Ecalle's arborification-coarborification transforms and Connes-Kreimer Hopf algebra
[Les transformations d'arborification-coarborification d'Ecalle et l'algèbre de Hopf de Connes-Kreimer]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 39-83.

Nous donnons une description complète et naturelle du formalisme d'arborification/coarborification d'Ecalle en termes d'algèbres de Hopf. L'arborification apparaît alors comme une factorisation de caractères, impliquant les algèbres shuffle ou quasishuffle, en vertu d'une propriété universelle satisfaite par l'algèbre de Connes-Kreimer. Dans ce cadre, nous obtenons de façon directe le procédé fondamental de coarborification homogène, en utilisant la dualité explicite entre les algèbres de Hopf décorées de Connes-Kreimer et Grossman-Larson. Enfin, nous introduisons une nouvelle algèbre de Hopf qui est sous-jacente aux calculs de normalisation des systèmes dynamiques locaux.

We give a natural and complete description of Ecalle's mould-comould formalism within a Hopf-algebraic framework. The arborification transform thus appears as a factorization of characters, involving the shuffle or quasishuffle Hopf algebras, thanks to a universal property satisfied by Connes-Kreimer Hopf algebra. We give a straightforward characterization of the fundamental process of homogeneous coarborification, using the explicit duality between decorated Connes-Kreimer and Grossman-Larson Hopf algebras. Finally, we introduce a new Hopf algebra that systematically underlies the calculations for the normalization of local dynamical systems.

Publié le :
DOI : 10.24033/asens.2315
Classification : 05E05, 16T05, 34M35.
Keywords: Dynamical systems, normal forms, Hopf algebras, trees, Faà di Bruno, moulds, arborification, coarborification.
Mot clés : Systèmes dynamiques, formes normales, algèbres de Hopf, arbres, Faà di Bruno, moules, arborification, coarborification.
@article{ASENS_2017__50_1_39_0,
     author = {Fauvet, Fr\'ed\'eric and Menous, Fr\'ed\'eric},
     title = {Ecalle's arborification-coarborification transforms and {Connes-Kreimer}  {Hopf} algebra},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {39--83},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {1},
     year = {2017},
     doi = {10.24033/asens.2315},
     mrnumber = {3621426},
     zbl = {1371.16043},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2315/}
}
TY  - JOUR
AU  - Fauvet, Frédéric
AU  - Menous, Frédéric
TI  - Ecalle's arborification-coarborification transforms and Connes-Kreimer  Hopf algebra
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 39
EP  - 83
VL  - 50
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2315/
DO  - 10.24033/asens.2315
LA  - en
ID  - ASENS_2017__50_1_39_0
ER  - 
%0 Journal Article
%A Fauvet, Frédéric
%A Menous, Frédéric
%T Ecalle's arborification-coarborification transforms and Connes-Kreimer  Hopf algebra
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 39-83
%V 50
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2315/
%R 10.24033/asens.2315
%G en
%F ASENS_2017__50_1_39_0
Fauvet, Frédéric; Menous, Frédéric. Ecalle's arborification-coarborification transforms and Connes-Kreimer  Hopf algebra. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 39-83. doi : 10.24033/asens.2315. http://www.numdam.org/articles/10.24033/asens.2315/

Arnolʼd, V. I., Grundl. math. Wiss., 250, Springer, New York-Berlin, 1983, 334 pages (ISBN: 0-387-90681-9) | MR | Zbl

Brjuno, A. D. Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč., Volume 25 (1971), pp. 131-288 26 (1972), 199–239 (ISSN: 0134-8663) | MR | Zbl

Carletti, T. The Lagrange inversion formula on non-Archimedean fields. Non-analytical form of differential and finite difference equations, Discrete Contin. Dyn. Syst., Volume 9 (2003), pp. 835-858 (ISSN: 1078-0947) | DOI | MR | Zbl

Cariñena, J. F.; Ebrahimi-Fard, K.; Figueroa, H.; Gracia-Bondía, J. M. Hopf algebras in dynamical systems theory, Int. J. Geom. Methods Mod. Phys., Volume 4 (2007), pp. 577-646 (ISSN: 0219-8878) | DOI | MR | Zbl

Calaque, D.; Ebrahimi-Fard, K.; Manchon, D. Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math., Volume 47 (2011), pp. 282-308 (ISSN: 0196-8858) | DOI | MR | Zbl

Chapoton, F. The anticyclic operad of moulds, Int. Math. Res. Not., Volume 2007 (2007) (ISSN: 1073-7928) | DOI | MR | Zbl

Chapoton, F.; Hivert, F.; Novelli, J.-C.; Thibon, J.-Y. An operational calculus for the mould operad, Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | DOI | MR | Zbl

Connes, A.; Kreimer, D. Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., Volume 199 (1998), pp. 203-242 (ISSN: 0010-3616) | DOI | MR | Zbl

Ebrahimi-Fard, K.; Lundervold, A.; Malham, S. J. A.; Munthe-Kaas, H.; Wiese, A. Algebraic structure of stochastic expansions and efficient simulation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 468 (2012), pp. 2361-2382 (ISSN: 1364-5021) | DOI | MR | Zbl

Ebrahimi-Fard, K.; Manchon, D. The combinatorics of Bogoliubov's recursion in renormalization, Renormalization and Galois Theories (Connes, A.; Fauvet, F.; Ramis, J.-P., eds.), EMS Publ. House (2009) | DOI | MR | Zbl

Figueroa, H.; Gracia-Bondía, J. M. Combinatorial Hopf algebras in quantum field theory. I, Rev. Math. Phys., Volume 17 (2005), pp. 881-976 (ISSN: 0129-055X) | DOI | MR | Zbl

Foissy, L. Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math., Volume 126 (2002), pp. 193-239 (ISSN: 0007-4497) | DOI | MR | Zbl

Foissy, L. Les algèbres de Hopf des arbres enracinés décorés. II, Bull. Sci. Math., Volume 126 (2002), pp. 249-288 (ISSN: 0007-4497) | DOI | MR | Zbl

Foissy, L.; Unterberger, J. Ordered forests, permutations, and iterated integrals, Int. Math. Res. Not., Volume 2013 (2013), pp. 846-885 (ISSN: 1073-7928) | DOI | MR | Zbl

Galavotti, G. Exact Renormalization Group (2002) (IHP Séminaire Bourbaphy, CNRS) | MR

Grossman, R.; Larson, R. G. Hopf-algebraic structure of families of trees, J. Algebra, Volume 126 (1989), pp. 184-210 (ISSN: 0021-8693) | DOI | MR | Zbl

Grossman, R.; Larson, R. G. Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math., Volume 72 (1990), pp. 109-117 (ISSN: 0021-2172) | DOI | MR | Zbl

Hoffman, M. E., Renormalization and Galois theories (IRMA Lect. Math. Theor. Phys.), Volume 15, Eur. Math. Soc., Zürich, 2009, pp. 209-227 | DOI | MR | Zbl

Ilyashenko, Y.; Yakovenko, S., Graduate Studies in Math., 86, Amer. Math. Soc., Providence, RI, 2008, 625 pages (ISBN: 978-0-8218-3667-5) | MR | Zbl

Kreimer, D. Chen's iterated integral represents the operator product expansion, Adv. Theor. Math. Phys., Volume 3 (1999), pp. 627-670 (ISSN: 1095-0761) | DOI | MR | Zbl

Lundervold, A.; Munthe-Kaas, H. Z., Faà di Bruno Hopf algebras, Dyson-Schwinger equations, and Lie-Butcher series (IRMA Lect. Math. Theor. Phys.), Volume 21, Eur. Math. Soc., Zürich, 2015, pp. 219-263 | DOI | MR | Zbl

Manchon, D. Hopf algebras, from basics to applications to renormalization, Comptes-rendus des rencontres mathématiques de Glanon (2003)

Menous, F. An example of local analytic q-difference equation: analytic classification, Ann. Fac. Sci. Toulouse Math., Volume 15 (2006), pp. 773-814 http://afst.cedram.org/item?id=AFST_2006_6_15_4_773_0 (ISSN: 0240-2963) | DOI | Numdam | MR | Zbl

Menous, F. On the stability of some groups of formal diffeomorphisms by the Birkhoff decomposition, Adv. Math., Volume 216 (2007), pp. 1-28 (ISSN: 0001-8708) | DOI | MR | Zbl

Martinet, J.; Ramis, J.-P. Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. IHÉS, Volume 55 (1982), pp. 63-164 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Murua, A. The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math., Volume 6 (2006), pp. 387-426 (ISSN: 1615-3375) | DOI | MR | Zbl

Panaite, F. Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys., Volume 51 (2000), pp. 211-219 (ISSN: 0377-9017) | DOI | MR | Zbl

Pöschel, J. On invariant manifolds of complex analytic mappings near fixed points, Exposition. Math., Volume 4 (1986), pp. 97-109 (ISSN: 0723-0869) | MR | Zbl

Rüssmann, H. On the convergence of power series transformations of analytic mappings near a fixed point into normal form (1977) (preprint IHÉS)

Zhao, W. Differential operator specializations of noncommutative symmetric functions, Adv. Math., Volume 214 (2007), pp. 639-665 (ISSN: 0001-8708) | DOI | MR | Zbl

Zhao, W. Noncommutative symmetric systems over associative algebras, J. Pure Appl. Algebra, Volume 210 (2007), pp. 363-382 (ISSN: 0022-4049) | DOI | MR | Zbl

Zhao, W. A noncommutative symmetric system over the Grossman-Larson Hopf algebra of labeled rooted trees, J. Algebraic Combin., Volume 28 (2008), pp. 235-260 (ISSN: 0925-9899) | DOI | MR | Zbl

Écalle, J. Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble), Volume 42 (1992), pp. 73-164 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Cité par Sources :