Nous donnons une description complète et naturelle du formalisme d'arborification/coarborification d'Ecalle en termes d'algèbres de Hopf. L'arborification apparaît alors comme une factorisation de caractères, impliquant les algèbres shuffle ou quasishuffle, en vertu d'une propriété universelle satisfaite par l'algèbre de Connes-Kreimer. Dans ce cadre, nous obtenons de façon directe le procédé fondamental de coarborification homogène, en utilisant la dualité explicite entre les algèbres de Hopf décorées de Connes-Kreimer et Grossman-Larson. Enfin, nous introduisons une nouvelle algèbre de Hopf qui est sous-jacente aux calculs de normalisation des systèmes dynamiques locaux.
We give a natural and complete description of Ecalle's mould-comould formalism within a Hopf-algebraic framework. The arborification transform thus appears as a factorization of characters, involving the shuffle or quasishuffle Hopf algebras, thanks to a universal property satisfied by Connes-Kreimer Hopf algebra. We give a straightforward characterization of the fundamental process of homogeneous coarborification, using the explicit duality between decorated Connes-Kreimer and Grossman-Larson Hopf algebras. Finally, we introduce a new Hopf algebra that systematically underlies the calculations for the normalization of local dynamical systems.
DOI : 10.24033/asens.2315
Keywords: Dynamical systems, normal forms, Hopf algebras, trees, Faà di Bruno, moulds, arborification, coarborification.
Mot clés : Systèmes dynamiques, formes normales, algèbres de Hopf, arbres, Faà di Bruno, moules, arborification, coarborification.
@article{ASENS_2017__50_1_39_0, author = {Fauvet, Fr\'ed\'eric and Menous, Fr\'ed\'eric}, title = {Ecalle's arborification-coarborification transforms and {Connes-Kreimer} {Hopf} algebra}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {39--83}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {1}, year = {2017}, doi = {10.24033/asens.2315}, mrnumber = {3621426}, zbl = {1371.16043}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2315/} }
TY - JOUR AU - Fauvet, Frédéric AU - Menous, Frédéric TI - Ecalle's arborification-coarborification transforms and Connes-Kreimer Hopf algebra JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 39 EP - 83 VL - 50 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2315/ DO - 10.24033/asens.2315 LA - en ID - ASENS_2017__50_1_39_0 ER -
%0 Journal Article %A Fauvet, Frédéric %A Menous, Frédéric %T Ecalle's arborification-coarborification transforms and Connes-Kreimer Hopf algebra %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 39-83 %V 50 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2315/ %R 10.24033/asens.2315 %G en %F ASENS_2017__50_1_39_0
Fauvet, Frédéric; Menous, Frédéric. Ecalle's arborification-coarborification transforms and Connes-Kreimer Hopf algebra. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 39-83. doi : 10.24033/asens.2315. http://www.numdam.org/articles/10.24033/asens.2315/
, Grundl. math. Wiss., 250, Springer, New York-Berlin, 1983, 334 pages (ISBN: 0-387-90681-9) | MR | Zbl
Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč., Volume 25 (1971), pp. 131-288 26 (1972), 199–239 (ISSN: 0134-8663) | MR | Zbl
The Lagrange inversion formula on non-Archimedean fields. Non-analytical form of differential and finite difference equations, Discrete Contin. Dyn. Syst., Volume 9 (2003), pp. 835-858 (ISSN: 1078-0947) | DOI | MR | Zbl
Hopf algebras in dynamical systems theory, Int. J. Geom. Methods Mod. Phys., Volume 4 (2007), pp. 577-646 (ISSN: 0219-8878) | DOI | MR | Zbl
Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math., Volume 47 (2011), pp. 282-308 (ISSN: 0196-8858) | DOI | MR | Zbl
The anticyclic operad of moulds, Int. Math. Res. Not., Volume 2007 (2007) (ISSN: 1073-7928) | DOI | MR | Zbl
An operational calculus for the mould operad, Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | DOI | MR | Zbl
Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., Volume 199 (1998), pp. 203-242 (ISSN: 0010-3616) | DOI | MR | Zbl
Algebraic structure of stochastic expansions and efficient simulation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 468 (2012), pp. 2361-2382 (ISSN: 1364-5021) | DOI | MR | Zbl
The combinatorics of Bogoliubov's recursion in renormalization, Renormalization and Galois Theories (Connes, A.; Fauvet, F.; Ramis, J.-P., eds.), EMS Publ. House (2009) | DOI | MR | Zbl
Combinatorial Hopf algebras in quantum field theory. I, Rev. Math. Phys., Volume 17 (2005), pp. 881-976 (ISSN: 0129-055X) | DOI | MR | Zbl
Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math., Volume 126 (2002), pp. 193-239 (ISSN: 0007-4497) | DOI | MR | Zbl
Les algèbres de Hopf des arbres enracinés décorés. II, Bull. Sci. Math., Volume 126 (2002), pp. 249-288 (ISSN: 0007-4497) | DOI | MR | Zbl
Ordered forests, permutations, and iterated integrals, Int. Math. Res. Not., Volume 2013 (2013), pp. 846-885 (ISSN: 1073-7928) | DOI | MR | Zbl
Exact Renormalization Group (2002) (IHP Séminaire Bourbaphy, CNRS) | MR
Hopf-algebraic structure of families of trees, J. Algebra, Volume 126 (1989), pp. 184-210 (ISSN: 0021-8693) | DOI | MR | Zbl
Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math., Volume 72 (1990), pp. 109-117 (ISSN: 0021-2172) | DOI | MR | Zbl
, Renormalization and Galois theories (IRMA Lect. Math. Theor. Phys.), Volume 15, Eur. Math. Soc., Zürich, 2009, pp. 209-227 | DOI | MR | Zbl
, Graduate Studies in Math., 86, Amer. Math. Soc., Providence, RI, 2008, 625 pages (ISBN: 978-0-8218-3667-5) | MR | Zbl
Chen's iterated integral represents the operator product expansion, Adv. Theor. Math. Phys., Volume 3 (1999), pp. 627-670 (ISSN: 1095-0761) | DOI | MR | Zbl
, Faà di Bruno Hopf algebras, Dyson-Schwinger equations, and Lie-Butcher series (IRMA Lect. Math. Theor. Phys.), Volume 21, Eur. Math. Soc., Zürich, 2015, pp. 219-263 | DOI | MR | Zbl
Hopf algebras, from basics to applications to renormalization, Comptes-rendus des rencontres mathématiques de Glanon (2003)
An example of local analytic -difference equation: analytic classification, Ann. Fac. Sci. Toulouse Math., Volume 15 (2006), pp. 773-814 http://afst.cedram.org/item?id=AFST_2006_6_15_4_773_0 (ISSN: 0240-2963) | DOI | Numdam | MR | Zbl
On the stability of some groups of formal diffeomorphisms by the Birkhoff decomposition, Adv. Math., Volume 216 (2007), pp. 1-28 (ISSN: 0001-8708) | DOI | MR | Zbl
Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. IHÉS, Volume 55 (1982), pp. 63-164 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math., Volume 6 (2006), pp. 387-426 (ISSN: 1615-3375) | DOI | MR | Zbl
Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys., Volume 51 (2000), pp. 211-219 (ISSN: 0377-9017) | DOI | MR | Zbl
On invariant manifolds of complex analytic mappings near fixed points, Exposition. Math., Volume 4 (1986), pp. 97-109 (ISSN: 0723-0869) | MR | Zbl
On the convergence of power series transformations of analytic mappings near a fixed point into normal form (1977) (preprint IHÉS)
Differential operator specializations of noncommutative symmetric functions, Adv. Math., Volume 214 (2007), pp. 639-665 (ISSN: 0001-8708) | DOI | MR | Zbl
Noncommutative symmetric systems over associative algebras, J. Pure Appl. Algebra, Volume 210 (2007), pp. 363-382 (ISSN: 0022-4049) | DOI | MR | Zbl
A noncommutative symmetric system over the Grossman-Larson Hopf algebra of labeled rooted trees, J. Algebraic Combin., Volume 28 (2008), pp. 235-260 (ISSN: 0925-9899) | DOI | MR | Zbl
Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble), Volume 42 (1992), pp. 73-164 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Cité par Sources :