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FROM A KAC-LIKE PARTICLE SYSTEM TO
THE LANDAU EQUATION FOR HARD POTENTIALS

AND MAXWELL MOLECULES

 N FOURNIER  A GUILLIN

A. – We prove a quantitative result of convergence of a conservative stochastic particle
system to the solution of the homogeneous Landau equation for hard potentials. There are two main
difficulties: (i) the conservativeness of the particle system is an obstacle for approximate independence,
as is the case for true physical particle systems; (ii) the known stability results for this class of Landau
equations concern regular solutions and seem difficult to extend to study the rate of convergence of
some empirical measures. Due to (i), we have to use a double-coupling. We first couple our particle
system with some non independent nonlinear processes, of which the law solves, in some sense, the
Landau equation. We then introduce a second coupling to prove that these nonlinear processes are
not so far from being independent. To overcome (ii), we prove a new stability result for the Landau
equation for hard potentials concerning very general measure solutions. Using finally some ideas of
Rousset [26], we show that in the case of Maxwell molecules, the convergence of the particle system is
uniform in time.

R. – Nous prouvons des résultats quantitatifs de convergence d’un système de particules
conservatif vers la solution de l’équation de Landau homogène pour des potentiels durs. Il y a deux
principales difficultés : (i) le caractère conservatif du système est un obstacle pour obtenir de l’indépen-
dance (même approchée), comme c’est le cas pour de vrais systèmes de particules physiques ; (ii) les
résultats connus de stabilité pour ces équations de Landau concernent des solutions régulières et pa-
raissent difficiles à étendre pour étudier la vitesse de convergence de mesures empiriques. Pour le point
(i), nous procédons à un double couplage. Nous couplons d’abord notre système avec des processus non
linéaires non indépendants dont la loi résout en un certain sens l’équation de Landau. Nous construi-
sons ensuite un second couplage afin de montrer que ces processus non linéaires ne sont pas loin d’être
indépendants. Pour résoudre (ii), nous établissons de nouveaux résultats de stabilité pour l’équation de
Landau pour des potentiels durs et des solutions de type mesure très générales. Finalement, en utilisant
des idées de Rousset [26], nous montrons que dans le cas des molécules maxwelliennes, la convergence
du système de particules est uniforme en temps.
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158 N. FOURNIER AND A. GUILLIN

1. Introduction and main results

1.1. The Landau equation

The homogeneous Landau equation reads

@tft .v/ D
1

2
divv

� Z
R3
a.v � v�/Œft .v�/rft .v/ � ft .v/rft .v�/� dv�

�
:(1)

The unknown ft W R3 7! R stands for the velocity-distribution in a plasma and the initial
condition f0 is given. We denote by SC3 the set of symmetric nonnegative 3�3matrices. The
function a W R3 7! SC3 is given, for some  2 Œ�3; 1�, by

a.v/ D jvj2C…v? ; where …v? D I3 �
v ˝ v

jvj2

is the projection matrix onto v?. The only physically relevant case, namely  D �3 which
corresponds to a Coulomb interaction, is unfortunately the most difficult. For mathematical
results, let us mention the recent papers by Desvillettes [9] and Carrapatoso, Desvillettes
and He [7] and the references therein. The other cases are interesting mathematically and
numerically. In particular, the Landau equation can be seen as an approximation of the
Boltzmann equation in the asymptotic of grazing collisions, as rigorously shown by Villani
[31] for all values of  2 Œ�3; 1�. We are concerned here with Maxwell molecules ( D 0) and
hard potentials ( 2 .0; 1�). The well-posedeness, regularization properties and large-time
behavior of the Landau equation have been studied in great details by Villani [32] for Maxwell
molecules and by Desvillettes and Villani [10, 11] for hard potentials. We finally refer to the
long reviews paper of Villani [33] and Alexandre [1] on the Boltzmann and Landau models.

1.2. Notation

We denote by P.R3/ the set of probability measures on R3. When f 2 P.R3/ has a
density, we also denote by f 2 L1.R3/ this density.

For q > 0, we set Pq.R3/ D ff 2 P.R3/ W mq.f / < 1g, where mq.f / DR
R3 jvj

qf .dv/ < 1. For ˛ > 0 and f 2 P.R3/, we put E ˛.f / D
R
R3 exp.jvj˛/f .dv/.

The entropy of f 2 P.R3/ is defined by H.f / D
R
R3 f .v/ logf .v/dv if f has a density

and by H.f / D1 else.
We will use the Wasserstein distance defined as follows. For f; g 2 P2.R3/, we introduce

H .f; g/ D
˚
R 2 P.R3 � R3/ W R has marginals f and g

	
and we set

W2.f; g/ D inf
n� Z

R3�R3
jv � wj2R.dv; dw/

�1=2
W R 2 H .f; g/

o
:

See Villani [34] for many details on this distance.
We also define, for v 2 R3,

b.v/ D div a.v/ D �2jvjv and �.v/ D Œa.v/�1=2 D jvj1C=2…v?:

For f 2 P.R3/ and v 2 R3, we set

b.f; v/ WD

Z
R3
b.v � v�/f .dv�/; a.f; v/ WD

Z
R3
a.v � v�/f .dv�/; a1=2.f; v/ WD

h
a.f; v/

i1=2
:

More generally, we will write '.f; v/ D
R
R3 '.v � v�/f .dv�/ when ' W R3 7! R. We

emphasize that a1=2.f; v/ is Œa.f; v/�1=2 and is not
R
R3 a

1=2.v � v�/f .dv�/.
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KAC’S PARTICLE SYSTEM FOR THE LANDAU EQUATION 159

Finally, forA andB two 3�3matrices, we put kAk2 D Tr.AA�/ and hhA;Bii D Tr.AB�/.

1.3. Well-posedness

We will use the following notion of weak solutions.

D 1. – Let  2 Œ0; 1�. We say that f D .ft /t�0 is a weak solution to (1) if it
belongs to L1loc.Œ0;1/; P2C .R3// and if for all ' 2 C 2

b
.R3/, all t � 0,Z

R3
'.v/ft .dv/ D

Z
R3
'.v/f0.dv/C

Z t

0

Z
R3

Z
R3
L'.v; v�/fs.dv/fs.dv�/ds;(2)

where

L'.v; v�/ WD
1

2

3X
k;lD1

akl .v � v�/@
2
kl'.v/C

3X
kD1

bk.v � v�/@k'.v/:

A weak solution f is conservative if it conserves momentum and energy, that is
R
R3 vft .dv/ DR

R3 vf0.dv/ and m2.ft / D m2.f0/ for all t � 0.

An important remark is that jL'.v; v�/j � C'.1 C jvj C jv�j/
2C for ' 2 C 2

b
.R3/ and

since f 2 L1loc.Œ0;1/; P2C .R3//, every term makes sense in (2). Our first result concerns
well-posedness and stability.

T 2. – (i) If  D 0, then for any f0 2 P2.R3/, (1) has a unique weak solution
f D .ft /t�0 starting from f0. This solution is conservative. If moreover H.f0/ < 1, then
H.ft / � H.f0/ for all t � 0. If f0 2 Pq.R3/ for some q > 2, then supŒ0;1/mq.ft / < 1.
Finally, for any other weak solution g D .gt /t�0 to (1), it holds that W2.ft ; gt / � W2.f0; g0/

for all t � 0.
(ii) If  2 .0; 1�, consider f0 2 P2.R3/with E ˛.f0/ <1 for some ˛ 2 .; 2/. Then (1) has

a unique weak solution f D .ft /t�0 starting from f0. Moreover, this solution is conservative
and supt�0 E ˛.ft / < 1. If H.f0/ < 1, then H.ft / � H.f0/ for all t � 0. Finally, for
all � 2 .0; 1/, all T > 0 and any other weak solution to g D .gt /t�0 to (1), it holds that
supŒ0;T � W2.ft ; gt / � C�;T .W2.f0; g0//

1��, the constant C�;T depending only on �; T; ; ˛
and on (upper bounds of) E ˛.f0/ and supŒ0;T �m2C .gt /.

Point (i) is well-known, even if we found no precise reference for all the claims of the
statement. The well-posedness, propagation of moments and entropy dissipation have been
checked by Villani [32] when f0 has a density and the well-posedness when f0 2 P2.R3/
has been established by Guérin [20]. The noticeable fact that W2 decreases along solutions
was discovered by Tanaka [30] for the Boltzmann equation for Maxwell molecules, see also
Carrapatoso [6, Lemma 4.15].

Similarly, the existence part in point (ii) is more or less standard: the well-posedness,
propagation of moments and entropy dissipation can be found in [10] when H.f0/ < 1,
but H.f0/ <1 is mainly assumed for simplicity. The propagation of exponential moments
seems to be new, but far from surprising: it is well-known (and more complicated) for the
Boltzmann equation for hard potentials, as was discovered by Bobylev [5], see also Alonso
et al. [2].

On the contrary, the uniqueness/stability part in point (ii) seems to be new and rather
interesting. As far as we know, the best available uniqueness result is the one of Desvillettes

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



160 N. FOURNIER AND A. GUILLIN

and Villani [10, Theorem 7], where f0 2 P2.R3/ is assumed to have a density satisfyingR
R3 f

2
0 .v/.1 C jvj

s/dv < 1 for some s > 15 C 5 . Thus, we assume much less regularity,
but much more localization. Furthermore, our stability result holds in the class of all weak
solutions. Actually, a stability result in the class of all weak solutions (at least with finite
entropy) can also be derived using the ideas of Desvillettes and Villani, but this would use the
regularization properties of the equation which guarantee that any weak solution is smooth.
On the contrary, we use no such regularization. This is crucial for propagation of chaos,
since then the approximate solution consists of empirical measures which, by nature, are
not smooth. Similarly, it is very important for us that the stability result does not involve
any exponential moment of the second solution g, because we are not able to propagate the
exponential moments of our particle system.

1.4. The particle system

We now introduce an approximating particle system, in the spirit of Kac [22], who was
dealing with the Boltzmann equation. More precisely, consider N particles entirely charac-
terized by their velocities .v1; : : : ; vN / 2 .R3/N , where each pair of particles (with velocities
vi and vj ) collide at some rate proportional to jvi � vj j . Assume that these collisions are
elastic. Then in the limit of grazing collisions, that is, when collisions occur very frequently
but generate very small deviations, we find, at least formally, the following diffusive system.
See Carrapatoso [6] when  D 0 and Miot, Pulvirenti and Saffirio [24] when  D �3.

We fix N � 2 and consider an exchangeable .R3/N -valued random variable .V i;N0 /iD1;:::;N ,
independent of a family .B ijt /1�i<j<N;t�0 of i.i.d. 3D Brownian motions. For 1 � j < i �

N , we set B ijt D �B
j i
t . We also put B i it D 0 for all i D 1; : : : ; N and we consider the system

V
i;N
t DV

i;N
0 C

1

N

NX
jD1

Z t

0

b.V i;Ns � V j;Ns /dsC
1
p
N

NX
jD1

Z t

0

�.V i;Ns � V j;Ns /dB ijs ; i D 1; : : : ; N:

(3)

P 3. – Fix  2 Œ0; 1� andN � 2. The system (3) has a pathwise unique solution
.V

i;N
t /iD1;:::;N;t�0, which is furthermore exchangeable. The system is conservative: a.s., for all

t � 0, it holds that
PN
1 V

i;N
t D

PN
1 V

i;N
0 and

PN
1 jV

i;N
t j

2 D
PN
1 jV

i;N
0 j2.

In [13], Fontbona, Guérin and Méléard consider, when  D 0, the same system of
equations, but with a fully i.i.d. family .B ijt /1�i;j�N;t�0 of Brownian motions. Such a system
also approximates the Landau equation, but is not conservative (one only hasEŒ

PN
1 V

i;N
t � D

EŒ
PN
1 V

i;N
0 � and EŒ

PN
1 jV

i;N
t j

2� D EŒ
PN
1 jV

i;N
0 j2�) and thus physically less relevant.

1.5. Propagation of chaos

The main result of the paper is the following.

T 4. – Fix  2 Œ0; 1� and f0 2 P2.R3/. If  2 .0; 1�, assume moreover
that E ˛.f0/ < 1 for some ˛ 2 .; 2/. Consider the unique weak solution .ft /t�0 to (1)
built in Theorem 2. For each N � 2, consider an exchangeable .R3/N -valued random vari-
able .V

i;N
0 /iD1;:::;N and the corresponding unique solution .V

i;N
t /iD1;:::;N;t�0 to (3). Set

�Nt D N
�1
PN
1 ıV i;Nt

. Assume that for all p � 2,Mp WD mp.f0/C supN�2 EŒjV
1;N
0 jp� <1.

4 e SÉRIE – TOME 50 – 2017 – No 1



KAC’S PARTICLE SYSTEM FOR THE LANDAU EQUATION 161

(i) If  D 0, then for all � 2 .0; 1/, there is a constant C� depending only on �, on (some
upper bounds of) fMp; p � 2g and on (some upper bound of) H.f0/ when H.f0/ < 1 such
that

sup
Œ0;1/

EŒW2
2.�

N
t ; ft /� �

(
C�.EŒW2

2.�
N
0 ; f0/�CN

�1=4/1�� in general,

C�.EŒW2
2.�

N
0 ; f0/�CN

�1=3/1�� if H.f0/ <1:

(ii) If  2 .0; 1�, then for all T > 0, all � 2 .0; 1/, there is a constant C�;T depending only
on �, T ,  , ˛, on (some upper bounds of) E ˛.f0/ and fMp; p � 2g and on (some upper bound
of) H.f0/ when H.f0/ <1 such that

sup
Œ0;T �

EŒW2
2.�

N
t ; ft /� �

(
C�;T .EŒW2

2.�
N
0 ; f0/�CN

�1=4/1�� in general,

C�;T .EŒW2
2.�

N
0 ; f0/�CN

�1=3/1�� if H.f0/ <1:

As already mentioned in the abstract, there are two main difficulties. First, and this is
the main issue, the conservativeness of the particle system is an obstacle for approximate
independence. This is an important point because even if we deal here with a toy model,
one of the main difficulties when trying to derive the Landau (or Boltzmann) equation
from true physical particle systems, conservative collisions (by pairs) produce the intrinsic
correlations, and the main challenge is to show that these correlations are small. To overcome
this difficulty, we use a double coupling. Next, in the case of hard potentials, we really need
the new stability result established in Theorem 2-(ii): the previous available results were
concerning regular solutions, which is not well-adapted to the study of empirical measures.

If .V i;N0 /iD1;:::;N � f ˝N0 , then we know from [16, Theorem 1] that EŒW2
2.�

N
0 ; f0/� �

CN�1=2 and that N�1=2 is generally the best rate we can hope for when comparing an
empirical measure of an i.i.d. sample to the common distribution. Here we obtain a rate
in N�1=3 (or N�1=4 without entropy), up to an arbitrarily small loss. Let us mention that
the double coupling is responsible for this loss, because we have to apply a (quantitative) law
of large numbers for non independent variables, see Subsection 8.5.

Let us finally mention that in point (i), the time uniformity really uses that we are in
dimension d > 2.

1.6. References on propagation of chaos

Showing the convergence of a toy particle system to the Boltzmann equation was
proposed by Kac [22] as a step to its rigorous derivation. He called propagation of chaos
such a convergence. Getting some uniform in time convergence is quite relevant, since then
the large time behavior of the PDE indeed describes that of the particle system. Another
important motivation is the numerical resolution of the Boltzmann equation without cutoff:
indeed, it may be relevant to replace grazing collisions by a diffusive Landau-like term.
Choosing the right threshold level requires to know quite well the rates of convergence.
See [15] for a complete study, in this spirit, of the 1D Kac equation.

To our knowledge, the only result directly comparable to Theorem 4 is the one of Carrap-
atoso [6, Theorem 4.2] which concerns Maxwell molecules ( D 0): he obtains (under some
different conditions on f0), a uniform in time rate of convergence in (almost) N�1=972 for
another distance, strictly controlled by supŒ0;1/ EŒW

2
2.�

N
t ; ft /�

1=2, which we can bound by
(almost) N�1=6.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



162 N. FOURNIER AND A. GUILLIN

In the much more difficult Coulomb case  D �3, Miot, Pulvirenti and Saffirio [24]
have studied a similar conservative particle system and obtained a weak result, namely,
up to extraction of subsequences, the convergence to the Landau hierarchy. Also, Bobylev,
Pulvirenti and Saffirio [4] study some true physical particle systems, expected to converge to
the Landau equation with Coulomb interaction, and prove some convergence results in very
small time (more precisely, concerning the time derivative at time 0).

Concerning the non-conservative particle system approximating the Landau equation,
Maxwell molecules have been studied by Fontbona, Guérin and Méléard [13] (there it is
proved that supŒ0;T � EŒW

2
2.�

N
t ; ft /� � CTN

�2=7), see also [14]. Moderately soft potentials
are investigated in the companion paper [17] (supŒ0;T � EŒW

2
2.�

N
t ; ft /� � CTN

�1=2 when
 2 .�1=4; 0/, a less good rate when  2 .�1;�1=4� and a convergence without rate
when  2 .�2;�1�). As compared to [17], the present situation is simpler, because hard
potentials are rather easier than soft potentials, but more complicated, because we study the
conservative particle system.

Sznitman [29] was the first to prove the convergence (without rate) of Kac’s conservative
particle system to the Boltzmann equation for hard spheres ( D 1). Some recent progresses
have been made by Mischler and Mouhot [25] (from which [6] is inspired) where, using an
abstract and purely analytic method, a uniform in time quantitative convergence of Kac’s
particle system was derived, for the Boltzmann equation for Maxwell molecules ( D 0,
with a rate in N�" for some very small ") and hard spheres ( D 1, with a rate in .logN/�"

for some very small "). Even if these rates are clearly far from being sharp, these results
are impressive. However, the method uses some smoothness of the solution .ft /t�0 with
respect to f0 (something like one or two derivatives, in some sense, required), which is
closely related to uniqueness/stability theory. Such a theory is completely understood only
for Maxwell molecules (where the kinetic cross section is constant) and hard spheres (where
the angular cross section is integrable). Finally, let us mention the paper of Cortez and
Fontbona [8], who considered the simplest model (the 1D Kac equation), but who obtained
by coupling methods a good rate of convergence (although probably not optimal, in N�1=3)
for a conservative particle system (1).

1.7. Scheme of the proofs

Interpreting a solution .ft /t�0 to a kinetic equation in terms of the time-marginals of
a 3D process .Vt /t�0 solving some nonlinear Poisson SDE was initiated by Tanaka [30]
for the Boltzmann equation for Maxwell molecules. Roughly, .Vt /t�0 represents the time-
evolution of the velocity of a typical particle. A similar process was proposed by Guérin
[20] for the Landau equation, with a white noise-driven SDE. Here and in [17], we rather
use a Brownian SDE. We show that for any weak solution .ft /t�0 and for V0 � f0, the
SDE Vt D V0 C

R t
0
Œb.fs; Vs/ds C a

1=2.fs; Vs/dBs� is well-posed and Vt � ft for all t � 0.
We call .Vt /t�0 a .ft /t�0-Landau process. To prove uniqueness/stability, we will consider
two weak solutions .ft /t�0 and .gt /t�0 and we will couple a .ft /t�0-Landau process and
a .gt /t�0-Landau process in such a way that they remain as close as possible. Using the

(1) These authors told us that, putting together the ideas of [8] and of [18], they are now treating the case of Kac’s
conservative system for the 3D Boltzmann equation for hard potentials.
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KAC’S PARTICLE SYSTEM FOR THE LANDAU EQUATION 163

same Brownian motion for both processes, sometimes called synchronous coupling, does
not provide sufficiently good estimates. We will use a finer coupling, based on some ideas
of Givens and Shortt [19] about the optimal coupling of (multidimensional) Gaussian
random variables (for W2 distance). Such a finer coupling is crucial, in particular to obtain
a stability result that requires exponential moments of only one of the two solutions. As
already mentioned, this is important because we are not able to propagate exponential
moments of the particle system.

Similarly, we will finely couple our particle system .V i;N /iD1;:::;N with a family
.W i;N /iD1;:::;N of .ft /t�0-Landau processes. The conservativeness of our particle system
implies that the family .W i;N

t /iD1;:::;N is not independent. But we will use a second coupling
to show that for 1 � K � N , .W i;N

t /iD1;:::;K are approximately independent. The idea of
using two couplings is already present in the paper by Cortez and Fontbona [8].

Let us mention that the finer coupling would also be crucial if studying some non conser-
vative system.

The time uniformity we obtain in the case of Maxwell molecules relies on a recent
noticeable argument of Rousset [26] for the Boltzmann equation. For two solutions
.ft /t�0 and .gt /t�0, Tanaka’s theorem [30] tells us (roughly) that .d=dt/W2.ft ; gt / � 0.
Rousset manages to prove, in dimension d � 3, something like .d=dt/W2.ft ; gt / �

��" W1C"
2 .ft ; gt / for all " > 0. This implies that ft tends to a unique equilibrium as t !1

at some arbitrarily fast polynomial speed. Much better, he gets a similar result for the
particle system, uniformly in N . Previously, the large time behavior of the Landau equation
for Maxwell molecules was already well understood, see Villani [32], but the only known
uniform in N convergence to equilibrium for the particle system had been obtained by
Carrapatoso [6], with some weaker distance and, more importantly, some much lower rate
(namely, some very small polynomial rate). Again, extending this strategy to the Landau
equation really uses a fine coupling with suitable different Brownian motions.

1.8. Plan of the paper

In the next section, we quickly prove the existence part of Theorem 2. In Section 3, we
study the regularity of b; a; � and b.f; �/; a.f; �/; a1=2.f; �/. We prove Proposition 3 (well-
posedness of the particle system) and the well-posedness of the Landau process in Section 4.
Section 5 is devoted to the proof of a central inequality, which is used a first time in Section 6
to prove the uniqueness/stability part of Theorem 2. We next show in Section 7 that all the
moments of the particle system propagate, uniformly in N and in time. This allows us to
handle the proof of Theorem 4 (propagation of chaos) in Section 8, based on a second use of
our central inequality, except the time-uniformity (when  D 0) which is verified in Section 9.

2. Existence, moments and exponential moments

As we will use several times in the paper, the explicit expressions of a and b yield

(4)

8̂̂<̂
:̂

Tr a.v � v�/ D 2jv � v�j2C ;

a.v � v�/v � v D jv � v�j
 .jvj2jv�j

2 � .v � v�/
2/;

b.v � v�/ � v D �2jv � v�j
 .jvj2 � v � v�/:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



164 N. FOURNIER AND A. GUILLIN

The existence part of Theorem 2 is, as already mentioned, more or less well-known.

P 5. – Let  2 Œ0; 1� be fixed and let f0 2 P2C2 .R3/. Then there exists a
conservative weak solution .ft /t�0 in the sense of Definition 1 enjoying the following properties.

(i) If H.f0/ <1, then H.ft / � H.f0/ for all t � 0.

(ii) If mq.f0/ < 1 for some q > 2, then supŒ0;1/mq.ft / � Cq , for some finite constant
depending only on ; q and on (an upper bound of) mq.f0/.

(iii) If  2 .0; 1� and E ˛.f0/ < 1 for some ˛ 2 .0; 2/, then supŒ0;1/ E ˛.ft / � C˛, for
some finite constant C˛ depending only on ˛;  and on (an upper bound of) E ˛.f0/.

Proof. – If  D 0, the existence (and uniqueness) of a weak solution .ft /t�0 to (1) has
been checked by Guérin [20, Corollaries 6 and 7]. Point (i) is proved by Villani [32, Section 8]
as well as point (ii) (see [32, Theorem 1]): he assumes additionally but does not use that
f0 2 L

1.R3/.

If  2 .0; 1� and if f0 2 P2C .R3/ with H.f0/ < 1, then we know from Desvil-
lettes and Villani [10, Theorems 1 and 3] that (1) has a weak solution .ft /t�0 satisfying
points (i) and (ii). If we only know that f0 2 P2C2 .R3/, we introduce f n0 D f0 ? Gn, with
Gn.v/ D .n=2�/3=2 exp.�njxj2=2/. Then H.f n0 / < 1 and we consider a corresponding
weak solution .f nt /t�0, satisfying points (i) and (ii). In particular, we have
supn�1 supŒ0;1/m2C2 .f

n
t / < 1. We thus infer from (2) that for all ' 2 C 2

b
.R3/,

supn�1 supŒ0;1/ j.d=dt/
R
R3 '.v/f

n
t .dv/j <1: the family f.f nt /t�0; n � 1g � C.Œ0;1/; P.R3//

is equicontinuous (with P.R3/ endowed with the topology of weak convergence). We
thus can find .ft /t�0 2 C.Œ0;1/; P.R3// so that, up to extraction of a subsequence,
limn supŒ0;T � j

R
R3 '.v/.f

n
t � ft /.dv/j D 0 for all ' 2 Cb.R3/ and all T > 0. This func-

tion .ft /t�0 also satisfies point (ii), because point (ii) is satisfied by .f nt /t�0 uniformly in n.
Thus .ft /t�0 2 L1.Œ0;1/; P2C2 .R3//. Finally, it is not difficult to pass to the limit,
for each ' 2 C 2

b
.R3/, each t � 0, in the equation

R
R3 '.v/f

n
t .dv/ D

R
R3 '.v/f

n
0 .dv/ CR t

0

R
R3
R
R3 L'.v; v�/f

n
s .dv/f

n
s .dv�/, to deduce that .ft /t�0 is a weak solution to (1): the

only difficulty is that L' is not bounded, but this problem is fixed using that
jL'.v; v�/j � C'.1C jvj C jv�j/

2C and that supn�1 supŒ0;1/m2C2 .ft C f
n
t / <1.

We now assume that  2 .0; 1�, we fix ˛ 2 .0; 2/, and we give a formal proof of point (iii)
without justifying the computations: this probably does not prove that every weak solution
propagates exponential moments, but certainly shows that it is possible to build such weak
solutions. We consider '.v/ D exp..1 C jvj2/˛=2/, we set zE ˛.f / D

R
R3 '.v/f .dv/ and we

observe that E ˛.f / � zE ˛.f / � e E ˛.f /. It holds that @k'.v/ D ˛vk.1Cjvj2/˛=2�1'.v/ and
@kl'.v/ D ˛Œ.1C jvj

2/˛=2�11IfkDlgC .˛ � 2/vkvl .1C jvj2/˛=2�2C ˛vkvl .1C jvj2/˛�2�'.v/,
whence

L'.v; v�/ D
˛

2

h
2.1C jvj2/˛=2�1v � b.v � v�/C .1C jvj

2/˛=2�1Tr a.v � v�/

C
�
.˛ � 2/.1C jvj2/˛=2�2 C ˛.1C jvj2/˛�2

�
a.v � v�/v � v

i
'.v/:
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Recalling (4), we find

L'.v; v�/ D
˛

2
jv � v�j

 .1C jvj2/˛=2�2
h
� 2.1C jvj2/jvj2 C 2.1C jvj2/jv�j

2

C
�
.˛ � 2/C ˛.1C jvj2/˛=2

��
jvj2jv�j

2
� .v � v�/

2
�i
'.v/:

Using that jv � v�j � jvj � jv�j and that jv � v�j � jvj C jv�j , we deduce that

L'.v; v�/ � �˛
h
.1C jvj2/˛=2�1jvj2C � .1C jvj2/˛=2�1jvj2jv�j


i
'.v/

C
˛

2
.jvj C jv�j

 /.1C jvj2/˛=2�2
h
2.1C jvj2/jv�j

2

C
�
.˛ � 2/C ˛.1C jvj2/˛=2

��
jvj2jv�j

2
� .v � v�/

2
�i
'.v/

� �˛.1C jvj2/˛=2�1jvj2C'.v/

C C
�
.1C jvj2/˛=2 C .1C jvj2/=2C˛�1

�
.1C jv�j

2C /'.v/

for some constant C depending only on ; ˛. By the weak formulation of (1), we get

d

dt
zE ˛.ft / �

Z
R3

h
� ˛.1C jvj2/˛=2�1jvj2C

C C
�
.1C jvj2/˛=2 C .1C jvj2/=2C˛�1

�
.1Cm2C .ft //

i
'.v/ft .dv/:

But we know from point (ii) that supŒ0;1/m2C .ft / is bounded by some constant depending
only on  and m2C .f0/ (which is itself controlled by E ˛.f0/). We end with

d

dt
zE ˛.ft / �

Z
R3

h
� ˛.1C jvj2/˛=2�1jvj2C C C.1C jvj2/˛=2 C C.1C jvj2/=2C˛�1

i
'.v/ft .dv/:

For large values of jvj, we have .1 C jvj2/˛=2�1jvj2C ' jvj˛C and .1 C jvj2/˛=2

C.1Cjvj2/=2C˛�1 ' jvjmaxf˛;C2˛�2g. But ˛C > ˛ (because  > 0) and ˛C > C2˛�2
(because ˛ < 2), so that we can find some constants K;L � 0 so that for all v 2 R3,

�˛.1C jvj2/˛=2�1jvj2C C C.1C jvj2/˛=2 C C.1C jvj2/=2C˛�1 � �1CK1Ifjvj�Lg:

Consequently,

d

dt
zE ˛.ft / � � zE ˛.ft /CK

Z
R3

1Ifjvj�Lg'.v/ft .dv/ � � zE ˛.ft /CK'.L/:

We classically deduce that supŒ0;1/ zE ˛.ft / � maxf zE ˛.f0/;K'.L/g as desired.

3. Regularity estimates

The following estimates can be found in [14, Lemma 11] (with C D 1, but with another
norm). Let SC3 be the set of symmetric nonnegative 3 � 3-matrices with real entries.

L 6. – There is a constant C such that for any A;B 2 SC3 ,

kA1=2 � B1=2k � CkA � Bk1=2 and kA1=2 � B1=2k � C.kA�1k ^ kB�1k/1=2kA � Bk:

We will sometimes need the ellipticity estimate of Desvillettes and Villani [10, Proposi-
tion 4].
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L 7. – Let  2 Œ0; 1�. For all A > 0, there is CA depending only on A and 
such that for all f 2 P2.R3/ satisfying H.f / � A and m2.f / � A, for all v 2 R3,
kŒa.f; v/��1k � CA.1C jvj/

� .

We next observe that the coefficients a, b and � are locally Lipschitz continuous.

L 8. – Fix  2 Œ0; 1�. There is C depending only on  such that for all v;w 2 R3,

jb.v/ � b.w/j � C jv � wj.jvj C jwj /; k�.v/ � �.w/k � C jv � wj.jvj=2 C jwj=2/;

and ka.v/ � a.w/k � C jv � wj.jvj1C C jwj1C /:

Proof. – Since b.v/ D �2jvjv, since �.v/ D jvj=2C1…v? D jvj=2C1.I3 � jvj�2v ˝ v/
and since a.v/ D jvj2C .I3 � jvj�2v ˝ v/, one easily checks that jDb.v/j � C jvj , that
jD�.v/j � C jvj=2 and that jDa.v/j � C jvj1C , from which the results follow.

Our main results are based on the use of a SDE of which we now study roughly the
coefficients.

L 9. – Fix  2 Œ0; 1�. There is C depending only on  such that for every
f 2 P2C .R3/ and every v;w 2 R3,

(i) jb.f; v/j � C.jvj1C Cm1C .f //,
(ii) jb.f; v/ � b.f;w/j � C jv � wj.jvj C jwj Cm .f //,
(iii) ka.f; v/k � C.jvj2C Cm2C .f //,
(iv) ka.f; v/ � a.f;w/k � C jv � wj.jvj1C C jwj1C Cm1C .f //,
(v) ka1=2.f; v/k2 � C.jvj2C Cm2C .f //,
(vi) ka1=2.f; v/ � a1=2.f; w/k2 � C jv � wj2.1Cm2C .f //.1C jvj2 C jwj2/.

Proof. – First, we have jb.f; v/j � 2
R
R3 jv � wj

1Cf .dw/ � C.jvj1C Cm1C .f // and
ka.f; v/k � ka1=2.f; v/k2 D Tr a.f; v/ D

R
R3 Tr a.v�w/f .dw/ D 2

R
R3 jv�wj

2Cf .dw/ �

C.jvj2C Cm2C .f //.
Next, jb.f; v/ � b.f;w/j D j

R
R3.b.v � z/ � b.w � z//f .dz/j, so that by Lemma 8,

jb.f; v/�b.f;w/j � C jv�wj

Z
R3
.jv�zjCjw�zj /f .dz/ � C jv�wj.jvjCjwjCm .f //:

With the same arguments, one finds ka.f; v/ � a.f;w/k � C jv � wj
R
R3.jv � zj1C

C jw � zj1C /f .dz/ � C jv � wj.jvj1C C jwj1C Cm1C .f //.
Point (vi) is more difficult, although probably far from being optimal. Stroock and

Varadhan [28, Theorem 5.2.3] state that there is C > 0 such that for all A W R3 7! SC3 ,
kD.A1=2/k1 � CkD2Ak

1=2
1 , which we apply to A.v/ D .1 C jvj2/�=2a.f; v/. Observing

that ka.z/k � C jzj2C , that kDa.z/k � C jzj1C and that kD2a.z/k � C jzj , we find

kD2A.v/k � C
h
.1C jvj2/�=2

Z
R3
jv � zjf .dz/C .1C jvj2/�=2�1=2

Z
R3
jv � zj1Cf .dz/

C .1C jvj2/�=2�1
Z
R3
jv � zj2Cf .dz/

i
� C.1Cm2C .f //:

Thus kD.A1=2/k21 � C.1Cm2C .f // and

k.A.v//1=2 � .A.w//1=2k2 � C.1Cm2C .f //jv � wj
2:
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We now write, using that .A.v//1=2 D .1C jvj2/�=4a1=2.f; v/,

ka1=2.f; v/ � a1=2.f; w/k2 � 2.1C jvj2/=2k.A.v//1=2 � .A.w//1=2k2

C2.1C jwj2/�=2
ˇ̌
.1C jvj2/=4 � .1C jwj2/=4

ˇ̌2
ka1=2.f; w/k2:

Recalling (v) and using that j.1C jwj2/=4 � .1C jvj2/=4j � C jv � wj, we get

ka1=2.f; v/ � a1=2.f; w/k2

� C jv � wj2
h
.1C jvj2/=2.1Cm2C .f //C .1C jwj

2/�=2.jwj2C Cm2C .f //
i
:

This can be bounded by C jv � wj2.1Cm2C .f //.1C jvj2 C jwj2/ as desired.

4. Well-posedness of the particle system and of the Landau process

We first verify that the particle system (3) is well-posed.

Proof of Proposition 3. – Since b and � are locally Lipschitz continuous by Lemma 8,
the system classically admits a pathwise unique local solution .V

i;N
t /iD1;:::;N;t2Œ0;�/ with

� D supk�1 �k and �k D infft � 0 W
PN
1 jV

i;N
t j

2 � kg. We now show that a.s.,PN
1 V

i;N
t D

PN
1 V

i;N
0 and

PN
1 jV

i;N
t j

2 D
PN
1 jV

i;N
0 j2 for all t 2 Œ0; �/. This will of course

imply that � D1 and thus end the proof.
Summing (3) over i D 1; : : : ; N , using that b.�x/ D �b.x/, that �.�x/ D �.x/, that

�.0/ D 0 and thatB ij D �Bj i for all i ¤ j , we immediately find that
PN
1 V

i;N
t D

PN
1 V

i;N
0

for all t 2 Œ0; �/. We next apply the Itô formula, which is licit on Œ0; �/, to get, using that
�.x/��.x/ D a.x/,

NX
iD1

jV
i;N
t j

2
D

NX
iD1

jV
i;N
0 j

2
C
1

N

NX
i;jD1

Z t

0

Œ2V i;Ns � b.V i;Ns � V j;Ns /C Tr a.V i;Ns � V j;Ns /�ds

C
2
p
N

NX
i;jD1

Z t

0

V i;Ns � �.V i;Ns � V j;Ns /dB ijs :

But since b.x/ D �2jxjx and Tr a.x/ D 2jxjC2,

NX
i;jD1

Œ2V i;Ns � b.V i;Ns � V j;Ns /C Tr a.V i;Ns � V j;Ns /�

D

NX
i;jD1

Œ.V i;Ns � V j;Ns / � b.V i;Ns � V j;Ns /C Tr a.V i;Ns � V j;Ns /� D 0:

Using next that �.�x/ D �.x/ and that B ij D �Bj i , we also have

NX
i;jD1

V i;Ns � �.V i;Ns � V j;Ns /dB ijs D
X

1�i<j�N

.V i;Ns � V j;Ns / � �.V i;Ns � V j;Ns /dB ijs ;

which a.s. vanishes because �.x/ D jxj1C=2…x? (so that x��.x/ D 0). We conclude thatPN
1 jV

i;N
t j

2 D
PN
1 jV

i;N
0 j2 on Œ0; �/, which ends the proof.
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We next build our Landau process.

P 10. – Fix  2 Œ0; 1� and f D .ft /t�0 2 L
1
loc.Œ0;1/; P2C .R3//, as well

as g0 2 P2.R3/ and a g0-distributed random variable V0 independent of a 3D Brownian
motion .Bt /t�0.

(i) The SDE Vt D V0C
R t
0
b.fs; Vs/dsC

R t
0
a1=2.fs; Vs/dBs has a pathwise unique solution.

(ii) If f is a weak solution to (1) and if g0 D f0, then Vt is ft distributed for all t � 0.

Proof. – We start with point (i). Since the coefficients v 7! b.fs; v/ and v 7! a1=2.fs; v/

are locally Lipschitz continuous (uniformly on compact time intervals) by Lemma 9 and
because f 2 L1loc.Œ0;1/; P2C .R3// by assumption, the SDE under study classically has a
pathwise unique local solution .Vt /t2Œ0;�/, where � D supk�1 �k and �k D infft � 0 W jVt j � kg.
We thus only have to verify that � D 1 a.s. Using the Itô formula and taking expectations,
one easily checks that for all k � 1, all t � 0, EŒjVt^�k j2� D EŒjV0j2�C EŒ

R t^�k
0

�.s; Vs/ds�,
where �.s; v/ D 2x � b.fs; v/ C Tr a.fs; v/. Recalling that b.v/ D �2jvjv and Tr a.v/ D
2jvj2C , we find that �.s; v/ D 2

R
R3 jv�wj

 .jwj2�jvj2/fs.dw/ � 2
R
R3 jv�wj

 jwj2fs.dw/.
It is not hard to deduce that �.s; v/ � C.1Cm2C .fs//.1C jvj2/ and then that

EŒjVt^�k j
2� � m2.g0/C C

Z t

0

.1Cm2C .fs//EŒ1C jVs^�k j
2�ds

for all t � 0 and all k � 1. Since m2C .fs/ is locally bounded by assumption, the Gronwall
lemma implies that for all T > 0, CT WD supk�1 supŒ0;T � EŒjVt^�k j2� < 1. Hence for all T ,
Pr.�k � T / D k�2EŒjV�k j21I�k�T � � EŒjVT^�k j2� � CT k�2 ! 0 as k ! 1. We conclude
that � D1 a.s.

We now prove (ii). For t � 0 and ' 2 C 2
b
.R3/, we introduce

A t'.v/ D

Z
R3
L'.v; v�/ft .dv�/ D .1=2/

3X
k;lD1

akl .ft ; v/@
2
kl'.v/C

3X
kD1

bk.ft ; v/@k'.v/:

Then gt D L .Vt / solves

(5)
Z
R3
'.v/gt .dv/ D

Z
R3
'.v/�.dv/C

Z t

0

Z
R3

A s'.v/gs.dv/ds for all ' 2 C 2c .R3/;

with� D g0. But .ft /t�0, being a weak solution to (1), also solves (5) with� D f0. Horowitz
and Karandikar [21, Theorem B.1], who generalize Ethier and Kurtz [12, Chapter 4,
Theorem 7.1], tell us that (5) has a unique solution (for any given � 2 P.R3/). Since
f0 D g0 by assumption, we thus have .ft /t�0 D .gt /t�0.

To apply [21, Theorem B.1], we need to verify the following conditions:
(a) C 2c .R3/ is dense in C0.R3/ (the set of continuous functions vanishing at infinity) for

the uniform convergence;
(b) for each ' 2 C 2c .R3/, .t; v/ 7! A t'.v/ is measurable;
(c) for each t � 0, if ' 2 C 2c attains its maximum at v0, then A t'.v0/ � 0;
(d) there is a countable family f'kgk�1 � Cc.R3/ such that for all t � 0, f.'k ; A t'k/gk�1

is dense in f.'; A t'/; ' 2 C
2
c .R3/g for the bounded-pointwise convergence;

(e) for any deterministic .t0; v0/ 2 Œ0;1/ � R3, there exists a unique (in law) continuous
R3-valued process .Xt /t�t0 such that Xt0 D v0 and for all ' 2 C 2c .R3/, the process
'.Xt / �

R t
t0

A s'.Xs/ds is a martingale.
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Points (a) and (b) are obvious, as well as point (c) (simply because r'.v0/ D 0, because
the Hessian .@kl'.v0//kl is non-positive and because a.ft ; v0/ is nonnegative). Point (e) is
equivalent to the existence and uniqueness in law, for each .t0; v0/ 2 Œ0;1/ � R3, for the
SDE Vt D v0 C

R t
t0
b.fs; Vs/ds C

R t
t0
a1=2.fs; Vs/dBs . If t0 D 0, this follows from point (i)

(choose g0 D ıv0 ). The generalization to all positive values of t0 is clearly not an issue.
For (d), consider a countable family f'kgk�1 � Cc.R3/ so that for any ' 2 C 2c .R3/ with,
say Supp ' � B.0;R/, there is a subsequence .kn/n�1 so that Supp 'kn � B.0; 2R/ and
limnŒj'kn � 'j1C jr'kn �r'j1C jD

2'kn �D
2'j1� D 0. Then for each t � 0, we clearly

have limn kA t'kn � A t'k1 D 0.

5. A central inequality

As already explained in Subsection 1.7, our uniqueness, stability and propagation of chaos
results are based on some coupling between SDEs, and using similar Brownian motions
is not sufficient to our purposes. We recall the following fact: the best coupling between
two multidimensional Gaussian distributions N .0;†1/ and N .0;†2/ does not, in general,
consist in settingX1 D †

1=2
1 Y andX2 D †

1=2
2 Y for the same Y with law N .0; I3/. As shown

by Givens and Shortt [19], the optimal coupling is obtained when setting X1 D †
1=2
1 Y and

X2 D †
1=2
2 U.†1; †2/Y , where

(6) U.†1; †2/ D †
�1=2
2 †

�1=2
1 .†

1=2
1 †2†

1=2
1 /1=2

is an orthogonal matrix. Point (i) below, proved in [17], is an immediate consequence of [19].

L 11. – (i) Let m be a probability measure on some measurable space F , consider a
pair of measurable families of 3 � 3 matrices .�1.x//x2F and .�2.x//x2F and set
†i D

R
F
�i .x/�

�
i .x/m.dx/. If †1 and †2 are invertible,†1=21 �†

1=2
2 U.†1; †2/

2 � Z
F

k�1.x/ � �2.x/k
2m.dx/:

(ii) Let " 2 .0; 1/. With the same notation as in (i) but without assuming that †1 and †2
are invertible, setting U".†1; †2/ D U.†1 C "I3; †2 C "I3/,†1=21 �†

1=2
2 U".†1; †2/

2 � Cp".1C k†1 C†2k1=2/C Z
F

k�1.x/ � �2.x/k
2m.dx/;

where C is a universal constant.

(iii) For each " 2 .0; 1/, the map .†1; †2/ 7! U".†1; †2/ is locally Lipschitz continuous
on SC3 � S

C
3 .

Of course, we introduced U" to avoid some technical problems, because we will generally
not be able to control the invertibility of the matrices we will study.

Proof. – Point (i) is nothing but [17, Lemma 3.1] and point (iii) is obvious. To check (ii),
we introduce the space F 0 D F [ f�g (where� … F is some abstract point), the probability
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measurem0 D .1�"/1IFmC"ı� on F 0, and the maps � 0i D .1�"/
�1=2�i1IF CI31If�g from F 0

to M 3�3.R/. It holds that
R
F 0 �

0
i .�
0
i /
�dm0 D †i C "I3, so that point (i) yields.†1 C "I3/1=2 � .†2 C "I3/1=2U".†1; †2/2

�

Z
F 0

k� 01.x/ � �
0
2.x/k

2m0.dx/D

Z
F

k�1.x/ � �2.x/k
2m.dx/:

It then easily follows, using that U".†1; †2/ is orthogonal (whence kU".†1; †2/k2

D Tr I3 D 3) and Lemma 6 (which gives k.†i C "I3/1=2 �†
1=2
i k � C

p
"), that†1=21 �†

1=2
2 U".†1; †2/

 � Cp"C .†1 C "I3/1=2 � .†2 C "I3/1=2U".†1; †2/
� C
p
"C

� Z
F

k�1.x/ � �2.x/k
2m.dx/

�1=2
:

The conclusion follows: it suffices to take squares and to note that
R
F
k�1.x/��2.x/k

2m.dx/

� 2
R
F
.k�1.x/k

2 C k�2.x/k
2/m.dx/ D 2Tr.†1 C†2/ � Ck†1 C†2k.

The following proposition, to be used several times for both uniqueness and propagation
of chaos, plays a central role in the paper. The " present in the statement is here only for
technical reasons and may be disregarded at first read.

P 12. – Let  2 Œ0; 1� be fixed, let f; g 2 P2C .R3/ and R 2 H .f; g/.
For " 2 .0; 1/, let

�".R/ D

Z
R3�R3

�
ka1=2.f; v/ � a1=2.g; w/U".a.f; v/; a.g;w//k

2

C 2.v � w/ � .b.f; v/ � b.g;w//
�
R.dv; dw/:

(i) If  D 0, there is a universal constant C such that �".R/ � C
p
".1Cm2.f C g//

1=2.
(ii) If  2 .0; 1�, then we fix ˛ >  . There are some constants � > 0 and C depending only

on ; ˛, such that for all M > 0,

�".R/ � C
p
".1Cm2C .f C g//

1=2

CM

Z
R3�R3

jv � wj2R.dv; dw/C C.1Cm2C .g/C E ˛.f //e
��M˛=

:

As already mentioned, it is important that no exponential moment of g is required in (ii).

Proof. – We thus fix  2 Œ0; 1�, f; g 2 P2C .R3/, R 2 H .f; g/ and " 2 .0; 1/.

Step 1. We first verify that for all x; y 2 R3,

k�.x/ � �.y/k2 � 2jxj2C C 2jyj2C � 4.jxjjyj/=2.x � y/:

Recall that �.x/ D jxj1C=2…x? and that k�.x/k2 D Tr a.x/ D 2jxj2C : we have to
check that hh�.x/; �.y/ii � 2.jxjjyj/=2.x � y/, i.e., that hh…x? ;…y?ii � 2.x � y/=.jxjjyj/.
A computation shows that…x?…y? D I3�jxj�2xx��jyj�2yy�C .x:y/jxj�2jyj�2xy� and
thus hh…x? ;…y?ii D Tr …x?…y? D 1C .x � y/2=.jxj2jyj2/. The conclusion follows.

Step 2. We fix v and w and we apply Lemma 11-(ii) with F D R3 � R3, with
m D R.dy; dz/, with �1.y; z/ D �.v � y/ and �2.y; z/ D �.w � z/. It holds that
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R
F
�1�

�
1 dm D

R
R3�R3 a.v � y/R.dy; dz/ D a.f; v/ (because �.x/��.x/ D a.x/ and

R 2 H .f; g/) and
R
F
�2�

�
2 dm D a.g;w/. We thus find

ka1=2.f; v/ � a1=2.g; w/U".a.f; v/; a.g;w//k
2
� C
p
".1C ka.f; v/C a.g;w/k/1=2

C

Z
R3�R3

k�.v � y/ � �.w � z/k2R.dy; dz/:

Next, it holds that b.f; v/�b.g;w/ D
R
R3�R3.b.v�y/�b.w�z//R.dy; dz/ simply because

R 2 H .f; g/. Recalling finally that ka.f; v/k � C.m2C .f /C jvj2C / by Lemma 9, we get

�".R/ � C
p
"

Z
R3�R3

.1C jvj2C C jwj2C Cm2C .f C g//
1=2R.dv; dw/

C

Z
R3�R3

Z
R3�R3

�.v; y;w; z/R.dy; dz/R.dv; dw/

� C
p
".1Cm2C .f C g//

1=2
C

Z
R3�R3

Z
R3�R3

�.v; y;w; z/R.dy; dz/R.dv; dw/

where

�.v; y;w; z/ D k�.v � y/ � �.w � z/k2 C 2.v � w/ � .b.v � y/ � b.w � z//:

Step 3. The goal of this step is to check that�.v; y;w; z/ D �1.v; y; w; z/C�2.v; y; w; z/,
where

�1.v; y; w; z/ D .v � w C y � z/ � .b.v � y/ � b.w � z//

is antisymmetric (i.e., �1.y; v; z; w/ D ��1.v; y; w; z/) and where

�2.v; y; w; z/ �

(
0 if  D 0,

4.jv � wj2 C jy � zj2/jv � yj if  2 .0; 1�.

We introduce the shortened notation �2 D �2.v; y; w; z/, X D v � y and Y D w � z.
By definition, we have �2 D .X � Y / � .b.X/ � b.Y // C k�.X/ � �.Y /k2. Using that
b.X/ D �2jX jX and Step 1, we find

�2 � �2.X � Y / � .jX j
X � jY jY /C 2jX j2C C 2jY j2C � 4.jX jjY j/=2.X � Y /

D 2.X � Y /.jX j=2 � jY j=2/2:

If  D 0, this gives�2 � 0. If now  2 .0; 1�, we use that .x_y/1�=2jx=2�y=2j � jx�yj
(for x; y � 0) to write

�2 � 2jX jjY j.jX j
=2
�jY j=2/2 � 2jX jjY j.jX j_jY j/�2.jX j�jY j/2 � 2.jX j^jY j/ jX�Y j2:

We conclude noting that .jX j^jY j/ � jX j D jv�yj and jX�Y j2 � 2.jv�wj2Cjy�zj2/.

Step 4. We now observe that L WD
R
R3�R3

R
R3�R3 �1.v; y; w; z/R.dy; dz/R.dv; dw/ D 0.

Indeed, �1 being antisymmetric, we have

L D

Z
R3�R3

Z
R3�R3

�1.y; v; z; w/R.dy; dz/R.dv; dw/ D �L:

Step 5. When  D 0, it suffices to gather Steps 2, 3, 4 to conclude the proof.
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Step 6. Finally, gathering Steps 2, 3, 4 when  2 .0; 1� yields

�".R/ � C
p
".1Cm2C .f C g//

1=2

C 4

Z
R3�R3

Z
R3�R3
.jv � wj2 C jy � zj2/jv � yjR.dy; dz/R.dv; dw/

D C
p
".1Cm2C .f C g//

1=2

C 8

Z
R3�R3

Z
R3�R3

jv � wj2jv � yjf .dy/R.dv; dw/:

For the last equality, we used a symmetry argument and that the first marginal of R is f .
Finally, we recall that ˛ >  is fixed and we write, for any M > 0,

8

Z
R3�R3

Z
R3
jv � wj2jv � yjf .dy/R.dv; dw/ �M

Z
R3�R3

jv � wj2R.dv; dw/C IM ;

where

IM D 8

Z
R3�R3

Z
R3
jv � wj2jv � yj1If8jv�yj�M gf .dy/R.dv; dw/

� 16

Z
R3�R3

Z
R3
.jvj2 C jwj2/.jvj C jyj /Œ1Ifjvj�M=16g C 1Ifjyj�M=16g�f .dy/R.dv; dw/:

We then write, for a > 0 to be chosen later,

IM � 16e
�a.M=16/˛=

Z
R3�R3

Z
R3
.jvj2 C jwj2/.jvj C jyj /Œeajvj

˛

C eajyj
˛

�f .dy/R.dv; dw/

� Ce�a.M=16/
˛=

Z
R3�R3

Z
R3
.1C jwj2/Œe2ajvj

˛

C e2ajyj
˛

�f .dy/R.dv; dw/

� Ce�a.M=16/
˛=

Z
R3�R3

Z
R3

�
1C jwj2C C e

4C2
1C

ajvj˛
C e

4C2
1C

ajyj˛
�
f .dy/R.dv; dw/

by the Young inequality. Choosing a D .1C/=.4C2/, setting � D a=16˛= and using that
R 2 H .f; g/, we conclude that

IM � Ce
��M˛=

.1Cm2C .g/C E ˛.f //

as desired.

6. Well-posedness

We now have all the weapons to give the

Proof of Theorem 2. – We fix  2 Œ0; 1�. If  D 0, we assume that f0 2 P2.R3/ and
consider the weak solution .ft /t�0 to (1) built in Proposition 5, which indeed satisfies all the
properties of the statement. If  2 .0; 1�, we assume that f0 2 P2.R3/ satisfies E ˛.f0/ <1

for some ˛ 2 .; 2/ and consider the weak solution .ft /t�0 to (1) built in Proposition 5, which
also satisfies all the properties of the statement. In particular, supt�0 E ˛.ft / < 1 depends
only on ; ˛ and on (an upper bound of) E ˛.f0/. We consider another weak solution .gt /t�0
to (1), only assumed to lie in L1loc.Œ0;1/; P2C .R3//.
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Step 1. We consider V0 � f0 and W0 � g0 such that EŒjV0 � W0j2� D W2
2.f0; g0/ and

a 3D Brownian motion .Bt /t�0, independent of .V0; W0/. We consider the pathwise unique
solution to

Vt D V0 C

Z t

0

b.fs; Vs/ds C

Z t

0

a1=2.fs; Vs/dBs;

see Proposition 10, and we know that Vt � ft for all t � 0. Next, we recall that the
matrix U" was introduced in Lemma 11-(ii) and is locally Lipschitz continuous, so that it
is not difficult to verify, as in the proof of Proposition 10-(i), that the SDE (with stochastic
parameter .Vs/s�0)

W "
t D W0 C

Z t

0

b.gs; W
"
s /ds C

Z t

0

a1=2.gs; W
"
s /U".a.fs; Vs/; a.gs; W

"
s //dBs(7)

has a pathwise unique local solution. But the matrix U".a.fs; Vs/; a.gs; W
"
s // being

a.s. orthogonal for all s � 0, the process B"t D
R t
0
U".a.fs; Vs/; a.gs; W

"
s /dBs is a

3D Brownian motion. We conclude that the SDE (7) is, in law, equivalent to the SDE
Wt D W0 C

R t
0
b.gs; Ws/ds C

R t
0
a1=2.gs; Ws/dBs . We know from Proposition 10-(i)

that such a process does not explode in finite time, so that the unique solution to (7) is
global, and from Proposition 10-(ii) that W "

t � gt for all t � 0. Consequently, we have
W2
2.ft ; gt / � EŒjVt �W "

t j
2� for all values of t � 0 and " 2 .0; 1/.

Step 2. We set u"t D EŒjVt �W "
t j
2�. By the Itô formula, we find, for some martingale .M "

t /t�0,

jVt �W
"
t j
2
D jV0 �W0j

2
C

Z t

0

2.Vs �W
"
s / � .b.fs; Vs/ � b.gs; W

"
s //ds CM

"
t

C

Z t

0

Tr
�h
a1=2.fs; Vs/ � a

1=2.gs; W
"
s /U".a.fs; Vs/; a.gs; W

"
s //
i

h
a1=2.fs; Vs/ � a

1=2.gs; W
"
s /U".a.fs; Vs/; a.gs; W

"
s //
i��

ds:

Recalling that kAk2 D TrŒAA��, taking expectations and differentiating the obtained expres-
sion with respect to time, we find

d

dt
u"t D E

h
ka1=2.ft ; Vt / � a

1=2.gt ; W
"
t /U".a.ft ; Vt /; a.gt ; W

"
t //k

2

C 2.Vt �W
"
t / � .b.ft ; Vt / � b.gt ; W

"
t //
i
:

Denoting by R"t 2 P2.R3 � R3/ the law of .Vt ; W "
t / and recalling the notation of Proposi-

tion 12, we realize that .d=dt/u"t D �".R
"
t /.

Assume first that  D 0. Then Prop. 12 tells us that .d=dt/u"t � C
p
".1Cm2.ftCgt //

1=2.
Recalling that f; g 2 L1loc.Œ0;1/; P2.R3//, that W2

2.ft ; gt / � u"t for all t � 0 and all
" 2 .0; 1/, and that EŒjV0 � W0j2� D W2

2.f0; g0/ by construction, we easily deduce that
W2
2.ft ; gt / � W2

2.f0; g0/ for all t � 0. Of course, the uniqueness of the weak solution
starting from f0 follows.

When  2 .0; 1�, we work on Œ0; T � for some fixed T > 0. By Proposition 12, for allM > 0,

d

dt
u"t � C

p
".1Cm2C .ft C gt //

1=2
CMu"t C C.1Cm2C .gt /C E ˛.ft //e

��M˛=

:
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For the rest of the step, we call CT a constant, allowed to vary from line to line, depending
only on T; ˛;  and on (some upper bounds) of supŒ0;T �m2C .gt / and E ˛.f0/. We thus have

d

dt
u"t � CT

p
"CMu"t C CT e

��M˛=

;

whence supŒ0;T � u
"
t � Œu

"
0CCT

p
"CCT e

��M˛=
�eMT . Recalling that u"0 D W2

2.f0; g0/ and
that W2

2.ft ; gt / � u
"
t , we may let "! 0 and find that

sup
Œ0;T �

W2
2.ft ; gt / � ŒW

2
2.f0; g0/C CT e

��M˛=

�eMT :

We now choose M D Œ��1 log.1 C 1=W2
2.f0; g0//�

=˛, which is designed to satisfy
e��M

˛=
D W2

2.f0; g0/=.1C W2
2.f0; g0// � W2

2.f0; g0/ and we end with

sup
Œ0;T �

W2
2.ft ; gt / � CT W2

2.f0; g0/ exp.T .��1 log.1C 1=W2
2.f0; g0//

=˛/:

We easily conclude, since ˛ >  , that for any � 2 .0; 1/, supŒ0;T � W2.ft ; gt / � C�;T .W2.f0; g0//
1��,

the constant C�;T depending only on �; T; ˛ and on (some upper bounds) of supŒ0;T �m2C .gt /
and E ˛.f0/. The uniqueness of the weak solution .ft /t�0 starting from f0 clearly follows.

7. Moments of the particle system

The goal of this section is to study the moments of the particle system. The following
result uses the fact that the particle system a.s. conserves kinetic energy. Sznitman [29] and
Mischler-Mouhot [25] have handled similar computations for the Boltzmann equation for
hard spheres.

P 13. – Fix  2 Œ0; 1�,N � 2, consider an exchangeable .R3/N -valued random
variable .V i;N0 /iD1;:::;N and the corresponding unique solution .V i;Nt /t�0 to (3). Then for all
p > 2, supŒ0;1/ EŒjV

1;N
t jp� � Cp.EŒjV 1;N0 jpC �/p=.pC/, the constantCp depending only on p

and  .

Proof. – We fix N � 2 and write V it D V
i;N
t for simplicity. We recall from Proposition 3

that a.s., for all t � 0,ENt WD N
�1
PN
1 jV

i
t j
2 D EN0 . We fix p > 2 and we set upt D EŒjV 1t jp�.

Step 1. Starting from (3) and applying the Itô formula with �.v/ D jvjp, for which
@k�.v/ D pjvj

p�2vk and @kl�.v/ D pŒ1IfkDlgjvjp�2 C .p � 2/vkvl jvjp�4�, we get, for some
martingale .Mp

t /t�0,

jV 1t j
p
D jV 10 j

p
C
p

N

NX
jD1

Z t

0

jV 1s j
p�2V 1s � b.V

1
s � V

j
s /ds CM

p
t

C
p

2N

NX
jD1

Z t

0

3X
k;lD1

Œ1IfkDlgjV
1
s j
p�2
C .p � 2/.V 1s /k.V

1
s /l jV

1
s j
p�4�akl .V

1
s � V

j
s /ds:
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Taking expectations and differentiating the obtained expression with respect to time, we find

d

dt
u
p
t D

p

2N

NX
jD1

E
h
2jV 1t j

p�2V 1t � b.V
1
t � V

j
t /

C jV 1t j
p�2Tr a.V 1t � V

j
t /C .p � 2/jV

1
t j
p�4a.V 1t � V

j
t /V

1
t � V

1
t

i
:

Recalling (4), using exchangeability and that everything vanishes when j D 1, we find

d

dt
u
p
t D

p.N � 1/

2N
E
h
jV 1t � V

2
t j

�
� 2jV 1t j

p
C 2jV 1t j

p�2
jV 2t j

2

C .p � 2/jV 1t j
p�4.jV 1t j

2
jV 2t j

2
� .V 1t � V

2
t /
2
�i

�
p.N � 1/

N
E
h
jV 1t � V

2
t j

�
� jV 1t j

p
C
p

2
jV 1t j

p�2
jV 2t j

2
�i
:

Step 2. When  D 0, we thus have .d=dt/upt � �.p=2/u
p
t C .p

2=2/EŒjV 1t jp�2jV 2t j2�. We
used that 1=2 � .N � 1/=N � 1 because N � 2. We then use exchangeability to write

EŒjV 1t j
p�2
jV 2t j

2� D E
h
jV 1t j

p�2 1

N � 1

NX
2

jV it j
2
i

� 2EŒjV 1t j
p�2ENt � � 2.u

p
t /
.p�2/=pEŒ.ENt /

p=2�2=p:

But EŒ.ENt /p=2� D EŒ.EN0 /p=2� � EŒjV 10 jp� by Jensen’s inequality and exchangeability. We
end with

d

dt
u
p
t � �

p

2
u
p
t C p

2EŒjV 10 j
p�2=pŒu

p
t �
1�2=p:

We classically conclude that supŒ0;1/ u
p
t � maxfup0 ;EŒjV 10 jp�.2p/p=2g D EŒjV 10 jp�.2p/p=2.

Step 3. We suppose next that  2 .0; 1�. We know from Desvillettes and Villani [10,
Lemma 1] that there are some constants �p > 0 and Cp such that for all x; y � 0,

�xp � yp C
p

2
x2yp�2 C

p

2
y2xp�2 � ��px

p
C Cp.xy

p�1
C yxp�1/:

We deduce, using exchangeability, that

d

dt
u
p
t �

p.N � 1/

2N
E
h
jV 1t � V

2
t j

�
� jV 1t j

p
� jV 2t j

p
C
p

2
jV 1t j

2
jV 2t j

p�2
C
p

2
jV 2t j

2
jV 1t j

p�2
�i

�
p.N � 1/

2N
E
h
jV 1t � V

2
t j

�
� �pjV

1
t j
p
C CpjV

1
t jjV

2
t j
p�1
C CpjV

2
t jjV

1
t j
p�1

�i
� E

h
jV 1t � V

2
t j

�
�
p�p

4
jV 1t j

p
C 2pCpjV

1
t jjV

2
t j
p�1

�i
:

Changing now the values of �p > 0 and Cp (which still depend only on p) and using that
jv � wj �

ˇ̌
jvj � jwj

ˇ̌
� jvj � jwj and jv � wj � jvj C jwj , we easily find

d

dt
u
p
t � ��pEŒjV 1t j

pC �C CpEŒjV 1t j
p
jV 2t j


C jV 1t j

1C
jV 2t j

p�1
C jV 1t jjV

2
t j
p�1C �

� ��pEŒjV 1t j
pC �C CpEŒjV 1t j

p
jV 2t j


C jV 1t j


jV 2t j

p�:
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But

EŒjV 1t j
p
jV 2t j

 � D E
h
jV 1t j

p 1

N � 1

NX
2

jV it j

i
� 2E

h
jV 1t j

p 1

N

NX
1

jV it j

i
� 2E

h
jV 1t j

p.ENt /
=2
i
:

By Hölder’s inequality and since ENt D E
N
0 , we deduce that

EŒjV 1t j
p
jV 2t j

 � � 2EŒjV 1t j
pC �p=.pC/EŒ.EN0 /

.pC/=2�=.pC/:

A last application of Hölder’s inequality shows that EŒ.EN0 /.pC/=2� � EŒjV 1;N0 jpC �,
whence finally

d

dt
u
p
t � ��pEŒjV 1t j

pC �C CpEŒjV 1;N0 j
pC �=.pC/EŒjV 1t j

pC �p=.pC/

� �
�p

2
EŒjV 1t j

pC �C CpEŒjV 1;N0 j
pC �

� �
�p

2
.u
p
t /
.pC/=p

C CpEŒjV 1;N0 j
pC �;(8)

the value of Cp depending only on p;  and changing from line to line. For the second
inequality, we used that for �; a; x � 0, ��x C axp=.pC/ � �.�=2/x C .2=�/p=a.pC/= :
it suffices to separate the cases �x � 2axp=.pC/ and �x � 2axp=.pC/. We classi-
cally deduce from (8) that supŒ0;1/ u

p
t � maxfup0 ; .2CpEŒjV

1;N
0 jpC �=�p/

p=.pC/g. Since

u
p
0 D EŒjV 1;N0 jp� � EŒjV 1;N0 jpC �p=.pC/, the proof is complete.

8. Propagation of chaos

The goal of this section is to check Theorem 4, except the time uniformity in the Maxwell
case.

8.1. The setting

We consider, in the whole section,  2 Œ0; 1� fixed and f0 2 P2.R3/. If  2 .0; 1�,
we assume moreover that E ˛.f0/ < 1 for some ˛ 2 .; 2/. We denote by .ft /t�0 the
unique solution to (1), as well as, for each N � 2, the unique solution .V i;Nt /iD1;:::;N;t�0

to (3) starting from a given exchangeable .R3/N -valued .V i;N0 /iD1;:::;N . We suppose that
Mp WD mp.f0/C supN EŒjV 1;N0 jp� <1 and we conclude from Theorem 2 and Propo-
sition 13 that for all p � 2, supŒ0;1/mp.ft / C supN�2 supŒ0;1/ EŒjV

1;N
t jp� < 1 and

depends only on ; p and on some (upper bound of) MpC . If  2 .0; 1�, we know that
supt�0 E ˛.ft / < 1. If finally H.f0/ < 1, then H.ft / � H.f0/ for all t � 0, whence, by
Lemma 7,

(9) sup
t�0

sup
v2R3
jj.a.ft ; v//

�1
jj <1

and depends only on  and on (upper bounds of) m2.f0/ and H.f0/.

In the whole section, we write C for a constant depending only on  , ˛, on (upper bounds
of) fMp; p � 2g and additionally on (an upper bound of) E ˛.f0/ if  2 .0; 1�. It is also
allowed to depend on (an upper bound of)H.f0/ when the latter is supposed to be finished.
Finally, any other dependence will be indicated in subscript.
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We fix N � 2 for the whole section, we recall that �Nt D N�1
PN
1 ıV i;Nt

and we put

"N D N
�1. By [17, Proposition A.1], we can find .W i;N

0 /iD1;:::;N � f
˝N
0 such that

(a) f.V i;N0 ; W
i;N
0 /; i D 1; : : : ; N g is exchangeable,

(b) W2
2.N

�1
PN
1 ıV i;N

0

; N�1
PN
1 ıW i;N

0

/ D N�1
PN
1 jV

i;N
0 �W

i;N
0 j2 a.s.,

(c) denoting by FN the law of .V i;N0 /iD1;:::;N , W2
2.FN ; f

˝N
0 / D EŒ

PN
1 jV

i;N
0 �W

i;N
0 j2�.

8.2. A first coupling

We first rewrite suitably the particle system.

L 14. – For each i D 1; : : : ; N , the process

ˇ
i;N
t D

1
p
N

NX
jD1

Z t

0

Œa1=2.�Ns ; V
i;N
s /��1�.V i;Ns � V j;Ns /dB ijs

is a 3D Brownian motion. Furthermore, for all i D 1; : : : ; N , all t � 0,

V
i;N
t D V i0 C

Z t

0

b.�Ns ; V
i;N
s /ds C

Z t

0

a1=2.�Ns ; V
i;N
s /dˇi;Ns :

R 15. – Observe that a1=2.�Ns ; V
i;N
s / D ŒN�1

PN
jD1 a.V

i;N
s � V

j;N
s /�1=2

with a.x/ D Œ�.x/�2. If a1=2.�Ns ; V
i;N
s / is not invertible, we use Lemma 16 to define

Œa1=2.�Ns ; V
i;N
s /��1�.V

i;N
s � V

j;N
s /. We thus always have

(i) for all j D 1; : : : ; N ,

a1=2.�Ns ; V
i;N
s /Œa1=2.�Ns ; V

i;N
s /��1�.V i;Ns � V j;Ns / D �.V i;Ns � V j;Ns /I

(ii)

N�1
NX
jD1

.Œa1=2.�Ns ; V
i;N
s /��1�.V i;Ns � V j;Ns //.Œa1=2.�Ns ; V

i;N
s /��1�.V i;Ns � V j;Ns //� D I3:

L 16. – For A1; : : : ; AN 2 SC3 and M D N�1
PN
1 A

2
j , we can find some matrices

B1; : : : ; BN such that (a) M 1=2Bj D Aj for all j D 1; : : : ; N and (b) N�1
PN
1 BjB

�
j D I3.

We write Bj DM�1=2Aj , even in the case where M is not invertible.

Proof. – IfM is invertible, it suffices to setBj DM�1=2Aj . IfM D 0, the choiceBj D I3
is suitable. Assume now that M has exactly two non-trivial eigenvalues �1; �2 > 0 (the
last case where M has exactly one non-trivial eigenvalue is treated similarly). Consider an
orthonormal basis e1; e2; e3 of eigenvectors, that is,Me1 D �1e1,Me2 D �2e2 andMe3 D 0
(so that M D �1e1e

�
1 C �2e2e

�
2 / and observe that Aj e3 D 0 for all j . It then suffices to set

Bj D .�
�1=2
1 e1e

�
1 C �

�1=2
2 e2e

�
2 /Aj C e3e

�
3 .

We can now give the
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Proof of Lemma 14. – For i fixed, the Brownian motions .B ij /j¤i are independent.
Hence the (matrix) bracket of the 3D martingale .ˇi;Nt /t�0 is given by (recall that �.0/ D 0)

1

N

NX
jD1

Z t

0

�
Œa1=2.�Ns ; V

i;N
s /��1�.V i;Ns � V j;Ns /

��
Œa1=2.�Ns ; V

i;N
s /��1�.V i;Ns � V j;Ns /

��
ds D I3t;

which implies that .ˇi;Nt /t�0 is a Brownian motion. We used Remark 15-(ii). Rewriting (3)
as in the statement is straightforward, using that

a1=2.�Ns ; V
i;N
s /Œa1=2.�Ns ; V

i;N
s /��1�.V i;Ns � V j;Ns / D �.V i;Ns � V j;Ns /

by Remark 15-(i).

We next introduce a (non-independent) family of Landau processes. Recall that the
matrix U was introduced in (6), that U" was defined in Lemma 11-(ii). Denote "N D N�1.

L 17. – The system of equations (for i D 1; : : : ; N )

W
i;N
t D W

i;N
0 C

Z t

0

b.fs; W
i;N
s /ds C

Z t

0

a1=2.fs; W
i;N
s /U"N .a.�

N
s ; V

i;N
s /; a.�Ns ; W

i;N
s //dˇi;Ns ;

with �Nt D N�1
PN
1 ıW i;N

t
, has a pathwise unique solution. Furthermore, W 1;N

t � ft for all

t � 0 and the family f.V i;Nt ; W
i;N
t /t�0; i D 1; : : : ; N g is exchangeable.

Observe that the fine coupling is necessary to obtain some good results and this is
not related to the fact that we deal with a conservative system. Using the naive coupling
(without U ), only Maxwell molecules can be dealt with, see e.g., [14], and even in this case,
the constants increase exponentially fast with time. On the contrary, still in the Maxwell case,
the constants increase polynomially (at most like .1 C t /5=2) in all the lemmas below and
this will easily be compensated by the fast and uniform (in N ) convergence to equilibrium
of the particle system.

Proof. – As usual, the existence of a pathwise unique local solution follows from the
fact that the coefficients are locally Lipschitz continuous (which follows from Lemmas 9
and Lemma 11-(iii)). But for each i , the matrix U"N .a.�

N
s ; V

i;N
s /; a.�Ns ; W

i;N
s // being a.s.

orthogonal for all s � 0, the process
R t
0
U"N .a.�

N
s ; V

i;N
s /; a.�Ns ; W

i;N
s //dˇ

i;N
s is a 3D

Brownian motion. Consequently, the SDE satisfied by W i;N is equivalent (in law) to the
SDE Wt D V0 C

R t
0
b.fs; Ws/ds C

R t
0
a1=2.fs; Ws/dBs (with V0 � f0). We know from

Proposition 10-(i) that such a process does not explode in finite time, so that the unique
solution is global, and from Proposition 10-(ii) thatW i;N

t � ft for all t � 0. Exchangeability
is obvious, using that it holds true at time 0 (see point (a) at the end of Subsection 8.1).
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8.3. A second coupling

Unfortunately, the processes .W i;N
t /t�0 are not independent, so we have to show that they

are almost independent in some sense.

L 18. – For all K D 1; : : : ; N , we can find an i.i.d. family of processes
.Z

i;N;K
t /iD1;:::;K;t�0 such that Zi;N;Kt � ft for all t � 0, all i D 1; : : : ; K and such that

for all � 2 .0; 1/, all T > 0,

(10) sup
iD1;:::;K

sup
Œ0;T �

EŒjW i;N
t �Z

i;N;K
t j

2� � C�;T
K

N 1��
:

Moreover, the constant C�;T is of the form C�T if  D 0.

Proof. – Let K 2 f1; : : : ; N g and � 2 .0; 1=2/ be fixed for the whole proof. We also put
ı D .K=N/2 > 0. For simplicity, we write V is D V

i;N
s , W i

s D W
i;N
s and Zis D Z

i;N;K
s .

Step 1. We recall that the Brownian motions .B ij /1�i<j�N are independent, that
B ij D �Bj i and we introduce a new family . QB ij /1�i;j�N of independent Brownian
motions (also independent of everything else). We recall that the Brownian motions ˇi;Nt
were defined in Lemma 14 and we introduce, for i D 1; : : : ; K,

Q̌i;N
t D

1
p
N

NX
jD1

Z t

0

Œa1=2.�Ns ; V
i;N
s /��1�.V i;Ns � V j;Ns /d Œ1Ifj�Kg QB

ij
s C 1Ifj>KgB

ij
s �:

One easily checks, using Remark 15-(ii), that the continuous 3D martingales Q̌1;N ; : : : ; Q̌K;N

satisfy h Q̌i;N ; Q̌j;N it D I3t1IfiDj g, so that they are independent 3D Brownian motions. We
next claim that the system of equations (for i D 1; : : : ; K)

Zit D W
i
0 C

Z t

0

b.fs; Z
i
s/ds C

Z t

0

a1=2.fs; Z
i
s/X

i
sU

i
s d
Q̌i;N
s ;

where we have set U is D U"N .a.�
N
s ; V

i
s /; a.�

N
s ; W

i
s // and X is D Uı.a.fs; W

i
s /; a.fs; Z

i
s//

for simplicity, has a pathwise unique solution (with the same arguments as usual, see the
proof of Lemma 17) and that for each i D 1; : : : ; K, Zit � ft for all t � 0. Furthermore,
the Brownian motions

R t
0
X isU

i
s d
Q̌i;N
s being independent (as orthogonal martingales with

deterministic brackets), as well as the initial conditions W i
0 , the pathwise uniqueness stated

in Proposition 10-(i) implies that the processes .Zit /t�0, for i D 1; : : : ; K, are independent.
It only remains to prove (10) and, by exchangeability, it suffices to study EŒjW 1

t �Z
1
t j
2�.

Step 2. Here we verify that, denoting by RNt the law of .W 1
t ; Z

1
t /, of which the two

marginals equal ft and using the notation of Proposition 12, we have

d

dt
EŒjW 1

t �Z
1
t j
2� � C�KN

��1
C �ı.R

N
t /:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



180 N. FOURNIER AND A. GUILLIN

Recalling the equations satisfied by W 1 (see Lemma 17) and Z1, as well as the expressions
of ˇ1;N (see Lemma 14) and Q̌1;N , we see that

W 1
t �Z

1
t D

Z t

0

Œb.fs; W
1
s / � b.fs; Z

1
s /�ds

C
1
p
N

NX
jDKC1

Z t

0

h
a1=2.fs; W

1
s / � a

1=2.fs; Z
1
s /X

1
s

i
U 1s Œa

1=2.�Ns ; V
1;N
s /��1�.V 1;Ns � V j;Ns /dB1js

C
1
p
N

KX
jD1

Z t

0

a1=2.fs; W
1
s /U

1
s Œa

1=2.�Ns ; V
1;N
s /��1�.V 1;Ns � V j;Ns /dB1js

�
1
p
N

KX
jD1

Z t

0

a1=2.fs; Z
1
s /X

1
s U

1
s Œa

1=2.�Ns ; V
1;N
s /��1�.V 1;Ns � V j;Ns /d QB1js :

All the Brownian motions appearing in this formula are independent. By the Itô formula, we
find .d=dt/EŒjW 1

t �Z
1
t j
2� D EŒI1 C I2 C I3 C I4�, with

I1 D 2.W
1
t �Z

1
t / � Œb.ft ; W

1
t / � b.ft ; Z

1
t /�;

I2 D
1

N

NX
jDKC1

Œa1=2.ft ; W 1
t / � a

1=2.ft ; Z
1
t /X

1
t �U

1
t Œa

1=2.�Nt ; V
1;N
t /��1�.V

1;N
t � V

j;N
t /

2;
I3 D

1

N

KX
jD1

Œa1=2.ft ; W 1
t /U

1
t Œa

1=2.�Nt ; V
1;N
t /��1�.V

1;N
t � V

j;N
t /

2;
I4 D

1

N

KX
jD1

Œa1=2.ft ; Z1t /U 1t X1t Œa1=2.�Nt ; V 1;Nt /��1�.V
1;N
t � V

j;N
t /

2:
Using that N�1

PN
jD1Œ�.V

1;N
t � V

j;N
t /�2 D Œa1=2.�Nt ; V

1;N
t /�2 and that kAk2 D Tr AA�,

we find

I2 �
1

N

NX
jD1

Œa1=2.ft ; W 1
t / � a

1=2.ft ; Z
1
t /X

1
t �U

1
t Œa

1=2.�Nt ; V
1;N
t /��1�.V

1;N
t � V

j;N
t /

2
D

Œa1=2.ft ; W 1
t / � a

1=2.ft ; Z
1
t /X

1
t �U

1
t

2
D

a1=2.ft ; W 1
t / � a

1=2.ft ; Z
1
t /X

1
t

2
because U 1t is a.s. an orthogonal matrix. Recalling the notation of Proposition 12 and that
X1t D Uı.a.ft ; W

i
t /; a.ft ; Z

i
t //, we conclude that EŒI1 C I2� � �ı.RNt /.

By exchangeability, we have, for q > 1 and q0 D q=.q � 1/, by Hölder’s inequality,

EŒI3� �
K

N
E
ha1=2.ft ; W 1

t /
2Œa1=2.�Nt ; V 1;Nt /��1�.V

1;N
t � V

2;N
t /

2i
�
K

N
E
ha1=2.ft ; W 1

t /
2qi1=qEhŒa1=2.�Nt ; V 1;Nt /��1�.V

1;N
t � V

2;N
t /

2q0i1=q0

:
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By Lemma 9, since W 1
t � fs and since supŒ0;1/m.2C/q.fs/ < 1 (see Subsection 8.1), we

have EŒka1=2.ft ; W 1
t /k

2q�1=q � Cq . Next, we have a.s.

kŒa1=2.�Nt ; V
1;N
t /��1�.V

1;N
t � V

2;N
t /k2 �

NX
jD1

kŒa1=2.�Nt ; V
1;N
t /��1�.V

1;N
t � V

j;N
t /k2 D N

by Remark 15-(ii) and, by exchangeability,

EŒkŒa1=2.�Nt ; V
1;N
t /��1�.V

1;N
t � V

2;N
t /k2�

D N�1EŒ
NX
jD1

kŒa1=2.�Nt ; V
1;N
t /��1�.V

1;N
t � V

j;N
t /k2� D 1:

Consequently,

EŒI3� � Cq
K

N
E
hŒa1=2.�Nt ; V 1;Nt /��1�.V

1;N
t � V

2;N
t /

2N 2.q0�1/
i1=q0

D CqKN
2.q0�1/=q0�1:

Choosing q D 2=�, we find that 2.q0 � 1/=q0 D �, whence EŒI3� � C�KN ��1. Finally, I4 is
treated exactly as I3 and this ends the step.

Step 3. If  D 0, by Proposition 12-(i), �ı.RNt / � C
p
ı.1Cm2.ft //

1=2 � C
p
ı, so that

we end with .d=dt/EŒjW 1
t �Z

1
t j
2� � C

p
ıCC�KN

��1 � C�KN
��1 (because ı D .K=N/2).

Since W 1
0 D Z

1
0 , we conclude that EŒjW 1

t �Z
1
t j
2� � C�KN

��1T as desired.

Step 4. Assume next that  2 .0; 1�. We then have supŒ0;1/Œm2C .ft /C E ˛.ft /� <1, see
Subsection 8.1. We thus infer from Proposition 12-(ii) that for all M > 0,

�ı.R
N
t / � C

p
ı CM

Z
R3�R3

jv � wj2RNt .dv; dw/C Ce
��M˛=

:

But
p
ı D KN�1 and

R
R3�R3 jv�wj

2RNt .dv; dw/ D EŒjW 1
t �Z

1
t j
2�, so that we have proved

that .d=dt/EŒjW 1
t �Z

1
t j
2� � C�KN

��1 CMEŒjW 1
t �Z

1
t j
2�C Ce��M

˛=
and thus

sup
Œ0;T �

EŒjW 1
t �Z

1
t j
2� � ŒC�TKN

��1
C CTe��M

˛=

�eMT :

Choosing M D Œ��1 log.1 C K�1N 1��/�=˛, for which e��M
˛=
D 1=.1 C K�1N 1��/ �

KN ��1,

sup
Œ0;T �

EŒjW 1
t �Z

1
t j
2� � C�TKN

��1 exp
�
T Œ��1 log.1CK�1N 1��/�=˛

�
:

Since  < ˛, this is easily bounded byC�;T .KN ��1/1�� � C�;TKN
�.1��/2 � C�;TKN

2��1.

A first consequence of the previous lemma is the following quantitative law of large
numbers.

L 19. – Consider a function ' W R3 7! R satisfying j'.x/ � '.y/j �

C jx � yj.1C jxjq C jyjq/ for some q � 2. As usual, we set '.�; x/ D
R
R3 '.x � y/�.dy/ for

any probability measure � on R3. Then for all T > 0, all � 2 .0; 1=2/,

sup
Œ0;T �

E
�
j'.�Nt ; W

1;N
t / � '.ft ; W

1;N
t /j2

�
� C�;T;'N

��1=2:
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Moreover, the constant C�;T;' is of the form C�;'
p
T if  D 0.

Proof. – Using exchangeability, we write

E
�
j'.�Nt ; W

1;N
t / � '.ft ; W

1;N
t /j2

�
D

1

N 2
E
h� NX

iD1

Œ'.W
1;N
t �W

i;N
t / � '.ft ; W

1;N
t /�

�2i
D

1

N 2

�
I1 C 2.N � 1/I2 C .N � 1/I3 C .N � 1/.N � 2/I4

�
;

with (we develop the squared sum and separate the cases (a) i D j D 1, (b) i D 1 and j ¤ 1
or i ¤ 1 and j D 1, (c) i D j ¤ 1, (d) i ¤ j , i ¤ 1, j ¤ 1)

I1 D EŒ.'.0/ � '.ft ; W 1;N
t //2�;

I2 D EŒ.'.0/ � '.ft ; W 1;N
t //.'.W

1;N
t �W

2;N
t / � '.ft ; W

1;N
t //�

I3 D EŒ.'.W 1;N
t �W

2;N
t / � '.ft ; W

1;N
t //2�

I4 D EŒ.'.W 1;N
t �W

2;N
t / � '.ft ; W

1;N
t //.'.W

1;N
t �W

3;N
t / � '.ft ; W

1;N
t //�:

Using only that ' has at most polynomial growth, that W 1;N
t � W

2;N
t � ft and that all the

moments of ft are uniformly (in time) bounded, we easily verify that I1 C I2 C I3 � C' ,
whence N�2.I1 C 2.N � 1/I2 C .N � 1/I3/ � C'N�1. We next use Lemma 18 with K D 3
to write I4 � J1 C J2 C J3, with

J1 D EŒ.'.Z1;N;3t �Z
2;N;3
t / � '.ft ; Z

1;N;3
t //.'.Z

1;N;3
t �Z

3;N;3
t / � '.ft ; Z

1;N;3
t //�;

J2 D EŒ.j'.W 1;N
t �W

2;N
t / � '.Z

1;N;3
t �Z

2;N;3
t /j C j'.ft ; W

1;N
t / � '.ft ; Z

1;N;3
t /j/

� j'.Z
1;N;3
t �Z

3;N;3
t / � '.ft ; Z

1;N;3
t /j�;

J3 D EŒj'.W 1;N
t �W

2;N
t / � '.ft ; W

1;N
t /j

� .j'.W
1;N
t �W

3;N
t / � '.Z

1;N;3
t �Z

3;N;3
t /j C j'.ft ; W

1;N
t / � '.ft ; Z

1;N;3
t /j/�:

But J1 D 0 because Z1;N;3t ; Z
2;N;3
t ; Z

3;N;3
t are independent and ft -distributed: it suffices to

first take the conditional expectation knowing Z
1;N;3
t and to observe that

EŒ'.Z1;N;3t �Z
2;N;3
t /jZ

1;N;3
t � D '.ft ; Z

1;N;3
t /. Next, using that all the variables W 1;N

t ; W
2;N
t ,

W
3;N
t ; Z

1;N;3
t ; Z

2;N;3
t ; Z

3;N;3
t are ft -distributed, that all the moments of ft are uniformly

bounded, that ' has at most polynomial growth, the local Lipschitz property of ', and that
j'.ft ; w/ � '.ft ; z/j � C' jw � zj.1C mq.ft /C jwj

q C jzjq/, we easily get convinced that,
by exchangeability and the Cauchy-Schwarz inequality,

EŒJ2 C J3� � C'EŒjW 1;N
t �Z

1;N;3
t j

2�1=2:

This is bounded by C�;T;'N ��1=2 by Lemma 18 with K D 3, and the constant C�;T;' is of
the form C�;'

p
T in the case where  D 0.

8.4. Computation of the error

We now handle the main computation of the proof.
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L 20. – For all T > 0, all � 2 .0; 1=4/, all t 2 Œ0; T �,

EŒjV 1;Nt �W
1;N
t j

2�

�

8̂̂̂̂
<̂
ˆ̂̂:
C�.1C T /

5=2
�
EŒjV 1;N0 �W

1;N
0 j2�CN ��1=4

�
if  D 0;

C�.1C T /
5=2
�
EŒjV 1;N0 �W

1;N
0 j2�CN ��1=2

�
if  D 0 and H.f0/ <1;

C�;T
�
EŒjV 1;N0 �W

1;N
0 j2�CN�1=4

�1�� if  2 .0; 1�,

C�;T
�
EŒjV 1;N0 �W

1;N
0 j2�CN�1=2

�1�� if  2 .0; 1� and H.f0/ <1:

Proof. – For simplicity, we write V it D V
i;N
t , W i

t D W
i;N
t and U it D U"N .a.�

N
t ; V

i;N
t /,

a.�Nt ; W
i;N
t //. Also, we set uNt D EŒjV 1;Nt � W

1;N
t j2�. For each t � 0, we define

�Nt D N�1
PN
1 ı.V i;Nt ;W

i;N
t /

, which a.s. belongs to H .�Nt ; �
N
t /. We fix T > 0 and we

work on Œ0; T �. We also fix � 2 .0; 1=9/: it of course suffices to check the estimates for small
values of � > 0.

Step 1. Recalling the equations satisfied by V 1 (see Lemma 14) and W 1 (see Lemma 17),
the Itô formula leads us to
d

dt
uNt D E

h
2.V 1t �W

1
t / � .b.�

N
t ; V

1
t / � b.ft ; W

1
t //C ka

1=2.�Nt ; V
1
t / � a

1=2.ft ; W
1
t /U

1
t k
2
i

D E
h
2.V 1t �W

1
t / � .b.�

N
t ; V

1
t / � b.�

N
t ; W

1
t //C ka

1=2.�Nt ; V
1
t / � a

1=2.�Nt ; W
1
t /U

1
t k
2
i

C E
h
2.V 1t �W

1
t / � .b.�

N
t ; W

1
t / � b.ft ; W

1
t //

i
C E

h
k.a1=2.�Nt ; W

1
t / � a

1=2.ft ; W
1
t //U

1
t k
2
i

C 2E
h
hha1=2.�Nt ; V

1
t / � a

1=2.�Nt ; W
1
t /U

1
t ; .a

1=2.�Nt ; W
1
t / � a

1=2.ft ; W
1
t //U

1
t ii

i
:

Using now that U 1t is an orthogonal matrix and the Cauchy-Schwarz inequality, we find that

d

dt
uNt � EŒINt �C 2

q
uNt EŒJNt �C EŒKNt �C 2E

hq
LNt K

N
t

i
;

where

INt D 2.V
1
t �W

1
t / � .b.�

N
t ; V

1
t / � b.�

N
t ; W

1
t //C ka

1=2.�Nt ; V
1
t / � a

1=2.�Nt ; W
1
t /U

1
t k
2;

JNt D jb.�
N
t ; W

1
t / � b.ft ; W

1
t /j

2;

KNt D ka
1=2.�Nt ; W

1
t / � a

1=2.ft ; W
1
t /k

2;

LNt D ka
1=2.�Nt ; V

1
t / � a

1=2.�Nt ; W
1
t /U

1
t k
2:

Step 2. We first prove that EŒINt � D EŒ�"N .�Nt /�. Using exchangeability,

EŒINt � D E
�
1

N

NX
iD1

Œ2.V it �W
i
t / � .b.�

N
t ; V

i
t / � b.�

N
t ; W

i
t //

C ka1=2.�Nt ; V
i
t / � a

1=2.�Nt ; W
i
t /U

i
t k
2

�
:

It then suffices to recall that �Nt D N�1
PN
1 ı.V i;Nt ;W

i;N
t /

, of which the marginals are �Nt
and �Nt , that U it D U"N .a.�

N
t ; V

i
t /; a.�

N
t ; W

i
t // and the notation of Proposition 12.
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Step 3. Using Lemma 19 and the Lipschitz property of b checked in Lemma 8, we imme-
diately get that EŒJNt � � C�;TN ��1=2, with moreover C�;T D C�T 1=2 if  D 0.

Step 4. Here we verify that
(i) we always have EŒKNt � � C�;TN ��1=4, with moreover C�;T D C�T 1=4 if  D 0;
(ii) if H.f0/ <1, then EŒKNt � � C�;TN ��1=2, with moreover C�;T D C�T 1=2 if  D 0.
For (i), we use the first inequality of Lemma 6 to write

KNt D ka
1=2.�Nt ; W

1
t / � a

1=2.ft ; W
1
t /k

2
� Cka.�Nt ; W

1
t / � a.ft ; W

1
t /k:

We then apply Lemma 19, which is licit thanks to the Lipschitz property of a checked in
Lemma 8, to get EŒKNt � � C�;TN ��1=4, with C�;T D C�T 1=4 if  D 0.

For point (ii), we use the second inequality of Lemma 6 and then the ellipticity estimate (9)
to write KNt � CkŒa.ft ; W

1
t /�
�1kka.�Nt ; W

1
t /� a.ft ; W

1
t /k

2 � ka.�Nt ; W
1
t /� a.ft ; W

1
t /k

2.
Again, Lemma 19 implies that EŒKNt � � C�;TN

��1=2, with moreover C�;T D C�T
1=2

if  D 0.

Step 5. We now check that EŒ
q
KNt L

N
t � � EŒINt �C EŒKNt �C C�

q
uNt EŒKNt �.1��/=2. We

first observe that by Lemma 8,

LNt D I
N
t � 2.V

1
t �W

1
t / � .b.�

N
t ; V

1
t / � b.�

N
t ; W

1
t //

D INt � 2.V
1
t �W

1
t / �

1

N

NX
iD1

.b.V 1t � V
i
t / � b.W

1
t �W

i
t //

� INt C C jV
1
t �W

1
t j
1

N

NX
iD1

.jV 1t �W
1
t j C jV

i
t �W

i
t j/.1C jV

1
t j C jW

1
t j C jV

i
t j C jW

i
t j/



� INt C C jV
1
t �W

1
t j

� 1
N

NX
iD1

.jV 1t �W
1
t j
2
C jV it �W

i
t j
2/
�1=2q

HN
t

� INt C CM
N
t

q
HN
t ;

where we have set

HN
t D

1

N

NX
iD1

.1C jV 1t j C jW
1
t j C jV

i
t j C jW

i
t j/

2 and MN
t D jV

1
t �W

1
t j
2
C
1

N

NX
iD1

jV it �W
i
t j
2:

Since
p
x.y C z/ �

p
xy C

p
xz � x C y C

p
xz, we conclude that

E
�q
KNt L

N
t

�
� EŒINt �C EŒKNt �C CEŒ.KNt /

1=2.MN
t /

1=2.HN
t /

1=4�

D EŒINt �C EŒKNt �C CEŒ.MN
t /

1=2.KNt /
.1��/=2..KNt /

�=2.HN
t /

1=4/�

� EŒINt �C EŒKNt �C CEŒMN
t �

1=2EŒKNt �
.1��/=2EŒ..KNt /

�=2.HN
t /

1=4/2=���=2;

where we used the triple Hölder inequality with p D 2, q D 2=.1 � �/ and r D 2=� for the
last inequality. But it holds that EŒMN

t � D 2uNt by exchangeability. To complete the step, it
only remains to prove that EŒ..KNt /�=2.HN

t /
1=4/2=�� � C�.

But KNt � 2ka
1=2.�Nt ; W

1
t /k

2 C 2ka1=2.ft ; W
1
t /k

2 � C.m2C .ft C �
N
t /C jW

1
t j
2/ by

Lemma 9 and HN
t � 1 C jV 1t j

2 C jW 1
t j
2 C m2 .�

N
t C �Nt /. Observing that

EŒ.m2 .�Nt C �Nt //
p� � EŒjV 1t j2p C jW 1

t j
2p� by Hölder’s inequality (if p � 1), that
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W
1;N
t � ft and recalling that supŒ0;1/mp.ft / C supN�2 supŒ0;1/ EŒjV

1;N
t jp� < 1 for

all p > 2 (see Subsection 8.1), we conclude that KNt and HN
t have uniformly bounded

moments of all orders, so that finally, EŒ..KNt /�=2.HN
t /

1=4/2=�� � C�.

Step 6. From Steps 1 and 5, .d=dt/uNt � 3EŒINt �C 3EŒKNt �C C�
q
uNt .EŒJNt �C EŒKNt �1��/.

Using Steps 3 and 4, we see that EŒJNt � C EŒKNt � C EŒKNt �1�� � ı�;T;N , where (i)
ı�;T;N D C�;T .N

��1=4/1�� � C�;TN
2��1=4 in general (with C�;T D C�.1C T /1=2 if  D 0);

(ii) ı�;T;N D C�;T .N
��1=2/1�� � N 2��1=2 if H.f0/ < 1 (with C�;T D C�.1 C T /

1=2 if
 D 0). Using finally Step 2, we end with

d

dt
uNt � 3EŒ�"N .�

N
t /�C ı�;T;N C C

q
uNt ı�;T;N :

Step 7. Assume that  D 0. By Proposition 12-(i) (recall that "N D N�1),

EŒ�"N .�
N
t /� � C

p
"NEŒ1Cm2.�Nt C �

N
t /�

1=2

D C
p
"NEŒjV 1;Nt j

2
C jW

1;N
t j

2�1=2 � C
p
"N � Cı�;T;N :

Thus .d=dt/uNt � Cı�;T;N C C

q
uNt ı�;T;N � C

q
ı2�;T;N C u

N
t ı�;T;N . Integrating this

differential inequality, we deduce that supŒ0;T � u
N
t � C.1 C T /

2.uN0 C ı�;T;N /, from which
the conclusion follows.

Step 8. Assume next that  2 .0; 1� and recall that ˛ >  . By Proposition 12-(ii), for all
M > 0,

�"N .�
N
t / � C

p
"N .1Cm2C .�

N
t C �

N
t //

1=2
CM

Z
R3�R3

jv � wj2�Nt .dv; dw/

C Ce��M
=˛

.m2C .�
N
t /C E ˛.�

N
t //:

We have EŒm2C .�Nt C �Nt /� D EŒjV 1t jC2� C m2C .ft / � C , see Subsection 8.1. Also, it
holds that EŒ E ˛.�Nt /� D E ˛.ft / � C . Finally, EŒ

R
R3�R3 jv � wj

2�Nt .dv; dw/� D uNt . All in

all, we have checked that EŒ�"N .�Nt /� � C
p
"NCCe

��M=˛
CMuNt . Recalling Step 6, using

that
p
"N � Cı�;T;N and that

p
xy � x C y, we conclude that

d

dt
uNt � Cı�;T;N C .M C C/u

N
t C Ce

��M=˛

;

whence uNt � ŒuN0 C CT ı�;T;N C CTe��M
=˛
�e.MCC/T . As usual, we make the choice

M D Œ��1 log.1C 1=ŒuN0 C ı�;T;N �/�
=˛, for which e��M

˛=
� uN0 C ı�;T;N , and this leads

us to

uNt � CT Œu
N
0 C ı�;T;N � exp.T Œ��1 log.1C 1=ŒuN0 C ı�;T;N �/�

=˛
C CT / � C�;T Œu

N
0 C ı�;T;N �

1��;

because  < ˛. We conclude that uNt � C�;T .u
N
0 CN

2��1=4/1�� � C�;T .u
N
0 CN

�1=4/1�9�

in general and uNt � C�;T .u
N
0 CN

2��1=2/1�� � C�;T .u
N
0 CN

�1=2/1�5� ifH.f0/ <1.
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8.5. A quantified law of large numbers for non independent variables

Here we check the following result, to be applied soon to the family W i;N
t .

L 21. – Let N � 2, � 2 P5.R3/, � 2 .0; 1/ and � > 0. Consider an exchangeable
family W1; : : : ; WN of R3-valued random variables such that for all K D 1; : : : ; N , there are
some i.i.d.�-distributed random variablesZK1 ; : : : ; Z

K
K such that maxiD1;:::;K EŒjWi�ZKi j

2� �

�KN ��1. Then

E
h

W2
2

� 1
N

NX
1

ıWi ; �
�i
�
C.1Cm5.�/

2=5 C �/

N .1��/=3
;

where C is a universal constant.

Proof. – We divide the proof into four steps.

Step 1. We recall the well-known fact that for f; f 0; g; g0 2 P2.R3/ and � 2 .0; 1/, it holds
that W2

2.�f C.1��/g; �f
0C.1��/g0/ � �W2

2.f; g/C.1��/W2
2.f

0; g0/. Indeed, consider
X � f and Y � g such that EŒjX � Y j2� D W2

2.f; g/, X
0 � f 0 and Y 0 � g0 such that

EŒjX 0 � Y 0j2� D W2
2.f

0; g0/, and U � Bernoulli.�/, with .X; Y /; .X 0; Y 0/; U independent.
Then Z WD UX C .1 � U/Y � �f C .1 � �/g, Z0 WD UX 0 C .1 � U/Y 0 � �f 0 C .1 � �/g0,
and one easily verifies that EŒjZ � Z0j2� D �EŒjX � Y j2� C .1 � �/EŒjX 0 � Y 0j2� D
�W2

2.f; g/C .1 � �/W2
2.f

0; g0/.

Step 2. For K 2 f1; : : : ; N g, we set �K D K�1
PK
iD1 ıWi . We prove in this step that

EŒW2
2.�N ; �/� � EŒW2

2.�K ; �/�C
.6m2.�/C 4�/K

N
:

To this end, we set R D bN=Kc and we assume that RK < N , the other case being easier
(no need to introduce �NRC1). We introduce, for k D 1; : : : ; R, �N

k
D K�1

PkK
iD.k�1/KC1 ıWi ,

as well as �NRC1 D .N �RK/
�1
PN
iDRKC1 ıWi .

We then write �N D KN�1
PR
kD1 �

N
k
C .N �RK/N�1�NRC1 and we use Step 1 to obtain

W2
2.�N ; �/ � KN

�1
PR
kD1 W2

2.�
N
k
; �/C.N �RK/N�1 W2

2.�
N
RC1; �/. By exchangeability,

we thus find

EŒW2
2.�N ; �/� �

RK

N
EŒW2

2.�
N
1 ; �/�C

N �RK

N
EŒW2

2.�
N
RC1; �/�:

The conclusion follows, because RK � N , because �N1 D �K , because N � RK � K and
because EŒW2

2.�
N
RC1; �/� � 2m2.�/C2EŒjW1j

2� � 2m2.�/C4EŒjZ11 j2�C4EŒjW1�Z11 j2� �
6m2.�/C 4�.

Step 3. We then introduce �K D K�1
PK
iD1 ıZK

i
. Since the ZKi ’s are i.i.d. and �-distributed,

we know from [16, Theorem 1] (with p D 2, d D 3 and q D 5) that for all K D 1; : : : ; N ,
EŒW2

2.�K ; �/� � C.m5.�//
2=5K�1=2.

Next, we have EŒW2
2.�K ; �K/� � K

�1
PK
1 EŒjWi �ZKi j

2� � �KN ��1.

Consequently, EŒW2
2.�K ; �/� � C.m5.�//

2=5K�1=2 C 2�KN ��1.
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Step 4. Gathering Steps 2 and 3, we find that for all K 2 f1; : : : ; N g,

EŒW2
2.�N ; �/� �

C.m5.�//
2=5

p
K

C
2�K

N 1��
C
.6m2.�/C 4�/K

N

� C.1C .m5.�//
2=5
C �/

h 1
p
K
C

K

N 1��

i
:

Choosing K D bN 2.1��/=3c completes the proof.

8.6. Conclusion

We now have all the weapons to prove Theorem 4, except the time uniformity in the
Maxwell case. We start with the case of hard potentials.

Proof of Theorem 4-(ii). – We thus assume that  2 .0; 1� and we fix T > 0 and
� 2 .0; 1/. We recall that �Nt D N�1

PN
1 ıV i;Nt

and �Nt D N�1
PN
1 ıW i;N

t
and we

write W2
2.�

N
t ; ft / � 2W2

2.�
N
t ; �

N
t / C 2W2

2.�
N
t ; ft /. Lemma 18 (together with the fact

that supt�0m5.ft / <1) allows us to apply Lemma 21 to obtain supŒ0;T � EŒW
2
2.�

N
t ; ft /� �

C�;TN
.��1/=3 � C�;TN

��1=3.

Next, we write EŒW2
2.�

N
t ; �

N
t /� � N

�1
PN
1 EŒjV i;Nt �W

i;N
t j

2� D EŒjV 1;Nt �W
1;N
t j2�. We

conclude from Lemma 20 that supŒ0;T � EŒW
2
2.�

N
t ; �

N
t /� is controlled by

C�;T .EŒjV 1;N0 �W
1;N
0 j2�CN�1=4/1�� in general and byC�;T .EŒjV 1;N0 �W

1;N
0 j2�CN�1=2/1��

ifH.f0/ <1. By points (a) and (b) stated at the end of Subsection 8.1, EŒjV 1;N0 �W
1;N
0 j2� D

EŒN�1
PN
1 jV

i;N
0 � W

i;N
0 j2� D EŒW2

2.�
N
0 ; �

N
0 /� � 2EŒW2

2.�
N
0 ; f0/� C 2EŒW2

2.�
N
0 ; f0/�.

And EŒW2
2.�

N
0 ; f0/� � CN�1=2 by [16, Theorem 1], because .W i;N

0 /iD1;:::;N � f ˝N0 and
m5.f0/ <1.

All in all, we can bound supŒ0;T � EŒW
2
2.�

N
t ; ft /� by C�;T .EŒW2

2.�
N
0 ; f0/� C N

�1=4/1��,
and even by C�;T .EŒW2

2.�
N
0 ; f0/�CN

�1=3/1�� if H.f0/ <1.

Proceeding similarly, we find the following weak version of Theorem 4-(i).

T 22. – Assume that  D 0. Fix f0 2 P2.R3/ and consider the corresponding
unique weak solution .ft /t�0 to (1). For each N � 2, consider an exchangeable .R3/N -valued
random variable .V i;N0 /iD1;:::;N and the corresponding unique solution .V i;Nt /iD1;:::;N;t�0 to (3).
Set �Nt D N

�1
PN
1 ıV i;Nt

. Assume that for all p � 2, Mp WD mp.f0/C supN�2 EŒjV
1;N
0 jp� <1.

For all � 2 .0; 1=4/, there is a constant C� depending only on �, on (some upper bounds of)
fMp; p � 2g and on (some upper bound of) H.f0/ when it is finite such that

EŒW2
2.�

N
t ; ft /� �

(
C�.1C t /

5=2.EŒW2
2.�

N
0 ; f0/�CN

��1=4/ in general,

C�.1C t /
5=2.EŒW2

2.�
N
0 ; f0/�CN

��1=3/ if H.f0/ <1:
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9. Uniform convergence to equilibrium in the Maxwell case

We now prove, when  D 0, the uniform (inN ) convergence to equilibrium of the particle
system, following the arguments of Rousset [26]. We will easily deduce the time-uniformity
of the propagation of chaos.

In the whole section, we assume that  D 0. For N � 2 and for FN an exchangeable law
on .R3/N , we call LN .FN / 2 P.C.Œ0;1/; .R3/N / the law of the solution .V i;Nt /iD1;:::;N;t�0

to (3) with .V i;N0 /iD1;:::;N � FN . We also put LNt .FN / D L ..V i;Nt /iD1;:::;N / 2 P..R3/N /
for each t � 0. We introduce

SN D

n
.v1; : : : ; vN / 2 .R3/N W N�1

NX
1

vi D 0; N
�1

NX
1

jvi j
2
D 1

o
:

R 23. – The uniform distribution on SN is invariant: LNt .U .SN // D U .SN / for
all t � 0.

This observation is classical and actually holds true for any value of  2 Œ0; 1�. To give a
precise reference, let us mention that in [6, Theorem 4.2-(ii)], Carrapatoso shows that under
some conditions on FN 2 P.SN /, W1.LNt .FN /; U .SN // tends to 0 as t ! 1, which
implies that U .SN / is invariant.

T 24. – FixN � 7 and some exchangeable .V i;N0 /iD1;:::;N � FN 2 P.SN /. For
all p > 0, there is a constant Cp depending only on p such that if N � 6C 2p, for all t � 0,

1

N
W2
2.L

N
t .FN /; U .SN // � min

n 1
N

W2
2.FN ; U .SN //;

CpEŒ1C jV 1;N0 j8C4p�1=2

.1C t /p

o
:

Although we slightly clarify some points and although the coupling is slightly more
technical for the Landau equation, the proof closely follows [26]. In the next subsection,
we recall some facts about U .SN /. We build a suitable coupling in Subsection 9.2 and
recall Rousset’s main inequality in Subsection 9.3. We conclude the proof of Theorem 24 in
Subsection 9.4. Finally, we deduce Theorem 4-(i) from Theorems 22 and 24 in Subsection 9.5.

9.1. The uniform law on the sphere

We will need the following facts.

L 25. – Let .XN1 ; : : : ; X
N
N / � U .SN /. Then

(i) EŒW2
2.N

�1
PN
1 ıXN

i
; N .0; 3�1I3//� � CN�1=2;

(ii) for all p � 1, EŒjXN1 jp� � Cp, where Cp depends only on p;
(iii) if 1 � p � N � 4, for �N the spectral radius of MN D N�1

PN
1 X

N
i .X

N
i /
�, we have

EŒ.1 � �N /�p� � Cp, where Cp depends only on p.

We will use twice the following observation.

R 26. – For any f; g 2 P2.R3/, W2
2.f; g/ � Œ.Vf /

1=2 � .Vg/
1=2�2C jmf �mg j

2,
where mf D

R
R3 vf .dv/ and Vf D

R
R3 jv �mf j

2f .dv/.

Indeed, for any X � f and Y � g, EŒjX � Y j2� D EŒj.X � EŒX�/ � .Y � EŒY �/j2�
C jEŒX � Y �j2 � Vf C Vg � 2.Vf Vg/1=2 C jmf �mg j2.
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Proof of Lemma 25. – Consider an i.i.d. sample .Y1; : : : ; YN / of the N .0; 3�1I3/ distri-
bution. DefinemN D N�1

PN
1 Yi ,EN D N

�1
PN
1 jYi �mN j

2 andXNi D E
�1=2
N .Yi �mN /.

Then it is classical (see e.g., [26, Proof of Lemma 4.3]) that .XN1 ; : : : ; X
N
N / � U .SN /.

To prove (i), we set �N D N�1
PN
1 ıXN

i
and �N D N�1

PN
1 ıYi . We have

EŒW2
2.�N ; �N /� � N

�1

NX
1

EŒjYi �XNi j
2�

D N�1
NX
1

EŒj.Yi �mN /.1 � 1=
p
EN /CmN j

2�

D EŒ.1 �
p
EN /

2
C jmN j

2�:

By Remark 26 and since m�N D mN and V�N D EN , we conclude that EŒW2
2.�N ; �N /� �

EŒW2
2.�N ; N .0; 3�1I3/�, so that EŒW2

2.�N ; N .0; 3�1I3/� � 4EŒW2
2.�N ; N .0; 3�1I3/�. By

[16, Theorem 1], it holds that EŒW2
2.�N ; N .0; 3�1I3//� � CN�1=2 and this proves (i).

Point (ii) has been checked by Carrapatoso [6, Lemma 10].
We finally check (iii) (see [26, Lemma 4.4] for a less precise statement), assuming that

N � p C 4 � 5. The empirical covariance matrix AN D
PN
1 .Yi � mN /.Yi � mN /

�

classically (see Anderson [3, Section 7]) follows a Wishart.3;N � 1/-distribution, and
MN D AN =Tr AN . The eigenvalues 0 � LN1 � LN2 � LN3 of AN are known to have the
density (see Anderson [3, Theorem 13.3.2], this uses that 3 � N � 1)

gN .`1; `2; `3/ D �
�1
N .`1`2`3/

.N�5/=2Œ.`3�`2/.`3�`1/.`2�`1/�e
�.`1C`2C`3/=21If0<`1<`2<`3g;

where �N D ��9=223.N�1/=2�..N �1/=2/�..N �2/=2/�..N �3/=2/�.3=2/�.1/�.1=2/. But

1 � �N D .L
N
1 C L

N
2 /=.L

N
1 C L

N
2 C L

N
3 / � 2.L

N
1 L

N
2 /

1=2=.3LN3 / D 2.L
N
1 L

N
2 L

N
3 /

1=2=.3.LN3 /
3=2/:

Consequently, for p 2 Œ1; N � 4� (so that 3 � N � p � 1),

EŒ.1 � �N /�p� �
�3
2

�p Z
R3
`
3p=2
3 .`1`2`3/

�p=2gN .`1; `2; `3/d`1d`2d`3

D

�3
2

�p
��1N �N�p

Z
R3
`
3p=2
3 gN�p.`1; `2; `3/d`1d`2d`3

D

�3
2

�p
��1N �N�pEŒ.LN�p3 /3p=2�:

But using thatLN3 � Tr AN D EN � �2.3N �3/, it is not hard to verify that EŒ.LN3 /3p=2� �
CpN

3p=2. We thus end with EŒ.1 � �N /�p� � CpN
3p=2��1N �N�p. Using the expression

of �N and the Stirling formula, we easily conclude that supN�pC4 EŒ.1 � �N /�p� < 1 as
desired.

9.2. The coupling

Recall that U was defined in (6). We need to useU.a.x/; a.y//, which is unfortunately not
well-defined. The lemma below gives some sense to A.x; y/ D �.y/U.a.x/; a.y//.

L 27. – Recall that for x 2 R3, �.x/ D jxj…x? and a.x/ D jxj2…x?. We can find
a measurable family of 3� 3 matrices .A.x; y//x;y2R3 verifying A.�x;�y/ D A.x; y/ and (a)
A.x; y/A�.x; y/ D a.y/, (b) hh�.x/; A.x; y/ii D jxjjyjCx�y, (c) .�.x/�A�.x; y//.x�y/ D 0.
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Proof. – If x D 0, it suffices to set A.x; y/ D �.y/. Else, we consider an orthonormal
basis .e1; e2; e3/ satisfying e1 D x=jxj and e3 � y D 0 and we set A.x; y/ D �.y � e2/e1e�2
C.y � e1/e2e

�
2 C jyje3e

�
3 . To check (a), put yi D y � ei , note that y3 D 0 and that

I3 D e1e
�
1 C e2e

�
2 C e3e

�
3 : direct computations show that both a.y/ D jyj2I3 � yy� and

A.x; y/A�.x; y/ equal y22e1e
�
1 C y21e2e

�
2 C jyj

2e3e
�
3 � y1y2.e1e

�
2 C e2e

�
1 /. For point (b),

one starts with �.x/ D jxjI3 � jxj�1xx� D jxj.e2e�2 C e3e
�
3 /, whence �.x/A�.x; y/ D

jxj.�y2e2e
�
1 Cy1e2e

�
2 Cjyje3e

�
3 / and thus Tr �.x/A�.x; y/ D jxj.y1Cjyj/ D jxjjyjCx �y.

For (c), one easily finds that both �.x/.x � y/ and A�.x; y/.x � y/ equal �y2jxje2.

Since A.x; y/ satisfies conditions (a)-(b)-(c) with �x and �y, it is possible to handle the
construction in such a way that A.�x;�y/ D A.x; y/. Measurability is not an issue.

We now build a suitable coupling.

L 28. – Consider two exchangeable laws FN and GN in P.SN /. There exists an
exchangeable family f.V i;Nt ; W

i;N
t /t�0; i D 1; : : : ; N g satisfying the following properties:

(i) EŒ
PN
1 jV

i;N
0 �W

i;N
0 j2� D W2

2.FN ; GN /;

(ii) a.s., N�1
PN
1 jV

i;N
0 �W

i;N
0 j2 D W2

2.N
�1
PN
1 ıV i;N

0

; N�1
PN
1 ıW i;N

0

/ � 2;

(iii) .V i;Nt /iD1;:::;N;t�0 � LN .FN / and .W i;N
t /iD1;:::;N;t�0 � LN .GN /;

(iv) a.s., for all t � 0,

1

N

NX
iD1

jV
i;N
t �W

i;N
t j

2
D

1

N

NX
iD1

jV
i;N
0 �W

i;N
0 j

2

�
2

N 2

NX
i;jD1

Z t

0

ŒjV i;Ns � V j;Ns jjW i;N
s �W j;N

s j � .V i;Ns � V j;Ns / � .W i;N
s �W j;N

s /�ds:

Proof. – The functionA.x; y/ cannot be continuous and this causes some technical diffi-
culties. We write V it D V

i;N
t and W i

t D W
i;N
t for simplicity.

Step 1. By [17, Proposition A.1], we can findHN 2 P.SN �SN / with marginals FN and
GN such that, for ..V i0 /iD1;:::;N ; .W

i
0 /iD1;:::;N / � HN , the family f.V i0 ; W

i
0 /; i D 1; : : : ; N g is

exchangeable and points (i) and (ii) hold true. Actually, the inequality in (ii) follows from the
fact that W2

2.f; g/ � m2.f / C m2.g/ (choose an independent coupling between f and g)
and that m2.N�1

PN
1 ıV i

0
/ D m2.N

�1
PN
1 ıW i

0
/ D 1 because both FN and GN are carried

by SN .

Step 2. We consider ..V i0 /iD1;:::;N ; .W
i
0 /iD1;:::;N / � HN and some families .B ijt /1�i<j�N;t�0,

. QB it /iD1;:::;N;t�0, . OB it /iD1;:::;N;t�0 of 3D Brownian motions, all these objects being indepen-
dent. For 1 � j < i � N , we set B ijt D �B

j i
t . We also put B i it D 0 for all i D 1; : : : ; N and
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consider the system of SDEs

V
i;"
t D V

i;"
0 C

1

N

NX
jD1

Z t

0

b.V i;"s �V
j;"
s /dsC

1
p
N

NX
jD1

Z t

0

�.V i;"s �V
j;"
s /dB ijs C "

QB it ;

(11)

W
i;"
t D W

i;"
0 C

1

N

NX
jD1

Z t

0

b.W i;"
s �W

j;"
s /dsC

1
p
N

NX
jD1

Z t

0

A.V i;"s �V
j;"
s ; W i;"

s �W
j;"
s /dB ijs C "

OB it :

(12)

This is a 6N -dimensional stochastic differential equation with measurable coefficients with
at most linear growth (because jb.x/j D 2jxj and k�.x/k2 D kA.y; x/k2 D Tr a.x/ D 2jxj2).
Thanks to the additional noises, the diffusion matrix is strictly uniformly elliptic. Conse-
quently, we can apply the result of Krylov [23, p 87] (the coefficients are assumed to be
bounded in [23], but we can use a standard localization procedure or the results of Rozkosz
and Slominski [27]): the system (11)-(12) has at least one (weak) solution.

Step 3. We now prove that

1

N

NX
1

jV
i;"
t �W

i;"
t j

2
D

1

N

NX
1

jV i0 �W
i
0 j
2
C 6"2t C

2"

N

NX
iD1

Z t

0

.V i;"s �W
i;"
s / � .d QB is � d

OB is /

(13)

�
2

N 2

NX
i;jD1

Z t

0

ŒjV i;"s � V
j;"
s jjW

i;"
s �W

j;"
s j � .V

i;"
s � V

j;"
s / � .W i;"

s �W
j;"
s /�ds:

This follows from a direct application of the Itô formula, together with the equalities

I "s WD
1

N 2

NX
i;jD1

�
2.V i;"s �W

i;"
s / � .b.V i;"s � V

j;"
s / � b.W i;"

s �W
j;"
s //

C k�.V i;"s � V
j;"
s / � A.V i;"s � V

j;"
s ; W i;"

s �W
j;"
s /k2

�
D �

2

N 2

NX
i;jD1

ŒjV i;"s � V
j;"
s jjW

i;"
s �W

j;"
s j � .V

i;"
s � V

j;"
s / � .W i;"

s �W
j;"
s /�

and

J "t WD
2

N
p
N

NX
i;jD1

Z t

0

.V i;"s �W
i;"
s / �

�
�.V i;"s � V

j;"
s / � A.V i;"s � V

j;"
s ; W i;"

s �W
j;"
s /

�
dB ijs D 0

that we now check. Using that B ijs D �B
j i
s , �.�x/ D �.x/ and A.�x;�y/ D A.x; y/, we

see that

J "t D
2

N
p
N

X
i<j

Z t

0

�
.V i;"s � V

j;"
s / � .W i;"

s �W
j;"
s /

�
�

�
�.V i;"s � V

j;"
s / � A.V i;"s � V

j;"
s ; W i;"

s �W
j;"
s /

�
dB ijs :
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It then suffices to use that .v � w/�.�.v/ � A.v;w// D 0 by Lemma 27-(c) to conclude that
J "t D 0. Using next that b.�x/ D �b.x/, we write

I "s WD
1

N 2

NX
i;jD1

..V i;"s � V
j;"
s / � .W i;"

s �W
j;"
s // � .b.V i;"s � V

j;"
s / � b.W i;"

s �W
j;"
s //

C k�.V i;"s � V
j;"
s / � A.V i;"s � V

j;"
s ; W i;"

s �W
j;"
s /k2

�
:

But k�.x/ � A.x; y/k2 D Tr �.x/��.x/ C Tr A.x; y/A�.x; y/ � 2Tr �.x/A�.x; y/ D

2jxj2 C 2jyj2 � 2.jxjjyj C x � y/ because �.x/��.x/ D a.x/, A.x; y/A�.x; y/ D a.y/ by
Lemma 27-(a), because Tr a.x/ D 2jxj2, and because Tr �.x/A�.x; y/ D jxjjyj C x � y by
Lemma 27-(b). Also, since b.x/ D �2x, we have .x�y/�.b.x/�b.y// D �2jxj2�2jyj2C4x�y.
All in all, .x � y/ � .b.x/ � b.y//C k�.x/ � A.x; y/k2 D �2jxjjyj C 2x � y. This completes
the step.

Step 4. The coefficients b; �; A have at most linear growth and the initial conditions are
bounded (for N fixed, since HN is carried by SN � SN ). It is thus routine to verify that for
all p � 2, all T > 0, sup"2.0;1/ EŒsupŒ0;T �

PN
1 .jV

i;"
t j

p C jW
i;"
t j

p/� < 1 and that the family
f.V

i;"
t ; W

i;"
t /iD1;:::;N;t�0; " 2 .0; 1/g is tight in C.Œ0;1/; .R3/2N /. We thus may consider a

limit point .V it ; W
i
t /iD1;:::;N;t�0 and we now check that it satisfies all the requirements of the

statement. Exchangeability, as well as points (i) and (ii) (which concern only the initial condi-
tions) are of course inherited from the fact that they are satisfied by .V i;"t ; W

i;"
t /iD1;:::;N;t�0

for all " 2 .0; 1/. Point (iv) is easily obtained by passing to the limit as " ! 0 in (13) (this
uses only that sup"2.0;1/ EŒsupŒ0;T �

PN
1 .jV

i;"
t j

2 C jW
i;"
t j

2/� < 1). Since b; � are continuous
(and even Lipschitz continuous), it is not hard to pass to the limit in (11) and to deduce that
.V it /iD1;:::;N;t�0 is a weak solution to (3), whence .V it /iD1;:::;N;t�0 � LN .FN /. Using finally
that A.x; y/A�.x; y/ D a.y/ D �.y/��.y/ and that A.�x;�y/ D A.x; y/, we deduce that
for each " 2 .0; 1/, (12) can be rewritten in the same form as (11) (with another family of
Brownian motions B ij ). We thus prove as previously that .W i

t /iD1;:::;N;t�0 � LN .GN / and
this completes the proof. Observe that although .V it ; W

i
t /iD1;:::;N;t�0 satisfies all the required

properties, it does not seem possible to check that it solves (11)-(12) with " D 0.

9.3. Rousset’s inequality

The following lemma summarizes a few results found in [26].

L 29. – Consider f; g 2 P.R3/ and R 2 H .f; g/ such that
R
R3 jvj

2f .dv/ DR
R3 jvj

2g.dv/ D 1,
R
R3 vf .dv/ D

R
R3 vg.dv/ D 0 and

R
R3�R3 jv � wj

2R.dv; dw/ � 2.
Denote by �.f / the spectral radius of

R
R3 vv

�f .dv/ 2 SC3 . Observe that �.f / 2 .0; 1�, sinceR
R3 vv

�f .dv/ has trace 1. For all q > 1, there is a constant Cq depending only on q such thatZ
R3�R3

jv � wj2R.dv; dw/ � Cq.1 � �.f //
�1Œm2C2q.f C g/�

1=qŒD.R/�1�1=q :

where D.R/ D
R
R3�R3

R
R3�R3 Œjv � xjjw � yj � .v � x/ � .w � y/�R.dv; dw/R.dx; dy/.

We start with the following lemma [26, Theorem 1.4], of which we sketch the proof for
completeness.
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L 30. – Consider f; g 2 P.R3/ and R 2 H .f; g/ such that
R
R3 jvj

2f .dv/ DR
R3 jvj

2g.dv/ D 1 and
R
R3 vf .dv/ D

R
R3 vg.dv/ D 0. For �.f / the spectral radius

of
R
R3 vv

�f .dv/, it holds that

D0.R/ �2.1 � �.f //
�
1 �

h Z
R3�R3

.v � w/R.dv; dw/
i2�

:

whereD0.R/ WD
R
R3�R3

R
R3�R3 Œjv � xj

2jw � yj2 � ..v � x/ � .w � y//2�R.dv; dw/R.dx; dy/.

Proof. – Consider two independent couples .U; V / and . QU ; QV / with law R. Using that
EŒU � D EŒV � D 0 and EŒjU j2� D EŒjV j2� D 1, a straightforward tedious computation shows
that

D0.R/ D EŒjU � QU j2jV � QV j2 � Œ.U � QU/ � .V � QV /�2� D 2.AC B C C CD/;

where A D EŒjU j2jV j2 � .U � V /2�, B D 1�EŒU � V �2, C D EŒ.U � QU/.V � QV /��EŒ.U � QV /2�
andD D EŒ.U � QU/.V � QV /��EŒ.U � QV /. QU �V /�. Clearly,A � 0 and it is not hard to verify that
D D

P3
k;lD1.EŒUkVl �2 � EŒUkVl �EŒUlVk �/ � 0. Next, C D

P3
k;lD1.EŒUkVl �2 � EŒUkUl �EŒVkVl �/.

Working in an orthonormal basis in which .EŒUkUl �/k;l is diagonal and using that
�.f / D maxk EŒU 2k �,

�C �

3X
kD1

.EŒU 2k �EŒV
2
k � � EŒUkVk �2/ � �.f /

3X
kD1

�
EŒV 2k � �

EŒUkVk �2

EŒU 2
k
�

�
D �.f /

�
1 �

3X
kD1

EŒUkVk �2

EŒU 2
k
�

�
because EŒjU j2� D 1. But by Cauchy-Scwharz’s inequality (and since, again, EŒjU j2� D 1),

EŒU � V �2 D
� 3X
kD1

EŒUkVk �
�2
�

� 3X
kD1

EŒUkVk �2

EŒU 2
k
�

�� 3X
kD1

EŒU 2k �
�
D

3X
kD1

EŒUkVk �2

EŒU 2
k
�
:

Finally,�C � �.f /.1�EŒU �V �2/ andD0.R/ � 2BC2C � 2.1��.f //.1�EŒU �V �2/.

Proof of Lemma 29. – UsingZ
R3
jvj2f .dv/ D

Z
R3
jvj2g.dv/ D 1 and

Z
R3�R3

jv � wj2R.dv; dw/ � 2;

we deduce that 0 �
R
R3�R3.v � w/R.dv; dw/ � 1 and then thatZ

R3�R3
jv�wj2R.dv; dw/ D 2�2

Z
R3�R3

.v�w/R.dv; dw/ � 2�2
� Z

R3�R3
.v�w/R.dv; dw/

�2
:

Applying next Lemma 30, we findZ
R3�R3

jv � wj2R.dv; dw/ � .1 � �.f //�1D0.R/:

Using that (recall that q > 1)

jX j2jY j2 � .X � Y /2 � ŒjX jjY j � .X � Y /�Œ2jX jjY j� � ŒjX jjY j � .X � Y /�1�1=qŒ2jX jjY j�1C1=q

and the Hölder inequality, we see that D0.R/ � D.R/1�1=q.Kq.R//
1=q , where we have set

Kq.R/ D
R
R3�R3

R
R3�R3 Œ2jv � xjjw � yj�

qC1R.dv; dw/R.dx; dy/. To conclude, it suffices
to observe that Kq.R/ � Cqm2qC2.f C g/, which immediately follows from the fact that
R 2 H .f; g/.
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9.4. Conclusion

We can now give the

Proof of Theorem 24. – We fix N � 7, p 2 Œ0; .N � 6/=2� and some exchangeable
FN 2 P.SN /. We put q D p C 1. We apply Lemma 28 with GN D U .SN / to
build a coupling .V i;Nt ; W

i;N
t /iD1;:::;N;t�0 between LN .FN / and LN .U .SN //. We intro-

duce the notation UNt D N�1
PN
1 jV

i;N
t � W

i;N
t j

2 and uNt D EŒUNt �. We also set
�Nt D N�1

PN
1 ıV i;Nt

, �Nt D N�1
PN
1 ıW i;N

t
, as well as �Nt D N�1

PN
1 ı.V i;Nt ;W

i;N
t /

.

Lemma 28-(iv) precisely says that UNt D U
N
0 � 2

R t
0
D.�Ns /ds, withD defined in Lemma 29.

Since UN0 � 2 by Lemma 28-(ii), we deduce that a.s., UNt � 2 for all t � 0.

We now apply Lemma 29 withR D �Nt 2 H .�Nt ; �
N
t /, which is licit since

R
R3 v�

N
t .dv/ DR

R3 v�
N
t .dv/ D 0 and

R
R3 jvj

2�Nt .dv/ D
R
R3 jvj

2�Nt .dv/ D 1 (because both FN and GN are
carried by SN ) and since UNt D

R
R3�R3 jv � wj

2�Nt .dv; dw/ � 2: we deduce that

UNt � Cq.1 � �.�
N
t //
�1Œm2C2q.�

N
t C �

N
t /�

1=qŒD.�Nt /�
1�1=q :

Taking expectations and using the triple Hölder inequality (with 2q, 2q and q=.q � 1/),

uNt � CqEŒ.1 � �.�
N
t //
�2q�1=.2q/EŒ.m2C2q.�Nt C �

N
t //

2�1=.2q/EŒD.�Nt /�
1�1=q :

Since .W i;N
t /iD1;:::;N � U .SN / for each t � 0 by Remark 23, we infer from Lemma 25-(ii)

that EŒ.m2C2q.�Nt //2� � EŒjW 1;N
t j4qC4� � Cq and from Lemma 25-(iii), since �.�Nt / is the

spectral radius of
R
R3 vv

��Nt .dv/ D N�1
PN
1 W

i;N
t .W

i;N
t /� and since 2q � N � 4, that

EŒ.1 � �.�Nt //�2q� � Cq . Also, we know from Proposition 13 that EŒ.m2C2q.�Nt //2� �
EŒjV 1;Nt j4qC4� � CqEŒjV 1;N0 j4qC4�. We end with

uNt � CqEŒ1C jV
1;N
0 j

4qC4�1=.2q/EŒD.�Nt /�
1�1=q :

Recalling that UNt D UN0 � 2
R t
0
D.�Ns /ds, we conclude that, for some cq > 0 depending

only on q,

d

dt
uNt D �2EŒD.�

N
t /� � �cqEŒ1C jV

1;N
0 j

4qC4��1=.2.q�1//.uNt /
q=.q�1/:

Integrating this inequality, we find, recalling that p D q � 1 and setting �p D cq=.q � 1/,

uNt �
�
�pEŒ1C jV 1;N0 j

8C4p��1=.2p/t C .uN0 /
�1=p

��p
:

By construction, since LNt .U .SN // D U .SN / for all t � 0, we have N�1 W2
2.L

N
t .FN /; U .SN // � u

N
t

and, by Lemma 28-(i)-(ii), uN0 D N
�1 W2

2.FN ; U .SN // � 2. We conclude that

N�1 W2
2.L

N
t .FN /; U .SN // �

�
�pEŒ1C jV 1;N0 j

8C4p��1=.2p/t C .N�1 W2
2.FN ; U .SN ///

�1=p
��p

:

On the one hand, this implies that N�1 W2
2.L

N
t .FN /; U .SN // � N

�1 W2
2.FN ; U .SN /. On

the other hand, this gives

N�1 W2
2.L

N
t .FN /; U .SN // � .�pEŒ1C jV 1;N0 j

8C4p��1=.2p/t C 2�1=p/�p;

which is controlled by CpEŒ1C jV 1;N0 j8C4p�1=2.1C t /�p.
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9.5. Uniform propagation of chaos

We start with a consequence of Theorem 24.

C 31. – Assume that  D 0, fix N � 2 and consider some exchangeable
SN -valued initial condition .V i;N0 /iD1;:::;N , the corresponding solution .V i;Nt /iD1;:::;N;t�0 to (3)
and set �Nt D N

�1
PN
1 ıV i;Nt

, For all p > 0, there is a constant Cp depending only on p such
that for all t � 0,

EŒW2
2.�

N
t ; N .0; 3�1I3//� � Cp

�
N�1=2 C EŒ1C jV 1;N0 j

8C4p�1=2.1C t /�p
�
:

Proof. – Let p > 0 be fixed.
If first N � 6 < 2p, then we simply use that W2

2.�
N
t ; N .0; 3�1I3// � 2 a.s., so that the

inequality obviously holds with Cp D 2
p
2p C 6.

If next N � 6 � 2p, we use Theorem 24: for all t � 0, there is .X i;Nt /iD1;:::;N � U .SN /

such that N�1
PN
1 EŒjV i;Nt � X

i;N
t j

2� � CpEŒ1 C jV 1;N0 j8C4p�1=2.1 C t /�p. We now put
�Nt D N

�1
PN
1 ıX i;Nt

and we know from Lemma 25 that EŒW2
2.�

N
t ; N .0; 3�1I3//� � CN�1=2.

But W2
2.�

N
t ; �

N
t / � N

�1
PN
1 jV

i;N
t �X

i;N
t j

2, whence

EŒW2
2.�

N
t ; �

N
t /� � CpEŒ1C jV

1;N
0 j

8C4p�1=2.1C t /�p:

We finally give the

Proof of Theorem 4-(i). – Recall that  D 0, that f0 2 P2.R3/ and that .ft /t�0 is
the unique weak solution to (1). We assume without loss of generality that

R
R3 vf0.dv/ D 0

and that m2.f0/ D 1. For each N � 2, we consider an exchangeable .R3/N -valued random
variable .V i;N0 /iD1;:::;N and the solution .V i;Nt /iD1;:::;N;t�0 to (3). We set �Nt D N

�1
PN
1 ıV i;Nt

.

We assume that for all p � 2, Mp WD mp.f0/C supN�2 EŒjV
1;N
0 jp� <1. The constants are

allowed to depend on upper bounds of fMp; p � 2g and on some upper bound of H.f0/
when it is finite. We fix � 2 .0; 1=5/.

Step 1. By Theorem 22, we have
(i) EŒW2

2.�
N
t ; ft /� � C�.1C t /

5=2.EŒW2
2.�

N
0 ; f0/�CN

��1=4/ in general;
(ii) EŒW2

2.�
N
t ; ft /� � C�.1C t /

5=2.EŒW2
2.�

N
0 ; f0/�CN

��1=3/ if H.f0/ <1.

Step 2. Here we verify that for any p > 0,

EŒW2
2.�

N
t ; N .0; 3�1I3//� � Cp.1C t /�p C CpN�1=2 C CEŒW2

2.�
N
0 ; f0/�:

We put mN0 D N
�1
PN
1 V

i;N
0 and EN0 D N

�1
PN
1 jV

i;N
0 �mN0 j

2.

On the event �N D fEN0 � 1=4g, we set OV i;Nt D .V
i;N
t �mN0 /=

q
EN0 and O�Nt D N

�1
PN
1 ı OV i;Nt

.

Conditionally on�N , . OV i;N0 /iD1;:::;N is exchangeable and takes values in SN , so that we can
apply Corollary 31:

EŒ1I�N W2
2. O�

N
t ; N .0; 3�1I3//� �

Cp
p
N
C
CpEŒ1C 1I�N j OV

1;N
0 j8C4p�1=2

.1C t /p
�

Cp
p
N
C

Cp

.1C t /p
:

For the last inequality, we used the fact that j OV 1;N0 j � 4jV
1;N
0 j C 4jmN0 j on �N ,

whence EŒ1I�N j OV
1;N
0 j8C4p� � CpEŒjV 1;N0 j8pC4� C CpEŒjmN0 j8pC4� � CpEŒjV 1;N0 j8pC4�,

which is bounded by assumption.
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Next, we write

W2
2. O�

N
t ; �

N
t /�

1

N

NX
1

jV
i;N
0 � OV

i;N
0 j

2

D
1

N

NX
1

ˇ̌̌
.V

i;N
t �m

N
0 /

q
EN0 � 1q
EN0

CmN0

ˇ̌̌2
D

�q
EN0 � 1

�2
C jmN0 j

2:

By Remark 26, we have .
q
EN0 � 1/

2 C jmN0 j
2 � W2

2.�
N
0 ; f0/, because m�N

0
D mN0 ,

V�N
0
D EN0 , mf0 D 0 and Vf0 D 1. At this point, we have proved that

EŒ1I�N W2
2.�

N
t ; N .0; 3�1I3//� � CpN�1=2 C Cp.1C t /�p C 2EŒW2

2.�
N
0 ; f0/�:

We next observe that

EŒ1I�c
N

W2
2.�

N
t ; N .0; 3�1I3//� � EŒ1I

fEN
0
<1=4gm2.�

N
t C N .0; 3�1I3//�

D EŒ1I
fEN
0
<1=4g.E

N
0 C jm

N
0 j
2
C 1/� � .5=4/Pr.EN0 < 1=2/C EŒjmN0 j

2�:

But, Pr.EN0 < 1=4/ � Pr.j
q
EN0 � 1j > 1=2/ � 4EŒj

q
EN0 � 1j

2�, and we have checked

that EŒ1I�c
N

W2
2.�

N
t ; N .0; 3�1I3//� � 5EŒj

q
EN0 � 1j

2� C EŒjmN0 j2�, which is controlled

by 5EŒW2
2.�

N
0 ; f0/� as seen a few lines above.

Step 3. We deduce that W2
2.ft ; N .0; 3�1I3// � Cp.1 C t /�p: assume (only during

this step) that .V i;N0 /iD1;:::;N consists of i.i.d. f0-distributed random variables, so that
EŒW2

2.�
N
0 ; f0/� � CN

�1=2 by [16, Theorem 1].

Write

W2
2.ft ; N .0; 3�1I3// � 2EŒW2

2.ft ; �
N
t /�C 2EŒW

2
2.�

N
t ; N .0; 3�1I3//�

� C�.1C t /
5=2.N�1=2 CN ��1=4/C Cp.1C t /

�p
C CN�1=2

by Steps 1 and 2. It then suffices to let N !1.

Step 4. We now conclude the proof in the general case.

If .1C t /5=2 � .EŒW2
2.�

N
0 ; f0/�CN

�1=4/��, then we use Step 1-(i) to write

EŒW2
2.�

N
t ; ft /� � C�.EŒW

2
2.�

N
0 ; f0/�CN

�1=4/��.EŒW2
2.�

N
0 ; f0/�CN

��1=4/

� C�.EŒW2
2.�

N
0 ; f0/�CN

�1=4/1�5�:

If now .1 C t /5=2 > .EŒW2
2.�

N
0 ; f0/� C N�1=4/��, then we use Steps 2 and 3 with

p D 5=.2�/ to write EŒW2
2.�

N
t ; ft /� � C�.1 C t /

�5=.2�/ C C�N
�1=2 C CEŒW2

2.�
N
0 ; f0/�.

But .1 C t /�5=.2�/ � EŒW2
2.�

N
0 ; f0/� C N�1=4 and we end with EŒW2

2.�
N
t ; ft /� �

C�.EŒW2
2.�

N
0 ; f0/�CN

�1=4/.

Thus supŒ0;1/ EŒW
2
2.�

N
t ; ft /� � C�.EŒW

2
2.�

N
0 ; f0/�CN

�1=4/1�5� as desired.

Step 5. We finally conclude when H.f0/ <1.
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If .1C t /5=2 � .EŒW2
2.�

N
0 ; f0/�CN

�1=3/��, then we use Step 1 to write

EŒW2
2.�

N
t ; ft /� � C�.EŒW

2
2.�

N
0 ; f0/�CN

�1=3/��.EŒW2
2.�

N
0 ; f0/�CN

��1=3/

� C�.EŒW2
2.�

N
0 ; f0/�CN

�1=3/1�4�:

If now .1 C t /5=2 > .EŒW2
2.�

N
0 ; f0/� C N�1=3/��, then we use Steps 2 and 3 with

p D 5=.2�/ to write EŒW2
2.�

N
t ; ft /� � C�.1 C t /

�5=.2�/ C C�N
�1=2 C CEŒW2

2.�
N
0 ; f0/�.

But .1 C t /�5=.2�/ � EŒW2
2.�

N
0 ; f0/� C N�1=3 and we end with EŒW2

2.�
N
t ; ft /� �

C�.EŒW2
2.�

N
0 ; f0/�CN

�1=3/.
We conclude that supŒ0;1/ EŒW

2
2.�

N
t ; ft /� � C�.EŒW2

2.�
N
0 ; f0/� C N�1=3/1�4� as

desired.
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