.N iy, which as. belongs to S(up,v¥). We fix T > 0 and we
work on [0, T]. We aiso ﬁ)é n € (0,1/9): it of course suffices to check the estimates for small
values of n > 0.

Step 1. Recalling the equations satisfied by V! (see Lemma 14) and W1 (see Lemma 17),
the It6 formula leads us to

d
ol = E[20 = W)) - (bl V) = b(fi W) + a2 VY = a (£ WHU P

= E[20/! = W) - (bl V) = b0 W) + a2 v = a' 20N whHU ]
+E[207 =W 0w W) = b(f W)
+E[ @ 20N W) = a2 WU ]
+2E[ (@2 V) —a PN WhHUL @ PN W = a2 wihu ) |

Using now that U;! is an orthogonal matrix and the Cauchy-Schwarz inequality, we find that

d
—ul < BN+ 2y ul BN + E[K]] + ZIE[\/L{VK,N],
where

1V =207 =W b v = b W) + a2 v = a P WHU,
TN = b wh —b(f, WHIZ,

KY = la'?f . wh —a 2(f, WHI,

LY = la'?uy, v —a 2} WwhHu|?.

Step 2. We first prove that E[/ tN ] =E[Tey (¢ fv )]. Using exchangeability,

N
E[/Y] = E[% DRV =Wy V) = b)Y W)
i=1

a2 Vi) — a2, WZ)U;'nz}.

It then suffices to recall that (N = N1 YV 8(yiN yiny, of which the marginals are ulN
and vV, that U} = Ug, (a(u, Vi),a(wN, W})) and the notation of Proposition 12.
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Step 3. Using Lemma 19 and the Lipschitz property of b checked in Lemma 8, we imme-
diately get that E[JN] < C,,.7 N"~/2, with moreover C;, 7 = C,T"/?ify = 0.

Step 4. Here we verify that

(i) we always have E[KN] < C,, r N"~'/4, with moreover C, 7 = C,T"/*if y = 0;

(ii) if H(fo) < oo, then E[KN] < C, 7 N"~'/2, with moreover C, 7 = C,T/?if y = 0.

For (i), we use the first inequality of Lemma 6 to write

K = a0 W —a' P (f WHIP < Clla@ . W —a(fi. WH.
We then apply Lemma 19, which is licit thanks to the Lipschitz property of a checked in
Lemma 8, to get E[KN] < C,, 7 N"~V4 with C,,r = C,TY*if y = 0.

For point (ii), we use the second inequality of Lemma 6 and then the ellipticity estimate (9)
to write KV < Cllla(fs. WO Mla ¥ W —a(fo. WHIZ < la¥ . WH —a(fe. WH2.
Again, Lemma 19 implies that E[KN] < C,rN""'/2, with moreover C, 7 = C,T'/?
ify =0.

Step 5. We now check that E[\/KN LY] < E[IN] + E[KN] + C; Jul E[KN10-7/2. We
first observe that by Lemma 8,

LN = 1N 2} —wh b, v —boN, wh)

N
1 : .
=1 =207 = W) 5 3 bV = V) = bW = W)

i=1

N
1 . , . .
= IzN +C|Vzl _th|ﬁ Z(lvtl - I/Vzl| + |th _thl)(l + |th| + |Wz1| + |Vzl| + |th|)y

i=1

N
1 ) . 1/2
<IN +cv}r- W}|(N P (AR A7 W;|2)) HN
i=1

<1N+cmMN\/ HY,

where we have set
N

N
1 . . 1 . .
HY = 5 3 IV IR VT WD and MY = V= WP+ 5 v = Wi
i=1

i=1

Since /x(y + z) < /Xy + /xz <x + y + /xz, we conclude that

E[y KN LY] < EUN)+EBKY] + CE[(KN) 2 (MM 2 (1)) 4

= E[IN] + EIKN] + CE(MM) 2 (K2 (kY2 (H )V

< B[N+ EIKN] + CE[MN ' PEIK N 2RI(K)Y2(HY) 22,
where we used the triple Holder inequality with p = 2, g = 2/(1 — n) and r = 2/ for the
last inequality. But it holds that E[MN] = 2u® by exchangeability. To complete the step, it
only remains to prove that E[((KN)"/2(H]N)'/4)?/" < C,,.

But KN <2a2¥ W2 + 2laV2(fi, WHI2 < Clmary (fi + 1) + W) by

Lemma 9 and HY < 1 + [V,Y2 + [WH? + ma,(uY + vN). Observing that
E[(may (uN + vN)P] < E[V}?'P + |W|?*P] by Holder’s inequality (if p > 1), that
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th’N ~ fr and recalling that supjg ooy mp(f7) + SUPyN 52 sup[o,oo)E[|Vt1’N|P] < oo for
all p > 2 (see Subsection 8.1), we conclude that K¥ and HN have uniformly bounded
moments of all orders, so that finally, E[((KN)"/2(HN)'/*)?/"] < C,,.

Step 6. From Steps 1 and 5, (d /dt)ul < 3E[IN]+ 3E[KN] + C, \/u;V E[JN] +E[KN]1-m).
Using Steps 3 and 4, we see that E[JN] + E[KN] + E[KN]'™" < 68, 7.n, where (i)
Sp N = Cpr(NT7V/HI=1 < €, 7 N2171/4 in general (with C;y 7 = C,(1 + T)V2if y = 0);
(i) $p.ry = Cpr(NTV2)I=1 < N21=V2if H(fy) < oo (with Cpr = C,(1 + T)V2if
y = 0). Using finally Step 2, we end with

d /
Euﬁv = 3]E[F£N (EIN)] + 87),T,N +C uiv(gn,T,N-

Step 7. Assume that y = 0. By Proposition 12-(i) (recall that ey = N~1),

E[T.y ((M)] < C VenE[l + mo(ud +v)))"?
= CenE[[VINP+ 1 WENPIV2 < € ey < Coyrw.

Thus (d/dtyull < C8yrn + CJuNSprn < C\/Si’T,N +uN§8, 7 n. Integrating this

differential inequality, we deduce that supyy ryuy < C(1 + T)*(u) + 8;,7,n), from which
the conclusion follows.

Step 8. Assume next that y € (0, 1] and recall that « > y. By Proposition 12-(ii), for all
M >0,

oy (&) = CVaw( +may ol + 0DV 01 [ o= wPe @v.du)
+ Ce™ M iy (u) + EaW)).

We have E[mat, (uY + vN)] = E[|V"T2] + ma1, (f;) < C, see Subsection 8.1. Also, it
holds that E[€4(vY)] = Eu(f:) < C. Finally, E[ [p3,53 [v — w|?¢Y (dv, dw)] = u¥. Allin
all, we have checked that E[T, , (¢V)] < C /ey + Ce™M”* 4 Mu  Recalling Step 6, using
that \/ey < C8, 1,y and that ,/xy < x + y, we conclude that

d ’
Tl < Coyrw + (M + Ol + Cem M,

whence u¥ < [ud + CT8, 75 + CTe ™M *|M+OT  Ag ysual, we make the choice
M = [k log(1 + 1/[ul) + 8, 7.8])]"/®, for which e™M“"” < u! 4+ §, 7y, and this leads
us to

ul < Crlud + 8y r.xlexp(Tk™ " log(1 + 1/[ul + 8, 7.8 DI"* + CT) < Cyrlud + 8,181,
because y < a. We conclude that ul < C, 7(u) + N21=VH1=1 < C, r(ul + N~1/4)1=om

in general and u < Cpr () + N2~V < C, r(ul + N~V if H(fy) < 00. O
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8.5. A quantified law of large numbers for non independent variables

Here we check the following result, to be applied soon to the family W,i’N .

LEMMA 21. — Let N > 2, u € P5(R3), n € (0,1) and k > 0. Consider an exchangeable
Sfamily Wy, ..., Wn of R3-valued random variables such that for all K = 1,..., N, there are
some i.i.d. p-distributed random variables ZX , ...  Z& such that max; =1, x E[|W; - ZK|?] <
kKN Then

.....

N
1 C(1 + ms(w)>?"* + x)
2
E[%Z(ﬁ ;SW‘L)] = Na-m/3 :
where C is a universal constant.

Proof. — We divide the proof into four steps.

Step 1. We recall the well-known fact that for £, f/, g, g’ € > (R*)and A € (0, 1), it holds
that Wi (Af +(1-N)g. Af' +(1=1)g’) < AWa(f. g)+(1—-1) W35(f'. g'). Indeed, consider
X ~ fand Y ~ gsuchthat E[|X — Y|?] = %g(ﬁg), X' ~ f"and Y’ ~ g’ such that
E[|X' —Y'|?] = W3(f'.g), and U ~ Bernoulli(1), with (X,Y), (X’,¥’), U independent.
Then Z :=UX+ (1 -U)Y ~Af +(1-NVg, Z :=UX"+(1-U)Y ~Af +(1-N)g,
and one easily verifies that E[|Z — Z'|?] = AE[|X — Y]] + (1 — MHE[|X' — Y'|?] =
AUS(f.8) + (1= D UW5(f".g).

Step 2. For K € {1,...,N}, weset ug = K~! Zlel 8w, . We prove in this step that
(6m2 (1) + 40K

E[9W5 (uw, 10)] < E[W5 (k. 11)] +

N
To this end, we set R = |N/K | and we assume that RK < N, the other case being easier
(no need to introduce v¥, ). We introduce, fork = 1,..., R, vy = K™ fo(k_l)KH Sw;,

aswellas vi, = (N = RK)' Y pxy Sw,.

We then write uy = KN~ Y R_, v + (N —RK)N~"vg,, and we use Step 1 to obtain
Wi(un. ) < KNV WY )+ (N —RK)N~'W5(vY, . ). By exchangeability,
we thus find

N — RK
— ElW5 0k, )

The conclusion follows, because RK < N, because va = ug, because N — RK < K and
because E[%i(vgﬂ )] < 2ma(p) + 2E[|Wi 7] < 2ma(p) +4E[|Z 2]+ 4E[|W; — Z1)?] <
6my() + 4k.

EIWA ey )] < SCBIUEGY ] +

Step 3. We then introduce (g = K™ Zlel 8, . Since the ZiK’s are 1.i.d. and p-distributed,
we know from [16, Theorem 1] (with p = 2, d = 3andg = 5) thatforall K = 1,..., N,
E[W5(Ck. )] < Clms(u)*° K=,

Next, we have E[ %3 (1uk, (k)] < K" S K E[W; — ZK 2] < kKN,
Consequently, E[ %5 (k. )] < C(ms(un)* K12 4 2« KN"1,
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Step 4. Gathering Steps 2 and 3, we find that forall K € {1,..., N},

Cloms()?* WK (6ma(0) + 40K
JK N1 N B
= CU +ns)* +0] 2= + 1 |

Choosing K = | N2(=m/3| completes the proof. O

E[W5(1en, 11)] <

8.6. Conclusion

We now have all the weapons to prove Theorem 4, except the time uniformity in the
Maxwell case. We start with the case of hard potentials.

Proof of Theorem 4-(ii). — We thus assume that y € (0,1] and we fix T > 0 and

n € (0.1). We recall that uV = N1V 8 in and vV = N7! > Sy and we
t t
write Wi(uN, f1) < 2W;(uN,vN) + 2W;(wY, f;). Lemma 18 (together with the fact

that sup,>o ms(f;) < oo) allows us to apply Lemma 21 to obtain supyg 7y IE)[%)%(WN, <
Cy rNO-D/3 < Cy rN11/3,

Next, we write B[22 (uN , vV)] < NP YV E[vY — W’N|2] E[V, N — w12 We
conclude from Lemma 20 that  sup O,T]E[GZUZ(M, ,v¥)] is  controlled by
Cy.r B[V N =W N 214 N~V/4)1=7 in general and by C,, 7 (B[ V)" =W N 2]+ N~1/2)1-7
if H( fo) < oo. By points (a) and (b) stated at the end of Subsection 8.1 IE[|Vl AN W1 N| 1=
BV Y0 V™ = WGP = E[Waad )] = B[V fo)] + UEOY. fol
And E[W; (v, fo)] < CN~Y2 by [16, Theorem 1], because (WM )i=1..n ~ fEN and
ms( fo) < oo.

All in all, we can bound supyy 71 E[%5 (1w, f1)] by Cp 1 B[UW5 (1Y, fo)] + N~VH1=,
and even by Cy 7 (E[W5 (1Y, fo)] + N~V3) =1 if H( fp) < oo. O

Proceeding similarly, we find the following weak version of Theorem 4-(i).

THEOREM 22. — Assume that y = 0. Fix fo € P»(R3) and consider the corresponding
unique weak solutton ( J)eso to (1). For each N > 2, consider an exchangeable RN valued
random variable (V )Z 1....N and the corresponding unique solution (V,* ), 1,...N,t>0 1o (3).
Set uV = N1 21 yi.n. Assume that for all p > 2, My := mp(fo) + Supys» ]E[|V0 ’N|1’] < 00.
For alln € (0,1/4), t[here is a constant Cy, depending only on n, on (some upper bounds of)
{Mp., p = 2} and on (some upper bound of) H( fo) when it is finite such that

Cp(1+ t)5/2(E[GZz)2(pL(])V fo)l + N"=Y4) in general,

2
[GZZ) (/‘Lt vft)] C (1 +I)S/Z(E[%2(MO »fO)] + N7~ 1/3) fH(fO) < 0.
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9. Uniform convergence to equilibrium in the Maxwell case

We now prove, when y = 0, the uniform (in ) convergence to equilibrium of the particle
system, following the arguments of Rousset [26]. We will easily deduce the time-uniformity
of the propagation of chaos.

In the whole section, we assume that y = 0. For N > 2 and for Fy an exchangeable law

..........

for each t > 0. We introduce
N N
SN = {(vlv--wUN) e RN - N_lzvi =0, N_IZ|U1'|2 = 1}-
1 1

REMARK 23. — The uniform distribution on Sy is invariant: LY (U(Sy)) = U(SN) for
allt > 0.

This observation is classical and actually holds true for any value of y € [0, 1]. To give a
precise reference, let us mention that in [6, Theorem 4.2-(ii)], Carrapatoso shows that under
some conditions on Fy € P(Sy), Wi (LY (Fy), U(Sy)) tends to 0 as t — oo, which
implies that 9/(Sy) is invariant.

THEOREM 24. — Fix N > 7 and some exchangeable (VOi’N)i=1,...,N ~ Fny € P(Swn). For
all p > 0, there is a constant C, depending only on p such that if N > 6 4+ 2p, forallt > 0,

CpE[l + |V01yN|8+417]1/2}
(1+1)?

Although we slightly clarify some points and although the coupling is slightly more
technical for the Landau equation, the proof closely follows [26]. In the next subsection,
we recall some facts about %/(Sy). We build a suitable coupling in Subsection 9.2 and
recall Rousset’s main inequality in Subsection 9.3. We conclude the proof of Theorem 24 in
Subsection 9.4. Finally, we deduce Theorem 4-(i) from Theorems 22 and 24 in Subsection 9.5.

BB (Fw), USy) < min |-y, USy)).

9.1. The uniform law on the sphere

We will need the following facts.

LEMMA 25. — Let (XN,...,X}\\,’) ~ U(SN). Then

(i) E[W5 (N1 327 8y, V(0,37 1)) < CN V2

(i) for all p > 1, E[|XN|P] < C,, where C,, depends only on p;

(iii) if 1 < p < N — 4, for py the spectral radius of My = N~} Z{V Xl.N (XiN)*, we have
E[(1 — pn)™P] < Cp, where Cp, depends only on p.

We will use twice the following observation.

REMARK 26. — Forany f,g € P>(R?), W5(f, ) = (V)Y = (Vo) VV2)? + |mp —mg|?,
where my = [ vf(dv) and Vi = [g3 |v —mys|? f(dv).

Indeed, forany X ~ fandY ~ g E[|X — Y|?] = E[|(X — E[X]) — (Y — E[Y]D|?}]
+ [E[X = Y112 > V5 + Vg —2(Vi V)2 + Imp — mg|?.
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Proof of Lemma 25. — Consider an i.i.d. sample (Y;...., Yy) of the ¢/(0,37'13) distri-
bution. Definemy = N1 lev Y;,Ey =N"! Zjlv |Y; —my|?>and XN = E;,l/z(Yi —mpy).
Then it is classical (see e.g., [26, Proof of Lemma 4.3]) that (X, ..., X}\\,’) ~ USN)-

To prove (i), we set uy = N~} Z{V SX’N and vy = N1 Z{V 8y, . We have

N
E[Waun.vw)] < N7 3 E(Y: — X['P)
1

N

= N"'Y E[|(Yi —mn)(1 = 1/VEN) + my ]
1

=E[(1 - VEN)* + Imn|*].

By Remark 26 and since m,,, = my and V,,, = En, we conclude that ]E[%)%(MN, vy)] <
E[W5(vw. N(0.37'I3)], so that E[ W5 (un . N (0,37 '13)] < 4E[W5 (vy. V(0,37 13)]. By
[16, Theorem 1], it holds that E[93(vy. V(0,3 '13))] < CN~'/2 and this proves (i).

Point (ii) has been checked by Carrapatoso [6, Lemma 10].

We finally check (iii) (see [26, Lemma 4.4] for a less precise statement), assuming that
N > p + 4 > 5. The empirical covariance matrix Ay = Z{V(Yi —mpy)Y; — my)*
classically (see Anderson [3, Section 7]) follows a Wishart(3, N — 1)-distribution, and
My = An/Tr Ay. The eigenvalues 0 < LY < LY < LY of Ay are known to have the
density (see Anderson [3, Theorem 13.3.2], this uses that 3 < N — 1)

gn (b, 6, £3) = iy (Lo ls) N2 — o) (L3 —£1) (Lo — )] CFETEI2 TG g, gy,
where ky = 7 ~%/223N=D21 (N —1)/2)[' (N —2)/2)T' (N —3)/2)T'(3/2)T'(1)['(1/2). But
L=py = (LY + L)/ + Ly + LY) = 2Ly L)/ GLY) = 2Ly LY LY)2/B(LY)*P?).
Consequently, for p € [1, N —4] (sothat3 < N — p — 1),

_ 3\P _
B(1 - ) 7] = (5) fR Bt (b, 6, G)dd d by

3\?
= (5) KN KN p /2Egp/ng_p(Kl,€2,€3)dﬁldﬁzdﬁ3
]R;

3\P _ N—
= (3) et BLLY )
But using that LY < Tr Ay = Ey ~ x?>(3N —3), itis not hard to verify that E[(LY)3?/2] <
C,N3P/2. We thus end with E[(1 — py)™?] < C,N3"/2k3lkn_p. Using the expression
of kx and the Stirling formula, we easily conclude that supy 44 E[(1 — py)™?] < oo as
desired. O

9.2. The coupling

Recall that U was defined in (6). We need to use U(a(x), a(y)), which is unfortunately not
well-defined. The lemma below gives some sense to A(x, y) = a(y)U(a(x),a(y)).

LEMMA 27. — Recall that for x € R3, o(x) = |x|T1,1 and a(x) = |x|*T1,,. We can find
a measurable family of 3 x 3 matrices (A(x, y))x, yer3 verifying A(—x,—y) = A(x, y) and (a)
A(x, y)A*(x,y) = a(y), (0) (o (x), ACx, y)) = [x|[y[+x-y, (c) (0 (x)—A*(x, y))(x—y) = 0.
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Proof. — If x = 0, it suffices to set A(x,y) = o(y). Else, we consider an orthonormal
basis (ej, ez, e3) satisfying e; = x/|x| and ez - y = 0 and we set A(x,y) = —(y - e2)e1es
+(y - e1)eze; + |ylese;. To check (a), put y; = y - e¢;, note that y3 = 0 and that
I3 = ejef + eze; + ezes: direct computations show that both a(y) = |y|*I; — yy* and
Ax.y)A*(x.y) equal yiere] + y2ese + |ylPesel — yiya(erel + ezed). For point (b),
one starts with o(x) = |x|I3 — |x|[7'xx* = |x|(e2e5 + e3e}), whence o(x)A*(x,y) =
[¥l(=yze2et + y1e2¢s + [ylesed) and thus Tr o (x)A*(x, ) = [x|(v1 + |y]) = [x[ly[+x- .
For (c), one easily finds that both o (x)(x — y) and A*(x, y)(x — y) equal —y;,|x|e,.

Since A(x, y) satisfies conditions (a)-(b)-(c) with —x and —y, it is possible to handle the
construction in such a way that A(—x, —y) = A(x, y). Measurability is not an issue. O

We now build a suitable coupling.

LeMMA 28. — Consider two exchangeable laws Fy and Gy in JP(Sn). There exists an

exchangeable family {(Vti’N, W,”N),ZO, i =1,..., N} satisfying the following properties:
M EZ) Vg™ = W™ 1= W3 (Fy. G);
(i) as, N7VXY VN = WP = WARNT Y Sy NTUEY Spin) <2
(iiD) (V" )im1,...vez0 ~ LN (Fy) and (W )iz1,.. viz0 ~ LV (Gy):
(iv) a.s., for allt > 0,

_ZlVZN WZN Z|V1N Wle

_N_ Z / [|V1N VJNHWIN W]Nl (VlN V]N) (WlN WJN)]dS
i,j=1

Proof. — The function A(x, y) cannot be continuous and this causes some technical diffi-
culties. We write Vi = V" and W} = W}" for simplicity.

Step 1. By [17, Proposition A.1], we can find Hy € 2(Sy x Sy) with marginals Fy and
Gy such that, for (V)i=1,..n. (W})i=1,...N) ~ Hy, the family {(V{, W}),i = 1,...,N}is
exchangeable and points (i) and (ii) hold true. Actually, the inequality in (ii) follows from the
fact that GM%( f,g) < ma(f) + ma(g) (choose an independent coupling between f and g)
and that m,(N ! Z{V SVé) = my(N™! Z{V SWé) = 1 because both F and Gy are carried
by Sy.

Step 2. We consider ((V{)i=1,..n, (W{)i=1,..n) ~ Hy and some families (ng)15i<j§N,t205
(Ef)izl,,__,N,,Zo, (ﬁf)izl,.__,N,tzo of 3D Brownian motions, all these objects being indepen-

dent. For1 < j <i < N,weset B/ = —B]'. Wealso put B¥ = 0foralli =1,...,N and
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consider the system of SDEs
an
i . 1 N t 1 N t
V=Vt =Y / bV =V )ds+—= / o (V]*=V{*)dBY + eBj.
N = Jo VN = Jo

(12)

W Wla_l_ Z/b(Wzs jg)dS—F Z/A(Vze V]e er ]E)dBU—I—SBl
This is a 6 N -dimensional stochastic differential equation with measurable coefficients with
at most linear growth (because |b(x)| = 2|x| and |0 (x)||? = [|A(y, x)||?> = Tr a(x) = 2|x|?).
Thanks to the additional noises, the diffusion matrix is strictly uniformly elliptic. Conse-
quently, we can apply the result of Krylov [23, p 87] (the coefficients are assumed to be

bounded in [23], but we can use a standard localization procedure or the results of Rozkosz
and Slominski [27]): the system (11)-(12) has at least one (weak) solution.

Step 3. We now prove that
(13)
N

—ZIV” W12 = ZWO W0|2+6st+—2/(V” Wi€) . (d Bl —dBY)

1

_N_ Z/HVZE V]S”wl&‘ Wj8| (V18 V]é‘) (W18 st)]ds
i,j=1

This follows from a direct application of the It6 formula, together with the equalities

N
1 . . . . . .
I5= 55 2 (200 = Wi e = Vo) = bW — W)

i,j=1
+ ”U(Vsi,a _ Vsj,&‘) _ A(Vsi,s _ Vsj,s’ Wyi’a _ VVSj,S)”2>
2 ¥ .
= o DIV — VW = W = (V= V) (W - W)
i,j=1
and
2
JE = Z/(V” Wie) - (o (Ve — Vi) — A(VEE — Ve Wi — Wi®))dBY =0
N‘/_z] : ( )

that we now check. Using that BY = —B}", o(—x) = o(x) and A(—x,—y) = A(x,y), we
see that

Jf = W—Z/ (e —vdn — i —wi))

1<j

. (O,(I/Si,s _ I/S_]',E) _ A(I/si,e _ I/Sj,é" Wsi,s _ Wsl’5)>dB;j
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It then suffices to use that (v — w)* (o (v) — A(v, w)) = 0 by Lemma 27-(c) to conclude that
J{ = 0. Using next that b(—x) = —b(x), we write

N
1= s 20 (V= VI = (W = WP9) - (V) = V) = bW = W)
ij=1

+ ||O'(Vsi’€ o Vsj,S) _ A(Vsi,s o Vsj,s" Wyi,é‘ _ Wsj,8)||2).

But |lo(x) — A(x,y)||>? = Tr o(x)o*(x) + Tr A(x,y)A*(x,y) — 2Tr o(x)A*(x,y) =
2[x[> + 2|y> = 2(|x|ly| + x - y) because o (x)o*(x) = a(x), A(x,y)A*(x,y) = a(y) by
Lemma 27-(a), because Tr a(x) = 2|x|?, and because Tr o (x)A*(x,y) = |x||y| + x -y by
Lemma 27-(b). Also, since b(x) = —2x, we have (x—y)-(b(x)—b(y)) = —2|x|>=2|y|>+4x-y.
Allin all, (x — y) - (b(x) — b()) + |lo(x) — A(x, y)||*> = =2|x]||y| + 2x - y. This completes
the step.

Step 4. The coefficients b, o, A have at most linear growth and the initial conditions are
bounded (for N fixed, since Hy is carried by Sy x Sy). It is thus routine to verify that for
all p > 2, all T > 0, supge(o.p) Elsuppo.ry 31 (V17 + [W/*|7)] < 0o and that the family
(V)5 W)zt Nas0.€ € (0,1)} s tight in C([0, 00), (R*)2V). We thus may consider a
limit point (V/, W,"),’=1,m, ~.r>0 and we now check that it satisfies all the requirements of the
statement. Exchangeability, as well as points (i) and (ii) (which concern only the initial condi-
tions) are of course inherited from the fact that they are satisfied by (V,i’e, Wti’s)i=1,_,, N.t>0
for all ¢ € (0, 1). Point (iv) is easily obtained by passing to the limit as ¢ — 0 in (13) (this
uses only that sup,¢,1) E[supj 7 Zf/(| Vti’el2 + IWti’8|2)] < o0). Since b, o are continuous
(and even Lipschitz continuous), it is not hard to pass to the limit in (11) and to deduce that
(V])i=1...N+>o is a weak solution to (3), whence (V})i=1,.. ns>0 ~ LY (Fy). Using finally
that A(x, y)A*(x,y) = a(y) = o(y)c*(y) and that A(—x,—y) = A(x, y), we deduce that
for each ¢ € (0, 1), (12) can be rewritten in the same form as (11) (with another family of
Brownian motions B/). We thus prove as previously that (W/});—1,. nss0 ~ LY (Gy) and
this completes the proof. Observe that although ( Vti , Wti )i=1,...,Nt>o0 satisfies all the required
properties, it does not seem possible to check that it solves (11)-(12) with ¢ = 0. O

9.3. Rousset’s inequality
The following lemma summarizes a few results found in [26].

LEMMA 29. — Consider f.g € PR3) and R € SH(f. g) such that fR3 [v|? f(dv) =
Je3 vI?g@dv) = 1, [pzvf(dv) = [pavg(dv) = 0and [p3,55 v — w?R(dv,dw) < 2.
Denote by p(f) the spectral radius of [z vv* f(dv) € S3+. Observe that p(f) € (0, 1], since
Jg3 vV* f(dv) has trace 1. For all ¢ > 1, there is a constant Cq depending only on q such that

/Rs R3 v — w?R(dv. dw) < Cq(1 = p(f)) " [masaq(f + IVI[D(R)' 4.
where D(R) = [gaps Jaaxaallv = xllw =y = (v =x) - (w = )]R(dv, dw) R(dx, dy).

We start with the following lemma [26, Theorem 1.4], of which we sketch the proof for
completeness.
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LeMMA 30. — Consider f,g € P(R3) and R € EH(f.g) such that Jr3 [v|? f(dv) =
Je3 lvPg(dv) = 1 and [p3vf(dv) = [pzvg(dv) = 0. For p(f) the spectral radius
of [3 vv* f(dv), it holds that

2
' - - . dv,d .
') =20 -p(1=[ [ 0 wr@dn])
where D'(R) = fys s fusgsllo = xPPhw = ¥ = (0 =) (0 = 1) PIR(o, dw) R(d. ).

Proof. — Consider two independent couples (U, V') and (U, V) with law R. Using that
E[U] = E[V] = 0and E[|U|?] = E[|V|?] = 1, a straightforward tedious computation shows
that

D'(R)y=E[U—-UPIV-V?=[(U-0)-(V-V)*=2(A+ B+ C + D),

where A = E[|JU|V]> = (U-V)?], B=1-E[U-V]?,C =E[(U - UV -V)]—E[(U V)4
and D = E[(U-U)(V-V)]-E[(U-V)(U -V)].Clearly, A > 0 and it is not hard to verify that
D = 31— BV ~ E[UVIIE[U Vi) = 0. Next, € = Y3, (B[U Vi) — E[UL UJE[Vi V).
Working in an orthonormal basis in which (E[UxUj])r; is diagonal and using that
p(f) = maxg E[UZ],

: 2 3 2
g(E[Uk E[VZ] - ElUVil?) < p(f) Z (E21- %) — o)1 - ; %)

because E[|U|?] = 1. But by Cauchy-Scwharz’s inequality (and since, again, E[|U|?] = 1),
> 2 E[Us Vi]? > E[UVi]?
U2 k Vi k Vi
E[U-V]? = <kX:IE[Uka]) < (Z 507 )(ZE[Uk ) 3 “EA
=1 k=1 k= k=1
Finally, ~C < p(f)(1—E[U-V]?)and D’(R) > 2B +2C > 2(1—p(f))(1—=E[U-V]?). O
Proof of Lemma 29. — Using

/ [v]? f(dv) = / |v|?g(dv) = 1 and lv — w|?>R(dv, dw) < 2,
R3 R3

R3xR3
we deduce that 0 < o33 (v - w)R(dv, dw) < 1 and then that

2
/ lv—w|*R(dv, dw) = 2—2/ (v-w)R(dv, dw) < 2—2(/ (vw)R(dv,dw)) .
R3xR3 R3xR3 R3xR3

Applying next Lemma 30, we find

/ v — wl?R(dv. dw) < (1 - p(/)"' D'(R).

R3xR3

Using that (recall that ¢ > 1)

IXPIY?P— (X -Y)? <[IX||Y|— (X -DIRIX|IY]] < [IX|]Y]— (X - )] Vap)x||y| /e

and the Holder inequality, we see that D'(R) < D(R)'~'/4(K,(R))"/4, where we have set
Kg(R) = [eawps [Jo3xps[2lv — x||lw — (]9 R(dv, dw)R(dx, dy). To conclude, it suffices
to observe that K;(R) < Cymaq42(f + g), which immediately follows from the fact that
R € (S 2)- O
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9.4. Conclusion

We can now give the

Proof of Theorem24. — We fix N > 7, p € [0,(N — 6)/2] and some exchangeable

Fy € JP(Sn). Weputg = p + 1. We apply Lemma 28 with Gy = U(Sn) to
build a coupling (VtZ’N, W,”N)i=1,_.,N,,ZQ between LY (Fy) and LY (2(Sy)). We intro-
duce the notation UN = NN PN — wPN 2 and u¥ = E[UN]. We also set

uV = NIV Syin, vV o= NI Syin, as well as ¢(No= NIV SN yiNy-
Lemma 28-(iv) precisely says that U,N = UON -2 fot D(¢ ;V )ds, with D defined in Lemma 29.
Since U{' < 2 by Lemma 28-(ii), we deduce that a.s., UN <2 forallt > 0.

We now apply Lemma 29 with R = ¢ € SH(ul¥, vV), which is licit since [g3 vud (dv) =
Jg3 v (dv) = 0and [ps [v]2ulN (dv) = [ga [v]?v] (dv) = 1 (because both Fy and Gy are
carried by Sy) and since U = [53,03 [v — w|?¢N (dv, dw) < 2: we deduce that

UN < Co(1 = pM) Hmagaq(u + v DEN ).
Taking expectations and using the triple Holder inequality (with 2¢g, 2g and ¢/(g — 1)),
uﬁv < C4E[(1 - p(vtlv))—Zq]l/(Zq)E[(m2+2q(MgV + vtN))z]1/(2")E[D(§t]\’)]1—1/‘1,

that E[(ma124(vV))?] < E[[W})Y|44+4] < C, and from Lemma 25-(iii), since p(v) is the
spectral radius of [p3 vo*vN(dv) = N7! ZIIV W/,i’N(W/,i’N)* and since 2¢ < N — 4, that
E[(1 — p(vN))724] < C,. Also, we know from Proposition 13 that E[(ma42,(1))?] <
B[V, [4a+4] < C,E[|V, N [*4+4]. We end with

u < CGE[L + Vo [V COR[D )1

Recalling that UN = UL — 2 [; D(¢Y)ds, we conclude that, for some ¢, > 0 depending
only on ¢,

d

Joup = =2E[DEN)] < Bl + [V N [T E@TD e/,

Integrating this inequality, we find, recalling that p = ¢ — 1 and setting k, = ¢, /(g — 1),
-p

ul < (pEIL+ Vo [FH4) G0 g ulf 1)

By construction, since LY (%(Sy)) = U%(Sy) for all > 0, we have N~ Glz)g (LN (Fy), U(Sw)) <ul¥
and, by Lemma 28-(i)-(ii), u) = N~' W5 (Fn, U(Sy)) < 2. We conclude that

N URAY (Fy), USK)) < (B[ + V3 N [H7171C0 - (v (R, s 7)

On the one hand, this implies that N ~! W35 (LY (Fx), U(Sy)) < N~'W35(Fy, U(Sy). On
the other hand, this gives

NTYWLLN (Fy). USN)) < (kpE[L + [V N [BT42)71/@P)y 4 971/ py=p,

which is controlled by C,E[1 + |V, [B+4P]1/2(1 4 1)~P, O
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9.5. Uniform propagation of chaos

We start with a consequence of Theorem 24.

COROLLARY 31. — Assume that y = 0, fix N > 2 and consider some exchangeable
S~ -valued initial condition (V()i’N)izl _____ N, the corresponding solution (V,i’N)izl,_..,N,,Zo to (3)
and set ,ufv =N"! ZIIV 8y i, Forall p >0, there is a constant Cp depending only on p such
that for all t > 0, '

E[W5(k . N(O.3 )] = G (N2 +EL+ [V N FH212(1 4 0) 7).

Proof. — Let p > 0 be fixed.
If first N — 6 < 2p, then we simply use that %%(Mﬁv, N(0,3713)) < 2 a.s., so that the
inequality obviously holds with C, = 2./2p + 6.
such that N~ SN[V Y — X2V 2] < CE[ + |V N [BH42]V2(1 + 1)=2. We now put
vN = N~1 ¥V 6,i.~ and we know from Lemma 25 that E[%5(v}, o¥(0,37'13))] < CN™'/2.
t . .
But %A (uN vN)y < NTLY NV (AN — x PN 2, whence
E[W5 (it v < GE[L + Vo M P22 (1 4 077 O
We finally give the

Proof of Theorem 4-(). — Recall that y = 0, that fo € 2,(R?) and that (f;);>0 is
the unique weak solution to (1). We assume without loss of generality that [p3 vfo(dv) = 0
and that m>( fo) = 1. For each N > 2, we consider an exchangeable (R*)¥ -valued random
variable (V()”N)izl ,,,,, y and the solution (V,”N)i=1,__,,N,,20 to (3). Weset ulV = N1 Zjlv Syin.

13
We assume that for all p > 2, M), := m,(fo) + supys» IE[|V01’N|1’] < 0o. The constants are
allowed to depend on upper bounds of {M,,, p > 2} and on some upper bound of H( fy)
when it is finite. We fix € (0, 1/5).

Step 1. By Theorem 22, we have

@) E[W5(y’ . f)] < Cy(1+ 0> B[ W5 (g . fo)l + N7~"/*) in general;

(i) B[W5 (. f)] < Cp(1 + 1) 2E[W5 (), fo)) + N"713) if H(fo) < oo.

Step 2. Here we verify that for any p > 0,

E[W5(n . N O.37' )] < Cp(1 +0)77 + CN V2 + CE[Wi (kg fo)l-
Weputm) = N VYN VPN and EY = NV (VN —md 2.
On the event Qy = {EY > 1/4}, weset V"N = (V)N —ml)/\JEY and oY = N7V 650w
t

.....

apply Corollary 31:

51N

Y +CPE[1+]IQN|VO i Y n Cp ‘
~JN (1+0)P TJN  (A+0)?
For the last inequality, we used the fact that |I701’N| < 4|V01’N| + 4|m6v| on Qy,
whence E[llg, [Vy ™V [F¥47] < GE[IVy"™"[*7+4] + GE[Im{[*H4] < GE[Vg"" [F7+4),
which is bounded by assumption.

E[loy W5 (AN, N(0.37'13))]
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Next, we write
| X
N i.N  (i,N
Wy ) <5 2™ = Vg P
1

N [N

1 N Ey —1 2 2

- ‘(V,” —my +m{;’( :(,/E{,V —1) +my 2.
1 ,/E(I)V

By Remark 26, we have (\/EY — 1)2 4+ [mY > < W5(ud, fo), because m,

Viy = EYN,my, = 0and Vg, = 1. At this point, we have proved that

>

y = m
Elllgy W51y V(0,37 L)) < CN T2 + Cp(1 4+ 1) 77 + 2E[W5 (g, fo)]-
‘We next observe that

E[lgg, W5 (ur . NO.37 )] < E[lpy y mma(iy + oV(0.37'1))]
= E[Lipy gy (EQ + Img 1> + D] < (5/4) Pr(Eq’ < 1/2) + Ellm .

But, Pr(EY < 1/4) < Pr(|\/EY — 1| > 1/2) < 4E[|\/EY — 1]?], and we have checked
that E[lgeq W5 (N, NO,37'13))] < SE[|/EY — 1] + E[lmY|?], which is controlled
by SE[%)% (,uf)v, fo)] as seen a few lines above.

Step 3. We deduce that GZz)%(ft, N(0,373)) < Cp(1 + 1)~P: assume (only during

.....

E[W5 (1Y , fo)] < CN~Y2 by [16, Theorem 1].

Write

W (fr, NO,37 ') < 2B[WS(fo, )] + 2B[ W5 (f), N (0,37 '3))]

< Cp(1 +1)’2(N7V2 L N7V 4 C,(1 + 1) P + CN7Y/2

by Steps 1 and 2. It then suffices to let N — oo.

Step 4. We now conclude the proof in the general case.

If (1 +1)%2 < (B[W5(uY, fo)] + N~1/4)~", then we use Step 1-(i) to write

E[W5 (Y, ] < CyE[W3 (kg s f)l + NTVHTNE[W (g fo)l + N7
< CyE[W; (15 fo)l + N7VHI73,

If now (1 4 1)%2 > (E[W3(uY, fo)] + N~/4)7", then we use Steps 2 and 3 with
p = 5/(2n) to write E[W5(ul, /)] < Cp(1 +1)~5/CD 4 C,N~V2 4+ CE[W; (1Y), fo)]-
But (1 4+ 1)=5/@" < E[W5ud, fo)] + N~V/* and we end with E[W3(uN, f)] <
CrBIWS (Y, fo)l + N71/%).

Thus supg o) E[W5 (1Y, )] < CpE[W5 (1Y, f0)] + N~Y/4)1=57 as desired.

Step 5. We finally conclude when H( fp) < oo.
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If (1 +1)°2 < (B[W5(ud, fo)] + N~Y/3)7", then we use Step 1 to write
E[W5 (1Y, fo)] < CuE[WS (1Y, fo)l + N7V EIWS (kb fo)] + NT71/3)
< Cy(E[W5 (1Y, fo)] + N7V/3)1=4n,

If now (1 + 1)%2 > (E[W5(uY, fo)] + N~1/3)7", then we use Steps 2 and 3 with
p = 5/(2n) to write E[W5 (1Y, f1)] < Cy(1 +1)=/CD 4 C,N~V2 4 CE[W5(ud, fo)].
But (1 + 1)™5/C®" < E[WiuY, fo)] + N71/3 and we end with E[W5(uY, f)] <
Cp(B[W5 (1l . fo)] + N71/3).

We conclude that supjg o) E[%5 (. fi)] = CyE[W5 (Y. fo)] + N7V3)1=4 as
desired. O
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