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FIXED POINTS FOR BOUNDED ORBITS
IN HILBERT SPACES

 M GHEYSENS  N MONOD

A. – Consider the following property of a topological group G: every continuous affine
G-action on a Hilbert space with a bounded orbit has a fixed point. We prove that this property
characterizes amenability for locally compact � -compact groups (e.g., countable groups).

Along the way, we introduce a “moderate” variant of the classical induction of representations and
we generalize the Gaboriau-Lyons theorem to prove that any non-amenable locally compact group
admits a probabilistic variant of discrete free subgroups. This leads to the “measure-theoretic solution”
to the von Neumann problem for locally compact groups.

We illustrate the latter result by giving a partial answer to the Dixmier problem for locally compact
groups.

R. – Nous considérons la propriété suivante pour un groupe topologique G : toute action
affine continue de G sur un espace hilbertien ayant une orbite bornée a un point fixe. Nous montrons
qu’elle caractérise la moyennabilité des groupes localement compacts dénombrables à l’infini (en par-
ticulier des groupes discrets dénombrables).

Pour ce faire, nous introduisons une variante « modérée » de l’induction des représentations et
nous généralisons le théorème de Gaboriau-Lyons pour montrer que tout groupe localement compact
non moyennable admet, dans un sens probabiliste, des sous-groupes libres discrets. Ceci fournit une
« solution au sens de la mesure » au problème de von Neumann pour les groupes localement compacts.

Nous illustrons ce dernier résultat en fournissant une réponse partielle au problème de Dixmier pour
les groupes localement compacts.

1. Introduction

A topological group G is amenable if every convex compact G-space K ¤ ; has a fixed
point. The precise meaning of this definition is thatK is a non-empty convex compact subset
of a locally convex topological vector space V and that G has a continuous affine action
on K. It is equivalent to consider only the case where this is given by a continuous affine
(or linear) G-representation on V preserving K (for K can be identified with the state space

Supported in part by the ERC.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/01/© 2017 Société Mathématique de France. Tous droits réservés doi:



132 M. GHEYSENS AND N. MONOD

of the unital ordered space of affine continuous functions on K). Moreover, we can assume
V and K separable if G is, for instance, locally compact � -compact.

It is well-known that any such K is isomorphic (i.e., affinely homeomorphic) to a convex
compact subspace of a Hilbert space [33, p. 31]. Does it follow that amenability is charac-
terized as a fixed point property for affine actions on Hilbert spaces? after all, preserving a
weakly compact set in Hilbert space is equivalent to having a bounded orbit. (The distinction
between weak and strong compactness will be further discussed in Section 9.)

The answer is a resounding no. First of all, an action onK need not extend to the ambient
Hilbert space (see Section 9). Moreover, G-actions on V preserving K sometimes have fixed
points outside K only, compare e.g., [3].

In any case, even the statement is wrong! Indeed, there are non-amenable groups with the
fixed point property for any continuous affine action on any reflexive Banach space. This
holds for instance for the group of all permutations of an infinite countable set, which is
non-amenable (as a discrete group). Indeed, Bergman established the strong uncountable
cofinality property for this group [4] and the latter implies this fixed point property. Indeed
the action is automatically uniformly equicontinuous (as seen from the isometric action
on the metric space of equivalent norms) and hence fixes a point by Ryll-Nardzewski. See
Prop. 1.30 of [51] for a Polish variant of this fact.

In contrast, we prove that such a characterization does hold for countable groups and
more generally locally compact � -compact groups:

T A. – Let G be a locally compact � -compact group.
Suppose that every continuous affine G-action on a separable Hilbert space with a bounded

orbit has a fixed point. Then G is amenable.

(In view of the fixed point definition of amenability, this yields a necessary and sufficient
condition and it follows furthermore that a fixed point can be found in the closed convex
hull of any bounded orbit.)

In this setting, we recall that the fixed point property without assuming bounded orbits
characterizes compact groups by a result of Rosendal [51, Thm. 1.4].

Our proof takes a curious path: we first construct a very specific example of a group
without the fixed point property, and then we pull ourselves by our bootstraps until we reach
all non-amenable groups. This process is described below; we would be curious to know if
there is a direct proof.

In the absence of a direct proof, the scenic route taken to the conclusion leads us to intro-
duce moderate induction and to establish the existence of tychomorphisms from free groups
to non-amenable locally compact groups, after proving a generalization of the theorem
of Gaboriau and Lyons to the locally compact setting. This solves the “measurable von
Neumann problem” for locally compact groups, see Theorem B below.

R. – Our task is thus to construct fixed point free actions on Hilbert spaces that
have a bounded orbit. We point out that such actions always have some unbounded orbit too.
Otherwise, an application of the Banach-Steinhaus principle would show that the linear part
of the action is uniformly bounded in operator norm; this would however produce a fixed
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FIXED POINTS FOR BOUNDED ORBITS IN HILBERT SPACES 133

point, for instance by taking a circumcenter under an invariant uniformly convex norm [2,
Prop. 2.3], or using Ryll-Nardzewski.

Discrete outline of the proof

We shall first explain our proof in the special case of countable groups without any
topology. Our first step is to obtain some example, any example at all, of a group G with
a fixed point free action on a Hilbert space with a bounded orbit.

Let thus � be a probability measure on G; this amounts to a non-negative function of
sum one. Our Hilbert space is V D `2.G;�/=R, the quotient of `2.G;�/ by the subspace of
constant functions. We endow V with the linear representation induced by the left translation
action ofG on `2.G;�/, which indeed preserves the subspace of constants. For this action to
be well-defined and to be continuous we need to impose a condition on how� behaves under
translations. It turns out that such a� exists for every countable group; it will be constructed
as a negative exponential of suitable length functions on G.

To turn this linear representation into an affine action, we need a 1-cocycle G ! V . The
action is fixed point free and with a bounded orbit if this cocycle is non-trivial in cohomology
and bounded. The extension of G-representations

0 �! R �! `2.G;�/ �! V �! 0

can be analyzed by standard cohomological arguments and it suffices to show that there is
an R-valued 2-cocycle onG which is non-trivial in cohomology and bounded. Such cocycles
are known to exists for various groups G, for instance (compact hyperbolic) surface groups.
Thus we have a first example.

In order to produce more examples, we want to show that our G-action on V can be
“induced” to anH -action on another Hilbert spaceW wheneverH is a group containingG.
Classically, W would be a space of maps H=G ! V . We shall imitate the first step of our
construction by considering `2-maps with respect to a suitable probability measure onH=G;
once again, such a measure will exist as soon as H is countable.

At this point, we have constructed a fixed point free action on a separable Hilbert space
with a bounded orbit for any countable group containing a surface group. The same state-
ment holds with surface groups replaced by free groups since fixed point properties trivially
pass to quotients. We now reach a fundamental obstacle popularized by the von Neumann
problem: the class of groups containing a free subgroup is still far from the class of non-
amenable countable groups.

However, it was proved by Gaboriau-Lyons [22] that in an ergodic-theoretical sense, any
non-amenable discrete group admits free orbits of free groups as subrelations. As explained
in [41, § 5], such measure-theoretical analogues of subgroup embeddings, viewed as “randem-
beddings,” are suitable for the induction of representations and of cocycles. Therefore, we
can complete the proof of Theorem A for discrete groups by generalizing the above induc-
tion method from subgroups to randembeddings.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



134 M. GHEYSENS AND N. MONOD

About the non-discrete case

A number of interesting new difficulties appear for locally compact groups. It will be
helpful that we can consider separately the Lie case and the totally disconnected case, thanks
to a product decomposition result based on structure theory [8, Thm. 3.3.3].

We shall need to prove a generalization of the Gaboriau-Lyons theorem for locally
compact groups. However, merely producing orbit subrelations of free groups is useless
here; after all, many amenable locally compact groups contain free subgroups. Thus, a
discreteness condition will enter the generalized statement.

The appropriate variant of the notion of randembedding used in the discrete case will be
called a tychomorphism; it is a one-sided version of measure equivalence couplings for locally
compact groups. Building on our generalization of the Gaboriau-Lyons theorem, we shall
prove:

T B. – Let G be a locally compact second countable group.
If G is non-amenable, then there is a tychomorphism from the free group Fr to G for all

0 � r � @0.

(This yields a necessary and sufficient criterion: in the converse direction, there are several
straightforward ways to verify that a group admitting a tychomorphism from Fr for some
2 � r � @0 is non-amenable; see for instance [41, § 5], where discreteness is not essential.)

Once tychomorphisms have been established, we will use them again to perform a non-
standard induction of affine actions by means of a moderate measure on the locally compact
group. In this setting, the existence of moderate measure is more delicate to establish.

An application to the Dixmier problem

Prompted by the classical unitarisation theorem of Szőkefalvi-Nagy [54], the following
problem arose in 1950 [11, 12, 44]: are amenable groups the only unitarisable groups,
i.e., groups for which every uniformly bounded representation on a Hilbert space can be
unitarised? We refer to Pisier [47, 46] for a thorough exposition and many results.

Since groups containing free subgroups are known not to be unitarisable, it is tempting
to appeal to the Gaboriau-Lyons theorem (see Problem N in [41]). This lead to partial
answers [17, 42].

There is no reason to restrict the Dixmier problem to discrete groups, and indeed the first
examples of non-unitarisable representations were for the Lie group SL2.R/ [15, 35]. Using
Theorem B, we establish that every non-amenable locally compact group is indeed non-
unitarisable after replacing it by an extension by an amenable kernel, a statement faithfully
parallel to the main result of [42] for discrete groups. More precisely, the extension consists
in taking a wreath product with a commutative (discrete) group:

T C. – Let G be any locally compact group. For any infinite abelian (discrete)
group A, the following assertions are equivalent.

(i) The group G is amenable.
(ii) The locally compact group A oG=O G is unitarisable, where O < G is a suitable open

subgroup.
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FIXED POINTS FOR BOUNDED ORBITS IN HILBERT SPACES 135

There are however several important differences with the discrete case. The first problem
is that we do not know if unitarisability passes to (closed) subgroups in the non-discrete case.
We do not even know if containing a discrete free subgroup is of any help, which should
curb our enthusiasm for tychomorphisms! We can nonetheless prove the above result by
combining ergodic methods with structure theory.

A smaller issue is that the category of locally compact groups does not admit full wreath
products. This explains the permutational wreath product appearing in Theorem C. More
precisely, A oG=O G denotes the topological semi-direct product of G with the discrete groupL
G=O Awhich is endowed with a continuousG-action sinceO is open. Thus indeedAoG=OG

is locally compact, and moreover it is � -compact (respectively second countable) when G is
so, provided A is countable.

2. An initial construction

The goal of this section is to prove that there are some groups G with a fixed point
free action on a Hilbert space (by continuous affine operators) with a bounded orbit. The
construction below applies for instance to the fundamental group of any closed hyperbolic
surface. Since the property of having such an action can trivially be pulled back from a
quotient group, it follows immediately that it also holds for free groups on at least four
generators (the minimal number of generators for such a surface group).

Consider a group G (without topology) admitting a non-zero class ! in degree two
cohomology with real coefficients. Assume moreover that ! can be represented by a bounded
cocycle; in other words, ! lies in the image of the comparison map

H2
b.G;R/ �! H2.G;R/

from bounded to ordinary cohomology. This situation arises for instance when G is the
fundamental group of a closed hyperbolic surface and ! is given by the fundamental class of
that surface, see e.g., [57, §6].

Furthermore, assume thatG admits a probability measure � such that the left translation
linearG-representation on `2.G;�/ is well-defined and consists of bounded operators. As we
shall see in Section 3, such a measure exists on every countable group G and more generally
on every locally compact � -compact group. For the present purposes, it is much easier to
justify its existence by assuming that G is a finitely generated (discrete) group, which is the
case in the example of surface groups. Indeed, in that case we can choose a word length `
on G, a constant D > 1 large enough so that the map g 7! D�`.g/ is summable on G
and a normalization constant k > 0 given by the inverse of that sum. Then one checks that
�.g/ D kD�`.g/ gives a measure with the desired properties; we refer to Section 3 for a
detailed construction in a more general topological case.

Let now V (resp. E) be the quotient space of `2.G;�/ (resp. `1.G/) by the subspace of
constant functions. Since � is a probability measure, we obtain a commutative diagram

0 // R

D

��

// `1.G/

��

// E

��

// 0

0 // R // `2.G;�/ // V // 0

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



136 M. GHEYSENS AND N. MONOD

where the rows are exact and the vertical arrows are G-equivariant, linear, injective and of
norm � 1.

The idea is to apply the long exact sequence of bounded cohomology [40, 8.2.1(i)] to the
first row and the long exact sequence of ordinary cohomology to the second row. (The second
row does not behave well for bounded cohomology because it carries representations that are
not uniformly bounded.) More precisely, recall that Hn

b.G; `
1.G// vanishes for all n � 1,

see [40, 4.4.1 and 7.4.1]; therefore, by naturality of the comparison map and of the long exact
sequences, we have a commutative diagram

0 // H1
b.G;E/

//

��

H2
b.G;R/ //

��

0

� � � // H1.G; V / // H2.G;R/ // � � �

with exact rows. Now, our assumption that ! ¤ 0 lies in the image of H2
b.G;R/ implies

that there is a bounded 1-cocycle bWG ! E whose image in H1.G; V / is non-trivial. In
other words, the corresponding affine G-action on V has no fixed point, although the orbit
of 0 2 V under this action is bounded since b remains bounded as a map G ! E ! V .

R 1. – A reader wishing to avoid the cohomological language can check the argu-
ment by hand as follows. Represent ! by a bounded map cWG2 ! R satisfying the cocycle
relation c.y; z/ � c.xy; z/C c.x; yz/ � c.x; y/ D 0 for all x; y; z 2 G. Then b.g/ is defined
as the class modulo R of the function x 7! c.x�1; g/ and all properties can be painstakingly
verified.

3. Moderate lengths and measures

It is well-known (and obvious) that the size of a ball in a finitely generated group
endowed with a word length grows at most exponentially with the radius. For general count-
able groups, one can choose another length function to keep this growth control (compare
Remark 6 below). This remains possible more generally in a topological setting, but requires
a more delicate analysis.

D 2. – A length on a group G is a function `WG ! RC such that

(i) `.g/ D `.g�1/ for all g 2 G,
(ii) `.gh/ � `.g/C `.h/ for all g; h 2 G.

When G is a locally compact group, a length ` is moderate if moreover

(iii) the ball B.r/ D `�1.Œ0; r�/ is compact for all r � 0,
(iv) for any Haar measure mG there is C � 1 such that mG

�
B.r/

�
� C r for all r � 1.

Observe that a moderate length is in particular lower semi-continuous thanks to (iii).

R 3. – We have not specified in (iv) whether the Haar measure is left or right,
but this is irrelevant in view of the symmetry (i). Moreover, it suffices to check (iv) for one
Haar measure since the condition survives scaling upon changing C . Likewise, it suffices to
check (iv) for integer r .
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FIXED POINTS FOR BOUNDED ORBITS IN HILBERT SPACES 137

E 4. – IfG is generated by a compact symmetric neighborhoodU of the identity,
then the associated word length `.g/ D minfn 2 N W g 2 U ng is easily seen to be moderate.
(A more refined statement can be found e.g., in Theorem I.1 of [23].)

We shall need to go beyond the compactly generated case; notice however that � -compact-
ness is a necessary condition in view of (iii).

P 5. – LetG be a totally disconnected locally compact � -compact group. Then
there exists a continuous moderate length `WG ! N.

Christian Rosendal pointed out to us that a stronger statement was established as one of
the main results of the manuscript [24] (Theorem 5.3 therein, see also [48, 1.26]). Namely,
every second countable locally compact groups admits a compatible left-invariant distance
such that the associated real-valued length is moderate. (The second countability is not a
significant restriction from � -compactness [30]; having values in R is also not an issue here.)
We still provide the proof below since it is shorter and sufficient for our purposes.

Before proceeding to the proof, we record the construction of general Cayley-Abels graphs
originating in [1, Beispiel 5.2], see also [8, §3.4]. The basic data is a locally compact groupG,
a compact-open subgroup K < G and a subset S � G satisfying

S D S�1 and S D KSK:

The associated Cayley-Abels graph g.G;K; S/ is the graph on the vertex set G=K with edge
set f.gK; gsK/ W g 2 G; s 2 Sg. Thus G acts by automorphisms on g.G;K; S/. This graph
is connected if and only if S generates G and it is locally finite if and only if S is compact.

For later use in Section 5, we shall extend this construction as follows under the assump-
tion that S generates G, is compact and contains the identity: For every integer n � 1,
let gn.G;K; S/ be the (multi-)graph on the vertex set G=K with as many edges between
two given vertices as there are paths of length n in g.G;K; S/ connecting them. Then
each gn.G;K; S/ remains locally finite, connected and with a vertex-transitive G-action.

Proof of Proposition 5. – Let K be a compact open subgroup of G and S be any
symmetric generating set; upon replacing it by KSK, we can moreover assume S D KSK.
(One can even take S D G.) Consider the graph g.G;K; S/. We will give weights to its edges
and then consider the induced path length on the vertex set. There is a natural S=K-labeling
on the edges; however, it is not invariant under the action of G. Indeed, an sK-labeled
edge and a tK-labeled edge are in the same G-orbit if and only if KsK D KtK, i.e., if sK
and tK are in the same orbit for the natural action of K on S=K. The latter orbit is of
size jK W K \ sKs�1j and hence finite since K is compact and open. We enumerate these
K-orbits, recalling that S=K is countable, asG is � -compact. The weight is given inductively
to each element of the i -th orbit as the smallest power of 2 that is at least as large as the size
of the i -th orbit and strictly larger than all the weights previously given.

Having attributed a left K-invariant weight to each element of S=K, we obtain a
G-invariant weight on the edges of g.G;K; S/. Consider now the vertex set G=K with
the metric given by the shortest (weighted) path distance. TheG-action onG=K is isometric
for this distance; in particular, the size of a ball of radius n does not depend on its center and
we denote by ˇ.n/ this number, which is finite. Write also '.k/ for the number of elements of
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138 M. GHEYSENS AND N. MONOD

weight k in S=K. Observing that a path of length� n has to start with an edge of weight� n,
we get a coarse bound:

ˇ.n/ � '.1/ˇ.n � 1/C '.2/ˇ.n � 2/C � � � C '.n � 1/ˇ.1/C '.n/:

Most of the terms in the latter sum vanish because, by our choice of weights, '.k/ is zero
whenever k is not a power of 2. Moreover, since ˇ is a non-decreasing function, we have

ˇ.r/ �
ˇ.r/C ˇ.r C 1/C � � � C ˇ.r Cm/

mC 1

for all r;m. Putting these two observations together for r D n � 2j and m D 2j�1 � 1, we
get:

ˇ.n/ � '.1/ˇ.n � 1/C

log2 nX
jD1

'.2j /

2j�1

2j�1C1X
pD2j

ˇ.n � p/ � 2

n�1X
pD0

ˇ.p/;

where the last inequality comes from '.2j / � 2j , which holds by our choice of weights. This
estimate implies that ˇ grows at most exponentially, indeed that ˇ.n/ � 2 � 3n�1 < 3n for
all n � 1.

Getting back to the group G, define `0.g/ as the distance from K to gK in G=K for the
above weighted distance. So far, `0 is a continuous function satisfying (ii) and (iii) for the
`0-balls B`0

.r/. Moreover, for any left Haar measure, we have mG
�
B`0

.r/
�
D ˇ.r/mG.K/,

hence the balls grow at most exponentially. We normalize mG so that mG.K/ is an integer.
Finally, set `.g/ D `0.g/C `0.g�1/. One checks that ` has all the desired properties.

R 6. – For a discrete countable groupG, the above argument can be considerably
shortened: choose any generating set S such that S \ S�1 contains only involutions and
enumerate S D fs1; s2; : : :g. Then the weighted word length where si and s�1i are given
weight i will satisfy properties (i)–(iv).

Alternatively, one can simply restrict to G the word length of a finitely generated group
containing G, which exists by [26]. This overkill, however, cannot be generalized to non-
discrete groups because they need not embed into compactly generated groups [9]; thus the
need for Proposition 5 remains.

D 7. – A moderate measure on a locally compact group G is a probability
measure � in the same measure class as the Haar measures and such that

(i) for all g 2 G, the Radon-Nikodým derivative dg�=d� is essentially bounded on G,
(ii) the map g 7! kdg�=d�k1 is locally bounded on G.

The point of this definition is that it readily implies the following:

If � is a moderate measure on G, then the left translation representation of G on L2.G;�/ is a
well-defined continuous linear representation which is locally bounded (in operator norm).

To be completely explicit, the (non-unitary) representation above is defined by
.gf /.x/ D f .g�1x/ for g; x 2 G and f 2 L2.G;�/. In particular, the constant func-
tions constitute a G-invariant subspace. The statement above is a particular case of the
moderate induction that will be investigated in detail in Section 6, to which we refer for a
proof.

We shall obtain moderate measures thanks to moderate lengths:
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FIXED POINTS FOR BOUNDED ORBITS IN HILBERT SPACES 139

P 8. – If ` is a moderate length on a locally compact group G and mG a left
Haar measure, then the measure � defined by

d�.x/ D kD�`.x/dmG.x/

is moderate when D � 1 is large enough and k > 0 is a suitable normalization constant.

Proof. – Choose anyD > C , whereC � 1 is as in Definition 2(iv). Since the function ` is
Borel thanks to Definition 2(iii), it follows that the formula d�.x/ D kD�`.x/dmG.x/makes
sense and defines a measure in the same class asmG for any k > 0. In particular, the Radon-
Nikodým derivative of Definition 7 exists. This measure is finite because ofD > C and hence
it can be normalized by the appropriate choice of k. It now suffices to show that for every
compact set U � G the function dg�=d�.x/ is bounded uniformly over g 2 U; x 2 G.
Since mG is left invariant, we have dg�=d�.x/ D D`.x/�`.g�1x/, which is bounded above
by D`.g/ in view of Definition 2(ii). Therefore, it only remains to see that the `-balls B.r/
contain U when r is sufficiently large. Since U is compact and B.r/ closed, this is a direct
application of Baire’s theorem using the relation B.r/B.s/ � B.r C s/ which follows from
Definition 2(ii).

C 9. – Every locally compact � -compact group admits a moderate measure.

R 10. – The proof given below relies on the manuscript [24], or on the thesis [48],
for providing a moderate length. There is an alternative route, based on the more elementary
length construction of Proposition 5, that leads to a moderate measure on the quotient by
the maximal normal amenable subgroup. This suffices for our application (namely towards
proving Theorem A), and therefore we briefly describe this other passage.

The quotient by the maximal normal amenable subgroup has an open finite index
subgroup splitting as a product of a connected group and a totally disconnected � -compact
group, see [8] as recalled in Theorem 23 below. Applying respectively Example 4 and Propo-
sition 5, both factors admit a moderate length and hence so does this open finite index
subgroup by taking the sum. Therefore, it carries a moderate measure by Proposition 8. This
property is inherited from open finite index subgroups by transporting the measure on the
cosets.

Proof of Corollary 9. – Let G be a locally compact � -compact group. By Satz 6 in [30]
there is a compact normal subgroup K C G such that G=K is second countable. There
exists a continuous moderate length G=K ! RC by [24, 5.3] or [48, 1.26]. The composed
map G ! RC is still a moderate length; point (iv) of the definition is checked using Weil’s
integration formula [6, VII § 2 no 7]. We conclude by Proposition 8.
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4. Tychomorphisms

Simplicibus itaque verbis gaudet Mathematica
Veritas, cum etiam per se simplex sit Veritatis
oratio. . .

Tycho B, Epistolæ astronomicæ,
Uraniborg 1596 (1)

The goal of this section is to discuss basic facts about tychomorphisms, a probabilistic variant
of closed (e.g., discrete) subgroup embeddings in locally compact groups. The closedness
condition, which is essential in the context of amenability, is an aspect absent from the analo-
gous concepts of “orbit subrelation” and “randembedding” of discrete groups. Nevertheless,
it will not appear in topological terms, but rather as an ergodic-theoretical smoothness condi-
tion following from the definitions below; this reformulation is a special case of the Glimm-
Effros dichotomy.

Let G be a locally compact group. The Haar measures of G define a canonical measure
class on G, which is standard if G is second countable. A measured G-space is a measured
space .†;m/ together with aG-action such that the action mapG �†! † is non-singular.
We shall always consider standard measured spaces, so that all basic tools such as the Fubini-
Lebesgue theorem are available. Unless otherwise stated, groups shall act on themselves by
left multiplication. We will note bymG a choice of a (non-zero) left Haar measure on G and
by LmG the corresponding right Haar measure defined as the image ofmG by the inverse map.
The modular homomorphism�G WG ! R�C is defined by dmG.xg/ D �G.g/dmG.x/; recall
moreover that �Gd LmG D dmG .

D 11. – Let .†;m/ and .†0; m0/ be two measured G-spaces. We say that † is
an amplification of †0 if there is a measure-preserving G-equivariant isomorphism between
.†;m/ and the product of .†0; m0/ with a measured space .X; #/ endowed with the trivial
G-action. The amplification is said to be finite if # is finite. Remark that if G preserves one
of the measures m or m0, then it also preserves the other one.

E 12. – Let H be a closed subgroup of a locally compact second countable
group G and let mH ; mG be left Haar measures. Then the left H -action on .G;mG/ is an
amplification of .H;mH / (see e.g., [50]). The latter is finite ifH has finite invariant covolume
in G.

E 13. – If G is countable (hence discrete), then .†;m/ is an amplification of G
if and only if G admits a measurable fundamental domain in †.

D 14. – Let G and H be locally compact second countable groups. A
tychomorphism from H to G is a measured G � H -space .†;m/ which as a G-space is
a finite amplification of .G; LmG/ and as an H -space is an amplification of .H;mH /.

Note thatH preserves the measurem on†, whereasG does so if and only if it is unimod-
ular. For unimodular groups, the symmetric situation (i.e., when† is also finite as an ampli-
fication of H ) is the usual measure equivalence studied e.g., in [19].

(1) General preface, p. 23 l. 32 in Dreyer’s edition; absent from the 1601 edition of Levinus Hulsius.
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R 15. – Let .†;m/ be a tychomorphism fromH toG and consider isomorphisms
.†;m/ Š .G; LmG/�.X; #/ and .†;m/ Š .H;mH /�.Z; �/ as in the definition. If we transport
theH -action through the first isomorphism, we obtain a non-singularH -action onX and a
measurable cocycle ˛WH �X ! G such that

h.g; s/ D .g˛.h; s/�1; hs/

because theH -action must commute with theG-action onG�X . In particular, thisH -action
onX preserves the finite measure # . On the other hand, if we transport theG-action through
the second isomorphism, we obtain also a non-singular G-action on Z and a measurable
cocycle ˇWG �Z ! H such that

g.h; s/ D .hˇ.g; s/�1; gs/

but now the G-action on Z might not preserve the measure �. Indeed, one checks that the
Radon-Nikodým derivative dg�=d� is equal to y 7! �H .ˇ.g

�1; y//�G.g/.

E 16. – If H is a closed subgroup of a locally compact second countable
group G, then .G;mG/ is a natural tychomorphism from H to G. Indeed, it is an amplifi-
cation of .H;mH / by Example 12; the right G-action on .G;mG/ commutes with H and is
intertwined by the inverse map to .G; LmG/, hence is a finite (trivial) amplification of .G; LmG/.

The next lemma shows how to compose tychomorphisms.

L 17. – Let G1, G2 and H be locally compact second countable groups. If there is a
tychomorphism from G1 to H and another from H to G2, then there is one from G1 to G2.

Proof. – Let .G1; mG1
/ � X1 Š †1 Š .H; LmH / � Z1 and .G2; LmG2

/ � X2 Š †2 Š

.H;mH / �Z2 be the tychomorphisms, with Z1 and X2 having finite measure. Consider the
corresponding cocycles ˛i WGi � Zi ! H and the non-singular actions of Gi on Zi as in
Remark 15. We endow the space † WD Z1 � Z2 � .H;mH / with a non-singular action
of G1 �G2 by defining

.g1; g2/.z1; z2; h/ D .g1z1; g2z2; ˛1.g1; z1/h˛2.g2; z2/
�1/:

The measure-preserving equivariant isomorphisms given by the tychomorphisms show that
† is G2-equivariantly isomorphic to .G2; LmG2

/ � Z1 � X2, hence it is a finite amplification
of .G2; LmG2

/. Likewise, † is G1-equivariantly isomorphic to .G1; mG1
/ �Z2 � X1, hence it

is an amplification of G1, except that this time we need to precompose the isomorphisms by
the map †! Z1 �Z2 � .H; LmH /W .z1; z2; h/ 7! .z1; z2; h

�1/.

By the universal property, an embedding of a free group into a quotient group can be
lifted; moreover the lift is discrete if the original embedding was so. It turns out that the
corresponding fact holds for tychomorphisms.

P 18. – Let QG be a locally compact second countable group,N a closed normal
subgroup and G the quotient group QG=N . Let 0 � r � @0. If there is a tychomorphism from
the free group Fr to G, then there is one from Fr to QG.
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Proof. – Let S be a basis of a free group Fr and† Š G�X be a tychomorphism from Fr
toG with associated cocycle ˛WFr �X ! G. By Example 13, there is a fundamental domain
F � † for the Fr -action.

Choose a Borel section � WG ! QG of the projection map � W QG ! G. The following lemma
can be checked e.g., by applying the cocycle relation to the unique representation of elements
of Fr as reduced S -words.

L 19. – There is a measurable cocycle Q̨ WFr�X ! QG such that ˛ D � ı Q̨ . Moreover,
there is an essentially unique such Q̨ satisfying Q̨ .s; x/ D �.˛.s; x// for almost all x 2 X and
all s 2 S .

(Note that Q̨ is not in general equal to � ı ˛.)

Consider now the finite amplification of QG given by Q† D . QG; Lm QG/ � X . We endow Q†
with a measure-preserving Fr -action that commutes with the QG-action by setting w. Qg; x/ D
. Qg Q̨ .w; x/�1; wx/, observing that the given Fr -action on X preserves the measure by
Remark 15.

We now need to prove that Q† is an amplification of Fr , i.e., that there is a fundamental
domain in Q† for the countable group Fr . For this, consider the measurable space isomor-
phism N � G � X ' QG � X given by .n; g; x/ 7! .�.g/n; x/; when each group is endowed
with a right Haar measure, this isomorphism preserves the measure, up to a scaling factor,
thanks to Weil’s integration formula (see Proposition 10 in [6, VII § 2 no 7]). By transferring
the Fr -action via this isomorphism, the action on the former space is given by

w.n; g; x/ D .n0; g˛.w; x/�1; wx/ for w 2 Fr , n 2 N , g 2 G, x 2 X ,

where the specific expression n0 D �.g˛.w; x/�1/�1�.g/n Q̨ .w; x/�1 is irrelevant for our
purpose. Indeed, we only need to observe that the above Fr -action on Q† is a twisted
product with N of the given action on †, namely w.g; x/ D .g˛.w; x/�1; wx/. It therefore
admits N � F as a fundamental domain.

5. A generalization of the Gaboriau-Lyons theorem

In this section, we establish a generalization of the main result of [22] to certain totally
disconnected groups. We then deduce the existence of tychomorphisms from free groups to
these groups, Theorem 20 below. The full generality of Theorem B will be established in
Section 7.

Recall that the core of a subgroupK < G is the normal subgroup CoreG.K/ D
T
g2G K

g

of G; thus it is the kernel of the G-action on G=K.

T 20. – Let G be a non-amenable unimodular compactly generated locally
compact second countable group and K < G a compact open subgroup.

Then there exists a tychomorphism from F2 to G=CoreG.K/.
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When G is discrete, the assumptions are simply that G is finitely generated and non-
amenable (one takes K trivial). In that case, the Gaboriau-Lyons theorem states that a
suitable Bernoulli shift of G contains the orbits of a free F2-action. This implies that there
is a “randembedding” from F2 to G (see [41, § 5] or [42]). We shall follow the strategy of
Gaboriau-Lyons closely until changes are imposed by the non-discreteness.

One difficulty mentioned in the introduction is that we need a stronger conclusion since
simply having F2-orbits within the orbits of a locally compact groupG does not correspond
to any form of non-amenability unless some discreteness condition is imposed.

R. – Two proofs are proposed in [22], each needing different adjustments to be
generalized; therefore, we shall give all the details of the approach taken below. Another
exposition of [22] is given in [28]; there, the need of ergodicity for Hjorth’s theorem in [27]
relies on indistinguishable clusters for the free minimal spanning forest (Conjecture 6.11
in [37]), which is bypassed using a result [10] not established in the non-discrete setting.
After circulating a first version of this article, we were informed by Itai Benjamini that
indistinguishability has just been established in two preprints [29, 58]. In conclusion, a second
approach becomes possible just as in [22] and [28].

Proof of Theorem 20. – All the assumptions are preserved if we replaceG andK by their
images in G=CoreG.K/; therefore we can simply assume that K has trivial core in G. We
can chose a compact generating set S � G with S D S�1, e 2 S and S D KSK. Let n
be a positive integer to be chosen shortly and consider the graph g WD gn.G;K; S/ defined
in Section 3. Then G is a vertex-transitive closed subgroup of the automorphism group of g
and in particular g is, by definition, a unimodular graph. By construction, the spectral radius
of g is %n for some 0 < % � 1 which is the spectral radius of g.G;K; S/. We recall here that
% < 1 because G is non-amenable, see [52, Thm. 1(c)]. Therefore, we can and do choose n
large enough so that the spectral radius of g is %n < 1=9. We denote by E the set of edges
of g and consider the compact metrizable G-space Œ0; 1�E . We define X � Œ0; 1�E to be the
G-invariant Gı -subset of injective mapsE ! Œ0; 1� and observe thatG acts freely onX since
it acts faithfully on E by triviality of the core. Let Q be the corresponding orbit equivalence
relation on X defined by x Qx0 iff x0 2 Gx.

SinceK is compact, its action onX has a Borel fundamental domain Y � X (see e.g., [53,
5.4.3]). Thus, the action map defines a Borel isomorphism K � Y Š KY D X . We denote
by R the equivalence relation on Y defined by restricting Q, i.e., yRy0 iff y0 2 Gy. Then
Q decomposes alongK�Y Š X as the product Q D T K�R of the fully transitive relation
T K on K with R on Y . In particular R is a Borel equivalence relation with countable
classes. We obtain a graphing of R (in the sense of [20, 36]) by transporting to the R -orbit
Œy�R of y 2 Y the graph g. More explicitly, we have a bijection G=K ! Œy�R mapping a
vertex gK of g to the unique element of the setKg�1y \ Y . Notice that this graph structure
on Œy�R depends indeed only on the R -class of y. By construction, each R -class is then
isomorphic as a graph to the connected graph g.

For a given parameter 0 < p < 1, consider the map from X to the space of subgraphs
of g given as follows: an edge a 2 E is kept at x 2 X iff x.a/ � p. This provides us with
the cluster equivalence subrelation Q cl

� Q on X defined as in [21] by declaring x Q cl
x0 iff
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x0 D g�1x and the subgraph x � p connects gK to eK. Let R
cl
� R be the restriction

of Q cl to Y ; one checks again that Q cl is the product T K � R
cl.

We now endowX with the (restriction of the) product # of Lebesgue measures on Œ0; 1�E .
Then # is preserved and ergodic under G; ergodicity is very classical and can be proved e.g.,
by the same argument as in [32, 2.1]. We consider the maps described above by x � p as a
random variable on .X; #/ with values in the space of subgraphs of g; this is a G-invariant
p-Bernoulli bond percolation on g with scenery in the sense of [38, 3.4]. Therefore, we can
apply the results of [38] stating that this percolation process has indistinguishable infinite
clusters in the sense of [38, 3.1].

At this point we record the fact that there exist choices of the parameter p such that the
corresponding random subgraphs of g have #-almost surely infinitely many infinite clusters,
each of which having uncountably many ends. Indeed, in view of Theorems 1.2 and 6.1 in [25],
it suffices to show that the critical probability pc for g is strictly below the critical uniqueness
probability pu (see also [38, 3.10] for a proof of [25, 6.1]). The latter condition follows if the
free, respectively wired minimal forests are distinct processes on g, see [37, 3.6]. That property
holds for our choice of g; indeed, the free minimal forest has expected degree > 2 by [56,
Thm. 1] and the fact that the spectral radius of g is < 1=9; on the other hand the wired
minimal forest has degree 2 by [37, 3.12]. Alternatively, one can apply the earlier [45] instead
of [56].

Let X1 � X be the set of points whose Q cl-class is infinite; this is non-null by the
above discussion. The proof of Proposition 5 in [22] applies in this setting and shows that,
by the indistinguishability established above, the restriction of Q cl toX1 is ergodic. If we set
Y1 D Y \ X1, we have X1 D KY1. Furthermore, by measure disintegration, there is a
unique Borel probability measure � on Y such that # is the product of � by the normalized
Haar measure ofK; moreover, R preserves �. It follows thatY1 is non-null for � and that the
restriction of R

cl to Y1 is �-ergodic in view of the decomposition Q cl
Š T K � R

cl. This
further shows that R

cl has �-almost surely infinitely many infinite clusters, each of which
with uncountably many ends.

At this point we can argue exactly as in Propositions 12, 13 and 14 of [22] and apply
Hjorth’s result [27] to deduce that R contains a subrelation which is produced by a
measure-preserving a.s. free (ergodic) action of the free group F2 on two generators upon
the space .Y; �/.

As usual in this setting, we endow R with the measure given by integrating over .Y; �/
the counting measure of each equivalence class. We thus obtain a � -finite measure on R

which is preserved by the F2-action on the second coordinate of R � Y � Y (the action
on the first coordinate would work just as well). Moreover, there exists a positive measure
fundamental domain Z � R for this F2-action, obtained by choosing for each y 2 Y in
a Borel way representatives for the F2-classes within the R -class of y. (This procedure is
described in detail e.g., in [16, 2.2.2] in the case where R comes from a group action, which
is not a restriction [18].)

We extend theF2-action on Y to a (non-ergodic)F2-action onX Š K�Y by lettingF2 act
trivially onK. The resulting relation is contained in Q and therefore we have a F2-action on
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the second coordinate of Q. This action admits

T K �Z D
˚
.ky; k0y0/ W k; k0 2 K and .y; y0/ 2 Z

	
� Q

as a fundamental domain. We endow Q with a G-invariant measure m by pushing forward
the measure mG � # under the identification

G �X �! Q; .g; x/ 7�! .gx; x/;

with mG being a Haar measure on G. Then .Q; m/ is a finite amplification of the G-space
.G;mG/. Moreover, the F2-action preserves m because G is unimodular; thus, since we
have found a non-m-null fundamental domain T K � Z for F2, the F2-space .Q; m/ is an
amplification of F2. Therefore, .Q; m/ endowed with the commuting G- and F2-actions is
indeed a tychomorphism from F2 to G.

6. Moderate induction

Using moderate measures, we propose a new variant of the classical induction of repre-
sentations and of cocycles from closed subgroups. In fact, we shall consider the more general
case of tychomorphisms instead of subgroups only.

We first need to clarify the meaning of continuity for representations. Consider thus
a linear representation %WG ! GL.V / of a topological group G on a Banach space V ,
where GL denotes the group of invertible continuous linear maps. It is well-known that
several possible definitions of continuity coincide for unitary or even uniformly bounded
representations (see for instance Lemma 2.4 in [2]). But for general representations % as
above, even the definitions are already trickier because neither the weak nor strong operator
topologies are compatible with the group structure of GL.V / (compare e.g., [13, I § 3.1]).

The following lemma (which slightly refines [51, § 1.3]) shows that we can nonetheless
unambiguously talk about a continuous representation whenG is Baire (e.g., locally compact)
or first-countable. We call % locally bounded if the operator norm of % is a locally bounded
function on G.

L 21. – Let G be a topological group and %WG ! GL.V / be a representation on a
Banach space V . Consider the following assertions.

(i) The action map G � V ! V is jointly continuous.
(ii) The orbit map G ! V Wg 7! %.g/x is continuous for every x 2 V and % is locally

bounded.
(iii) The orbit map G ! V Wg 7! %.g/x is continuous for every x 2 V .

Then (i) and (ii) are equivalent. Moreover, they are also equivalent to (iii) ifG is Baire or admits
countable neighborhood bases.

It turns out that local boundedness is not automatic for completely generalG, even if V is
a separable Hilbert space; see Section 9. In particular, orbital and joint continuity do not
agree in full generality.
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Proof of Lemma 21. – The implications (i))(ii))(iii) hold trivially. Notice moreover
that % is locally bounded if and only if for every net g˛ ! g inG, the net k%.g˛/k is eventually
bounded.

For (ii))(i), let .g˛; x˛/ be a net converging to .g; x/ in G � V and consider

k%.g˛/x˛ � %.g/xk � k%.g˛/k kx˛ � xk C k%.g˛/x � xk:

The first term goes to zero as % is locally bounded and the second one also converges to zero
by orbital continuity.

We thus have to prove that orbital continuity implies local boundedness when G is either
Baire or first countable.

In the first case, we write G as the increasing union of the subsets Gn D fg 2 G W k%.g/k � ng.
SinceGn can be written as the intersection over all x 2 V of all g satisfying k%.g/xk � nkxk,
it is a closed set by orbital continuity. The Baire condition then implies that Gn has some
interior point g when n is large enough. Now any h 2 G admits Gng�1h as a neighborhood
on which k%k is bounded by nk%.g�1h/k.

If on the other hand G is first countable, then local boundedness can be checked on
sequences instead of nets; moreover, for sequences, eventual and actual boundedness coin-
cide. We thus show that for every sequence gn ! g in G, the sequence k%.gn/k is bounded.
By orbital continuity, %.gn/x converges and hence is bounded for all x 2 V . The conclusion
now follows from the Banach-Steinhaus uniform boundedness principle [14, II.3.21].

T 22. – LetG andH be locally compact second countable groups with a tychomor-
phism from H to G.

If H admits a continuous affine fixed point free action on a separable Hilbert space with a
bounded orbit, then so does G.

Proof. – Let V be a separable Hilbert space with a continuous affine action ˛ of H
having a bounded orbit. Upon conjugating by a translation, we can assume that the orbit
of the origin is bounded, i.e., that the cocycle bWH ! V of ˛ is bounded. Let .†;m/ be a
tychomorphism from H to G realized as a finite amplification .G; LmG/� .X; #/ and denote
by � anH -equivariant retraction†! H (i.e., � is the projection ontoH , when† is seen as
an amplification of H ).

First, we twist the measurem by a moderate measure� onG, which exists by Corollary 9.
That is, we define a new measure Q� by pushing the product measure on .G;�/� .X; #/ to †
through the isomorphism given by the tychomorphism. Thus Q� is a probability measure on†
in the same class as m.

We define an action of G �H on functions f W†! V by

.gf /.s/ D f .g�1s/; .hf /.s/ D f .h�1s/:

As G �H preserves the class of the measures m and Q� on †, this action is also well defined
on the equivalence classes of measurable functions.

Consider now the Hilbert space H D L2.†; Q�IV /. The fact that � is moderate implies
that G preserves H . Let us check that this action is continuous, i.e., that the orbit maps
G ! H are continuous (cf. Lemma 21, since local boundedness is readily implied by the defi-
nition of a moderate measure). Let thus gn ! g be a convergent sequence in G. Thanks to

4 e SÉRIE – TOME 50 – 2017 – No 1



FIXED POINTS FOR BOUNDED ORBITS IN HILBERT SPACES 147

the local boundedness, it suffices to check the continuity of the orbit maps only for points in
some dense subsetE of H . By the � -finiteness ofm, we can take forE the subspace spanned
by indicator functions of measurable sets A � † with finite m-measure. But for these func-
tions, theL2. Q�/-convergence of gn1A to g1A is equivalent to theL2.m/-convergence, because
m and Q� are two equivalent � -finite measures. Since the modular homomorphism �G is
continuous, this is nothing but a special case of the continuity of �, the (isometric) left
regular representation of G on L2.†;mIV / given by .�.g/f /.s/ D �G.g/

1
2 f .g�1s/. By

Proposition 1.1.3 in [40], in order to get the latter, it is enough to check that orbit maps are
norm-measurable, for which we borrow the argument from Appendix D, Theorem 1.2.1
in [7]. For any �; � 2 L2.†;mIV /, consider the map

g 7! h�.g/�; �i D �G.g/
1
2

Z
†

h�.g�1s/; �.s/iV dm.s/:

By definition of a tychomorphism, .g; s/ 7! h�.g�1s/; �.s/iV is a measurable function
onG �†, which is moreover bounded if � and � are essentially bounded. Hence an applica-
tion of [31, 17.25] shows that g 7! h�.g/�; �i is measurable when � and � are bounded, hence
for any � and � by density. In particular, the orbit maps g 7! �.g/� are weakly measurable.
By [40, Lemma 3.3.3], they are also norm-measurable, as desired.

Consider next the subsetW � H of functions f that areH -equivariant in the sense that
hf D ˛.h�1/ıf holds for every h 2 H . ThenW is aG-invariant closed subset that is stable
under affine combinations. Moreover, for any g 2 G, the functionˇg W†! V W s 7! b�.g�1s/

lies in W , has norm bounded by that of b and satisfies ˇg D gˇe. Hence the restriction of
the G-action to W is a continuous affine action of G with a bounded orbit.

Lastly, suppose for the sake of a contradiction that there is a G-fixed point in W . This
would then descend to a measurable functionX ! V which isH -equivariant. Moreover, the
latter is #-integrable thanks to theL2-condition since # is finite. Therefore, averaging overX ,
we would get a fixed point in V since the H -action on X preserves # by Remark 15.

7. Proofs of Theorems A and B

Let G be any locally compact group. Recall that G admits a maximal normal amenable
closed subgroup, the amenable radical Ramen.G/. The following general splitting result
from [8] relies notably on the solution to Hilbert’s fifth problem.

T 23 ([8, Thm. 3.3.3]). – Let G be any locally compact group.

The quotient groupG=Ramen.G/ has a finite index open characteristic subgroup which splits
as a direct product S �D where S is a connected semi-simple Lie group with trivial center and
no compact factors and D is totally disconnected.

Moreover, S �D is second countable if G is � -compact.

The statement on second countability is not made explicitly in loc. cit., but it follows from
Satz 6 in [30] that when G is � -compact, it has a second countable quotient by a compact
normal subgroup—which is necessarily contained in Ramen.G/.
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We first prove Theorem B. Let thus G be a non-amenable locally compact second count-
able group. Since there are inclusions Fr < F2 for all 0 � r � @0 we only consider r D 2,
using Lemma 17.

We shall distinguish two cases; as a first case, suppose that the connected componentGı of
the identity is already non-amenable. ThenG contains a discrete non-abelian free subgroup:

L 24. – A connected locally compact group is amenable if and only if it does not
contain any discrete non-abelian free subgroup.

Proof. – Let H be a non-amenable connected locally compact group and let
L D H=Ramen.H/ be the quotient by its amenable radical. In the present case, there
is no splitting and Theorem 23 is a direct consequence of the solution to Hilbert’s fifth
problem; it implies that L is a semi-simple Lie group of positive R-rank. In particular, it
contains a closed subgroup L1 < L of rank one. The classical ping-pong lemma applied
to suitable hyperbolic elements of L1 acting on the boundary of the symmetric space of L1
provides a free subgroup F2 of L1 (modulo its center) and shows moreover that this F2 is
discrete. Being free, it can be lifted to H and any such lift remains discrete.

The converse is elementary since closed subgroups of amenable locally compact groups
remain amenable (see [49, Theorem 3.9]).

Therefore we have a discrete non-abelian free subgroup ofGı < G, and thus a tychomor-
phism from F2 to G by Example 12.

The second case is when Gı is amenable. By Proposition 18, it suffices to produce a
tychomorphism from F2 to G=Gı. Let G1 < G=Gı be the kernel of the modular homo-
morphism of G=Gı. This closed normal subgroup is unimodular; in fact, it is the maximal
unimodular closed normal subgroup, see Proposition 10 in [6, VII § 2 no 7]. Observe that
G1 also remains totally disconnected and non-amenable. By considering the directed family
of subgroups of G1 generated by a compact neighborhood of the identity, we can choose
a compactly generated subgroup G2 < G1 which is non-amenable, and still unimodular
since it is open. Being totally disconnected, it contains some compact-open subgroupK. By
Theorem 20, there is a tychomorphism from F2 to the quotient ofG2 by the core ofK, hence
there exists one from F2 to G2 by Proposition 18. We can compose it with the inclusions
G2 < G1 < G=G

ı thanks to Lemma 17 in order to get a tychomorphism from F2 to G=Gı,
as desired.

This finishes the proof of Theorem B.
For the Lie oriented reader, we point out the following reformulation of Theorem B (and

its easy converse).

C 25. – LetG be a locally compact second countable group. ThenG is amenable
if and only if it does not admit a tychomorphism from SL2.R/.

Indeed the corollary follows by composition of tychomorphisms since any locally
compact group is measure equivalent to its lattices, which in the case of SL2.R/ include
non-abelian free groups.

We now turn to Theorem A and consider a non-amenable locally compact � -compact
group G. Our goal is to provide a continuous fixed point free affine G-action on a Hilbert
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space with a bounded orbit. It suffices of course to provide such an action for some quotient
ofG and hence we can assumeG second countable by appealing as above to [30]; notice that
we could even have replaced G by G=Ramen.G/.

The starting point is provided by Section 2, which shows that for instance the free groupF4
has a fixed point free affine action on a Hilbert space with a bounded orbit. We can then apply
Theorem B and Theorem 22 to conclude the proof of Theorem A, relying on the existence of
moderate measures for all groups, see Corollary 9. Alternatively, the latter can be bypassed
by providing the requested action for the quotient group G=Ramen.G/, see Remark 10.

8. Proof of Theorem C

We begin by recording an elementary common knowledge fact.

L 26. – Let H be an open subgroup of a topological group G. If H admits a non-
unitarisable uniformly bounded continuous representation on a Hilbert space, then so does G.

Proof. – Given the H -representation on V , we can form the usual induced G-represen-
tation on W D `2.G=H; V /, where G=H is endowed with the counting measure and G acts
on f 2 W by .gf /.x/ D .g�1; x/�1f .g�1x/, where  WG � G=H ! H is the (contin-
uous) cocycle determined by a choice of representatives for the cosets. One verifies that this
is indeed a well-defined uniformly bounded continuous representation. SinceH is open, the
H -representation V is contained in the restriction of W from G to H as the space of maps
supported on the trivial coset, whence the conclusion.

We can and shall assume that G is � -compact and A countable (then A oG=O G is also
� -compact). For let A0 < A be an infinite countable subgroup and G0 < G an open
� -compact subgroup (e.g., the subgroup generated by a compact neighborhood of the iden-
tity). If O < G0 is an open subgroup such that A0 oG0=O G0 is non-unitarisable, then indeed
A oG=O G is also non-unitarisable by Lemma 26 since it contains A0 oG0=O G0 as an open
subgroup (noting that O remains open in G).

We distinguish cases as in Section 7; suppose first that the connected component Gı is
amenable.

Then G1 D G=Ramen.G/ is totally disconnected, non-amenable and second countable;
moreover, the core of any compact-open subgroup K < G1 is trivial. We choose such a K
and define O < G to be its pre-image in G. Notice that it suffices to show that the group
A oG1=K G1 is non-unitarisable since it is a quotient of A oG=O G. By Theorem B, there exists
a tychomorphism from F2 to G1. Let

.†;m/ Š .G1; LmG1
/ � .X; #/ Š F2 � .Z; �/

be the corresponding G1 � H -space and its realizations as amplifications with associated
cocycles ˛ and ˇ. At this point, we can for a while follow exactly the path taken in [42]:

Recall first that the non-unitarisability of F2 is implied by the following a priori stronger
statement: there is a unitary representation .�; V / of F2 such that the bounded cohomology
H1

b.F2; L .V // is non-trivial, where L .V / is the Banach space of bounded operators of V
endowed with the isometric F2-module structure given by conjugation by � . We refer to
Lemma 4.5 in [46] for this fact, recalling that � can be taken to be the regular representation
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on V D `2.F2/ and that a (straightforward) translation from derivations to 1-cocycles has
to be made. We now consider the (classical unitarily) induced unitary G1-representation �
on W D L2.Z; �IV / defined by

.�.g/f /.s/ D �G1
.g/�

1
2�
�
ˇ.g�1; s/�1

�
f .g�1s/:

We have again a correspondingG1-representation on the von Neumann algebra L .W / given
by conjugation by � . This representation preserves the subalgebra E D L1w�.Z; L .V // of
weak-� measurable bounded function classes. In fact, the resulting G1-representation on E
is none other than the “L1-induced” representation (i.e without the�G1

factor) associated
to the above F2-representation on L .V /. In relation to thisL1-induced representation there
is also a cohomological induction map

H1
b.F2; L .V // �! H1

b.G1; E/:

The latter is injective. Indeed, the proof given in [43, § 4.3] for the case of ME couplings of
discrete groups holds without changes.

In addition to itsG1-structure, L .W / is a module over the von Neumann algebra L1.Z/
and this module structure is compatible with the G1-representation on L1.Z/ in the sense
that conjugating by g 2 G1 the action of some ' 2 L1.Z/ on L .W / simply gives the
action of g' D ' ı g�1. It follows that we will turn L .W / into a (dual isometric) coefficient
A oG1=K G1-module as soon as we define any representation of A into the unitary group of
the subalgebra L1.Z/K of L1.Z/. Notice furthermore that the L1.Z/-module structure
of L .W / preserves E so that E will also inherit that A oG1=K G1-action.

R 27. – We will need repeatedly that for any compact subgroup K 0 < G1 the
algebra L1.Z/K

0

is canonically identified with L1.K 0nZ/, where K 0nZ is an ordinary
quotient ofZ (in contrast to the case of non-compact groups, where one needs to introduce a
space of ergodic components which would be unsuitable for some arguments below). This is
the case because the compactness ofK 0 ensures that its action onZ is smooth in the ergodic-
theoretical sense, as follows from a result of Varadarajan (Theorem 3.2 in [59]).

We now choose an A-representation into the unitary group of L1.KnZ/ that generates
L1.KnZ/ as a von Neumann algebra (this exists e.g., by the argument given on page 257
in [42]). We write N D

L
G1=K

A, so that A oG1=K G1 D N oG1.

L 28. – Under the embedding E ! L .W /, we have E D L .W /N .

Proof. – In view of Theorem IV.5.9 in [55], what we need to prove is the following
claim. The von Neumann subalgebra of L1.Z/ generated by the union of all gL1.Z/K D
L1.Z/gKg

�1
, where gK ranges over G1=K, is L1.Z/ itself.

We first record that for any two compact subgroups K 0; K 00 < G1 the von Neumann
algebra generated by L1.Z/K

0

and L1.Z/K
00

coincides with L1.Z/K
0\K00 (this can

fail for non-compact groups). Indeed this follows immediately from the consequence of
Varadarajan’s theorem indicated in Remark 27. Consider now the net L1.Z/K

0

indexed
by the directed set of all finite intersections K 0 < G1 of G1-conjugates of K. The normal-
ized integration over K 0 provides a conditional expectation from L1.Z/ to L1.Z/K

0

for
each K 0 which turns this net into an inverse system. Therefore, the martingale convergence
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theorem implies that the algebra generated by the union of all L1.Z/K
0

is weak-� dense in
the von Neumann subalgebra B < L1.Z/ of functions that are measurable with respect
to the common refinement of all partitions defined by all Z � K 0nZ. (Although general
nets bring complications to martingale convergence [34], here we can anyway restrict to
a cofinal sequence since G1 is second countable.) Since K has trivial core in G1, it follows
(using again Varadarajan’s theorem) that in fact the common refinement is trivial and hence
B D L1.Z/. This implies the claim and thus finishes the proof.

We can now conclude the proof exactly as in [42]: We know that H1
b.G1; E/ is non-trivial

and thatE Š L .W /N . Moreover, the amenability ofN implies that H1
b.G1; L .W /N / can be

identified with H1
b.N o G1; L .W //, see [40, 7.5.10]. Appealing again to Lemma 4.5 in [46],

we deduce that the group N o G1 is non-unitarisable, finishing the proof of Theorem C in
the case where Gı is amenable.

If on the other hand Gı is non-amenable, then Theorem 23 implies that after passing
to an open subgroup (which we can by Lemma 26), our group has a quotient which is a
connected non-compact simple Lie group. As recalled in the Introduction, the particular
example of SL2.R/was actually the first example of a non-unitarisable group. Thanks to the
substantial theory available for representations of simple Lie groups, this example is known
to generalize to all connected non-compact simple Lie groups, see Remark 0.8 in [47]. In
conclusion, G itself is non-unitarisable in this case, and hence so is a fortiori any extension
of G. This completes the proof of Theorem C.

9. Remarks and questions

Our proof of Theorem A is rather indirect and uses tychomorphisms.

Q 29. – Is there an elementary proof of Theorem A, not relying on Theorem B?

This question arises even for discrete groups.

R 30. – The classical fixed point property for amenable groups concerns compact
convex sets in general locally convex spaces. Consider the following weakened property for
a topological group G:

Whenever G acts continuously on a locally convex space V by weakly continuous affine
transformations and preserves some weakly compact convex nonempty setK in V , it has a fixed
point.

This property is actually equivalent to the (formally stronger) usual one. Indeed, it is
enough to check that continuous actions by weak-� continuous affine transformations on
a dual Banach space V preserving some weak-� compact convex nonempty set are encom-
passed in this situation (see [49, Remarks 4.3]). But the weak topology of V endowed with
its weak-� topology is none other than its weak-� topology, whence the claim.
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R 31. – The action built in Section 2 has the additional property that the orbit
of 0 is not only bounded but relatively compact in norm. Indeed, the inclusion operator
`1.G/! `2.G;�/ is compact because� is finite and atomic. A similar argument applies for
moderate induction to discrete groups containing F2. However, a priori this does not hold
for induction through tychomorphisms since the corresponding measure space is in general
not atomic. This motivates the following:

Q 32. – Let G be a locally compact � -compact group. Suppose that every contin-
uous affine G-action on a Hilbert space preserving a norm-compact non-empty set has a fixed
point. Does it follow that G is amenable?

Again, the question seems open even for G discrete.
(One can equivalently consider norm-compact convex sets in view of Mazur’s theorem [39].)

R 33. – We already observed in the Introduction that the Banach-Steinhaus
uniform boundedness principle forces the considered actions to have at least some unbounded
orbit, and actually the points with unbounded orbits are dense. Moreover, the action built
in Section 2 also has a dense subset of points with bounded orbits: the image in `2.G;�/=R
of the functions with finite support.

R 34. – An action on a compact convex subset of a Hilbert space does not neces-
sarily extend to the whole ambient space. Let for instance V be the space `2.Z n f0g/ and
K in V be the compact convex subset of points x such that jxnj 6 n�1 and jx�nj 6 n�2

for n > 0. Define the affine transformation T WK ! K by

.T .x//n D nx�n .T .x//�n D
xn

n

for any n > 0. This is a continuous involution ofK. However, any linear extension of T to V
should map ın to nı�n for n < 0, which is impossible.

R 35. – In order to give some context to Lemma 21, we propose here a whole
family of representations %WG ! GL.V / of a topological group G on a Banach space V .

Consider any normed vector space U . Let G be the additive group of U endowed with
the weak topology and let V D R˚ U �, where U � is the (strong) dual of U and the sum is
endowed with the `2-sum of the two norms. In particular, V is a separable Hilbert space if
U is so.

Finally, the representation % is defined by %.u/.t; x/ D .t C x.u/; x/. Then every
orbital map is continuous by definition of the weak topology. On the other hand, we have
k%.u/k � kuk and hence % is locally bounded if and only if U is finite-dimensional.

We note in passing that the proof of Lemma 21 used the Banach-Steinhaus uniform
boundedness principle; hence the latter fails for general nets, illustrating the specific assump-
tions made e.g., in [5, III § 3 no 6].

Turning to the Dixmier problem, our next two questions would of course be moot if every
(locally compact) unitarisable group were amenable. This seems questionable even in the
discrete case; our questions, however, become obvious for discrete groups (see Lemma 26).

Q 36. – Does unitarisability pass to closed subgroups of locally compact groups?
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A preliminary question being:

Q 37. – Let G be a locally compact group containing a discrete (non-commutative)
free subgroup. Is G non-unitarisable?
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