Fixed points for bounded orbits in Hilbert spaces
[Points fixes en présence d'orbites bornées dans les espaces hilbertiens]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 131-156.

Nous considérons la propriété suivante pour un groupe topologique G : toute action affine continue de G sur un espace hilbertien ayant une orbite bornée a un point fixe. Nous montrons qu'elle caractérise la moyennabilité des groupes localement compacts dénombrables à l'infini (en particulier des groupes discrets dénombrables).

Pour ce faire, nous introduisons une variante « modérée » de l'induction des représentations et nous généralisons le théorème de Gaboriau-Lyons pour montrer que tout groupe localement compact non moyennable admet, dans un sens probabiliste, des sous-groupes libres discrets. Ceci fournit une « solution au sens de la mesure » au problème de von Neumann pour les groupes localement compacts.

Nous illustrons ce dernier résultat en fournissant une réponse partielle au problème de Dixmier pour les groupes localement compacts.

Consider the following property of a topological group G: every continuous affine G-action on a Hilbert space with a bounded orbit has a fixed point. We prove that this property characterizes amenability for locally compact σ-compact groups (e.g., countable groups).

Along the way, we introduce a “moderate” variant of the classical induction of representations and we generalize the Gaboriau-Lyons theorem to prove that any non-amenable locally compact group admits a probabilistic variant of discrete free subgroups. This leads to the “measure-theoretic solution” to the von Neumann problem for locally compact groups.

We illustrate the latter result by giving a partial answer to the Dixmier problem for locally compact groups.

Publié le :
DOI : 10.24033/asens.2317
Classification : 47H10, 22D12, 22A05, 43A07, 20E05, 37A20
Keywords: Amenable group, fixed point theorem, von Neumann problem, Dixmier problem
Mot clés : Groupe moyennable, théorème du point fixe, problème de von Neumann, problème de Dixmier
@article{ASENS_2017__50_1_131_0,
     author = {Gheysens, Maxime and Monod, Nicolas},
     title = {Fixed points for bounded orbits  in {Hilbert} spaces},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {131--156},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {1},
     year = {2017},
     doi = {10.24033/asens.2317},
     mrnumber = {3621428},
     zbl = {1373.43001},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2317/}
}
TY  - JOUR
AU  - Gheysens, Maxime
AU  - Monod, Nicolas
TI  - Fixed points for bounded orbits  in Hilbert spaces
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 131
EP  - 156
VL  - 50
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2317/
DO  - 10.24033/asens.2317
LA  - en
ID  - ASENS_2017__50_1_131_0
ER  - 
%0 Journal Article
%A Gheysens, Maxime
%A Monod, Nicolas
%T Fixed points for bounded orbits  in Hilbert spaces
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 131-156
%V 50
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2317/
%R 10.24033/asens.2317
%G en
%F ASENS_2017__50_1_131_0
Gheysens, Maxime; Monod, Nicolas. Fixed points for bounded orbits  in Hilbert spaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 131-156. doi : 10.24033/asens.2317. http://www.numdam.org/articles/10.24033/asens.2317/

Abels, H. Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen, Math. Z., Volume 135 (1973/74), pp. 325-361 (ISSN: 0025-5874) | DOI | MR | Zbl

Bergman, G. M. Generating infinite symmetric groups, Bull. London Math. Soc., Volume 38 (2006), pp. 429-440 (ISSN: 0024-6093) | DOI | MR | Zbl

Bader, U.; Furman, A.; Gelander, T.; Monod, N. Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007), pp. 57-105 (ISSN: 0001-5962) | DOI | MR | Zbl

Bader, U.; Gelander, T.; Monod, N. A fixed point theorem for L1 spaces, Invent. math., Volume 189 (2012), pp. 143-148 (ISSN: 0020-9910) | DOI | MR | Zbl

Burger, M.; Monod, N. Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002), pp. 219-280 (ISSN: 1016-443X) | DOI | MR | Zbl

Bourbaki, N., Actualités Sci. Ind., 1229, Hermann & Cie, Paris, 1955, 191 pages (; réimpression Springer, 2007) | MR | Zbl

Bourbaki, N., Actualités Sci. Ind., 1306, Hermann, Paris, 1963 (; réimpression Springer, 2007) | MR

Bühler, T. On the algebraic foundations of bounded cohomology, Mem. Amer. Math. Soc., Volume 214 (2011) (ISBN: 978-0-8218-5311-5, ISSN: 0065-9266) | DOI | MR | Zbl

Caprace, P.-E.; de Cornulier, Y. On embeddings into compactly generated groups, Pacific J. Math., Volume 269 (2014), pp. 305-321 (ISSN: 0030-8730) | DOI | MR | Zbl

Chifan, I.; Ioana, A. Ergodic subequivalence relations induced by a Bernoulli action, Geom. Funct. Anal., Volume 20 (2010), pp. 53-67 (ISSN: 1016-443X) | DOI | MR | Zbl

Day, M. M. Means for the bounded functions and ergodicity of the bounded representations of semi-groups, Trans. Amer. Math. Soc., Volume 69 (1950), pp. 276-291 (ISSN: 0002-9947) | DOI | MR | Zbl

Dixmier, J. Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math. Szeged, Volume 12 (1950), pp. 213-227 (ISSN: 0001-6969) | MR | Zbl

Dixmier, J., Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, 1996 reprint of the second (1969) edition | MR

Dunford, N.; Schwartz, J. T., With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, 7, Interscience Publishers, Inc., New York, 1958, 858 pages | MR | Zbl

de Sz. Nagy, B. On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged. Sect. Sci. Math., Volume 11 (1947), pp. 152-157 | MR | Zbl

Epstein, I.; Monod, N. Nonunitarizable representations and random forests, Int. Math. Res. Not., Volume 2009 (2009), pp. 4336-4353 (ISSN: 1073-7928) | DOI | MR | Zbl

Ehrenpreis, L.; Mautner, F. I. Uniformly bounded representations of groups, Proc. Nat. Acad. Sci. U. S. A., Volume 41 (1955), pp. 231-233 (ISSN: 0027-8424) | DOI | MR | Zbl

Epstein, I. Some results on orbit inequivalent actions of non-amenable groups, ISBN: 978-0549-72398-1, ProQuest LLC, Ann Arbor, MI (2008) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3322046 | MR

Feldman, J.; Moore, C. C. Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc., Volume 234 (1977), pp. 289-324 (ISSN: 0002-9947) | DOI | MR | Zbl

Furman, A., Geometry, rigidity, and group actions (Chicago Lectures in Math.), Univ. Chicago Press, Chicago, IL, 2011, pp. 296-374 | MR | Zbl

Gaboriau, D. Coût des relations d'équivalence et des groupes, Invent. math., Volume 139 (2000), pp. 41-98 (ISSN: 0020-9910) | DOI | MR | Zbl

Gaboriau, D. Invariant percolation and harmonic Dirichlet functions, Geom. Funct. Anal., Volume 15 (2005), pp. 1004-1051 (ISSN: 1016-443X) | DOI | MR | Zbl

Gaboriau, D.; Lyons, R. A measurable-group-theoretic solution to von Neumann's problem, Invent. math., Volume 177 (2009), pp. 533-540 (ISSN: 0020-9910) | DOI | MR | Zbl

Guivarc'h, Y. Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France, Volume 101 (1973), pp. 333-379 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl

Hjorth, G. A lemma for cost attained, Ann. Pure Appl. Logic, Volume 143 (2006), pp. 87-102 (ISSN: 0168-0072) | DOI | MR | Zbl

Hutchcroft, T.; Nachmias, A. Indistinguishability of trees in uniform spanning forests, Probab. Theory Relat. Fields (2016) ( doi:10.1007/s00440-016-0707-3 ) | MR | Zbl

Higman, G.; Neumann, B. H.; Neumann, H. Embedding theorems for groups, J. London Math. Soc., Volume 24 (1949), pp. 247-254 (ISSN: 0024-6107) | DOI | MR | Zbl

Houdayer, C. Invariant percolation and measured theory of nonamenable groups [after Gaboriau-Lyons, Ioana, Epstein], Séminaire Bourbaki, vol. 2010/2011, exposé no 1039, Astérisque, Volume 348 (2012), pp. 339-374 (ISBN: 978-2-85629-351-5, ISSN: 0303-1179) | Numdam | MR | Zbl

Haagerup, U. V.; Przybyszewska, A. Proper metrics on locally compact groups, and proper affine isometric actions on Banach spaces (2006) (preprint arXiv:math/0606794 )

Häggström, O.; Peres, Y. Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously, Probab. Theory Related Fields, Volume 113 (1999), pp. 273-285 (ISSN: 0178-8051) | DOI | MR | Zbl

Kechris, A. S., Graduate Texts in Math., 156, Springer, New York, 1995, 402 pages (ISBN: 0-387-94374-9) | DOI | MR | Zbl

Kakutani, S.; Kodaira, K. Über das Haarsche Mass in der lokal bikompakten Gruppe, Proc. Imp. Acad. Tokyo, Volume 20 (1944), pp. 444-450 | MR | Zbl

Klee, V. L. J. Some topological properties of convex sets, Trans. Amer. Math. Soc., Volume 78 (1955), pp. 30-45 (ISSN: 0002-9947) | DOI | MR | Zbl

Krickeberg, K. Convergence of martingales with a directed index set, Trans. Amer. Math. Soc., Volume 83 (1956), pp. 313-337 (ISSN: 0002-9947) | DOI | MR | Zbl

Kunze, R. A.; Stein, E. M. Uniformly bounded representations and harmonic analysis of the 2×2 real unimodular group, Amer. J. Math., Volume 82 (1960), pp. 1-62 (ISSN: 0002-9327) | DOI | MR | Zbl

Kechris, A. S.; Tsankov, T. Amenable actions and almost invariant sets, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 687-697 (ISSN: 0002-9939) | DOI | MR | Zbl

Levitt, G. On the cost of generating an equivalence relation, Ergodic Theory Dynam. Systems, Volume 15 (1995), pp. 1173-1181 (ISSN: 0143-3857) | DOI | MR | Zbl

Lyons, R.; Peres, Y.; Schramm, O. Minimal spanning forests, Ann. Probab., Volume 34 (2006), pp. 1665-1692 (ISSN: 0091-1798) | DOI | MR | Zbl

Lyons, R.; Schramm, O. Indistinguishability of percolation clusters, Ann. Probab., Volume 27 (1999), pp. 1809-1836 (ISSN: 0091-1798) | DOI | MR | Zbl

Mazur, S. Über die kleinste konvexe Menge, die eine gegebene kompakte Menge enthält, Studia Math., Volume 2 (1930), pp. 7-9 | DOI | JFM

Monod, N.; Ozawa, N. The Dixmier problem, lamplighters and Burnside groups, J. Funct. Anal., Volume 258 (2010), pp. 255-259 (ISSN: 0022-1236) | DOI | MR | Zbl

Monod, N., Lecture Notes in Math., 1758, Springer, Berlin, 2001, 214 pages (ISBN: 3-540-42054-1) | DOI | MR | Zbl

Monod, N., International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1183-1211 | MR | Zbl

Monod, N.; Shalom, Y. Orbit equivalence rigidity and bounded cohomology, Ann. of Math., Volume 164 (2006), pp. 825-878 (ISSN: 0003-486X) | DOI | MR | Zbl

Nakamura, M.; Takeda, Z. Group representation and Banach limit, Tôhoku Math. J., Volume 3 (1951), pp. 132-135 (ISSN: 0040-8735) | DOI | MR | Zbl

Pisier, G., Lecture Notes in Math., 1618, Springer, Berlin, 2001, 198 pages (ISBN: 3-540-41524-6) | DOI | MR | Zbl

Pisier, G., Infinite groups: geometric, combinatorial and dynamical aspects (Progr. Math.), Volume 248, Birkhäuser, 2005, pp. 323-362 | DOI | MR | Zbl

Przybyszewska, A. Proper metrics, affine isometric actions and a new definition of group exactness (2005)

Pak, I.; Smirnova-Nagnibeda, T. On non-uniqueness of percolation on nonamenable Cayley graphs, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 495-500 (ISSN: 0764-4442) | DOI | MR | Zbl

Rickert, N. W. Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc., Volume 127 (1967), pp. 221-232 (ISSN: 0002-9947) | DOI | MR | Zbl

Ripley, B. D. The disintegration of invariant measures, Math. Proc. Cambridge Philos. Soc., Volume 79 (1976), pp. 337-341 (ISSN: 0305-0041) | DOI | MR | Zbl

Rosendal, C. Global and local boundedness of Polish groups, Indiana Univ. Math. J., Volume 62 (2013), pp. 1621-1678 (ISSN: 0022-2518) | DOI | MR | Zbl

Srivastava, S. M., Graduate Texts in Math., 180, Springer, New York, 1998, 261 pages (ISBN: 0-387-98412-7) | DOI | MR | Zbl

Soardi, P. M.; Woess, W. Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Z., Volume 205 (1990), pp. 471-486 (ISSN: 0025-5874) | DOI | MR | Zbl

Takesaki, M., Encyclopaedia of Math. Sciences, 124, Springer, Berlin, 2002, 415 pages Reprint of the first (1979) edition (ISBN: 3-540-42248-X) | MR | Zbl

Thom, A. The expected degree of minimal spanning forests (preprint arXiv:1306.0303, to appear in Combinatorica ) | MR

Thurston, W. Geometry and topology of 3-manifolds (1978) (Princeton notes)

Timár, Á. Indistinguishability of components of random spanning forests (preprint arXiv:1506.01370 ) | MR

Varadarajan, V. S. Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc., Volume 109 (1963), pp. 191-220 (ISSN: 0002-9947) | DOI | MR | Zbl

Cité par Sources :