Characterizations of rectifiable metric measure spaces
[Caractérisation des espaces métriques mesurés rectifiables]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 1-37.

Nous caractérisons les espaces métriques mesurés n-rectifiables comme étant les espaces qui admettent une décomposition borélienne dénombrable telle que chaque morceau admet une n-densité finie et strictement positive, et vérifie l'une des conditions suivantes : c'est un espace de Lipschitz-différentiabilité de dimension n ; il admet n représentations d'Alberti indépendantes ; il satisfait à la condition de David pour une carte de dimension n. L'outil essentiel est une construction de grille itérative qui nous permet de montrer que l'image par une application de carte d'une boule ayant une grande densité de courbes des représentations d'Alberti contient une grande proportion d'une boule de grand rayon, et donc vérifie la condition de David. Cela nous permet d'appliquer des versions modifiées de résultats connus concernant les « morceaux bilipschitz » [8, 12, 10, 21] sur les cartes.

We characterize n-rectifiable metric measure spaces as those spaces that admit a countable Borel decomposition so that each piece has positive and finite n-densities and one of the following: is an n-dimensional Lipschitz differentiability space; has n-independent Alberti representations; satisfies David's condition for an n-dimensional chart. The key tool is an iterative grid construction which allows us to show that the image of a ball with a high density of curves from the Alberti representations under a chart map contains a large portion of a uniformly large ball and hence satisfies David's condition. This allows us to apply modified versions of previously known “biLipschitz pieces” results [8, 12, 10, 21] on the charts.

@article{ASENS_2017__50_1_1_0,
     author = {Bate, David and Li, Sean},
     title = {Characterizations of rectifiable metric measure spaces},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1--37},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {1},
     year = {2017},
     doi = {10.24033/asens.2314},
     mrnumber = {3621425},
     zbl = {1369.28002},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2314/}
}
TY  - JOUR
AU  - Bate, David
AU  - Li, Sean
TI  - Characterizations of rectifiable metric measure spaces
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 1
EP  - 37
VL  - 50
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2314/
DO  - 10.24033/asens.2314
LA  - en
ID  - ASENS_2017__50_1_1_0
ER  - 
%0 Journal Article
%A Bate, David
%A Li, Sean
%T Characterizations of rectifiable metric measure spaces
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 1-37
%V 50
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2314/
%R 10.24033/asens.2314
%G en
%F ASENS_2017__50_1_1_0
Bate, David; Li, Sean. Characterizations of rectifiable metric measure spaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 1-37. doi : 10.24033/asens.2314. http://www.numdam.org/articles/10.24033/asens.2314/

Bate, D. Structure of measures in Lipschitz differentiability spaces, J. Amer. Math. Soc., Volume 28 (2015), pp. 421-482 | DOI | MR | Zbl

Bourdon, M.; Pajot, H. Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 2315-2324 | DOI | MR | Zbl

Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999), pp. 428-517 | DOI | MR | Zbl

Christ, M. A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., Volume 60/61 (1990), pp. 601-628 | DOI | MR | Zbl

Csörnyei, M.; Jones, P. Product Formulas for Measures and Applications to Analysis and Geometry (2015) (preprint http://www.math.sunysb.edu/Videos/dfest/PDFs/38-Jones.pdf )

Cheeger, J.; Kleiner, B. Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property, Geom. Funct. Anal., Volume 19 (2009), pp. 1017-1028 (ISSN: 1016-443X) | DOI | MR | Zbl

Cheeger, J.; Kleiner, B. Inverse limit spaces satisfying a Poincaré inequality, Analysis and Geometry in Metric Spaces, Volume 3 (2015) ( doi:10.1515/agms-2015-0002 ) | DOI | MR | Zbl

David, G. C. Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces, Geom. Funct. Anal., Volume 25 (2015), pp. 553-579 | DOI | MR | Zbl

David, G. C. Morceaux de graphes Lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoam., Volume 4 (1988), pp. 73-114 | DOI | MR | Zbl

David, G. C.; Semmes, S. Quantitative rectifiability and Lipschitz mappings, Trans. Amer. Math. Soc., Volume 337 (1993), pp. 855-889 | DOI | MR | Zbl

Heinonen, J., Universitext, Springer, 2001, 140 pages (ISBN: 0-387-95104-0) | DOI | MR | Zbl

Jones, P. Lipschitz and bi-Lipschitz functions, Rev. Mat. Iberoam., Volume 4 (1988), pp. 115-121 | DOI | MR | Zbl

Kirchheim, B. Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc., Volume 121 (1994), pp. 113-123 | DOI | MR | Zbl

Laakso, T. Ahlfors Q-regular spaces with arbitrary Q>1 admitting weak Poincaré inequality, Geom. Funct. Anal., Volume 10 (2000), pp. 111-123 | DOI | MR | Zbl

Máthé, A. Disintegrating measures onto Lipschitz curves and surfaces (ERC Workshop on Geometric Measure Theory, Analysis in Metric Spaces and Real Analysis, October 2013)

Mattila, P. Hausdorff m regular and rectifiable sets in n-space, Trans. Amer. Math. Soc., Volume 205 (1975), pp. 263-274 (ISSN: 0002-9947) | MR | Zbl

Pansu, P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math., Volume 129 (1989), pp. 1-60 | DOI | MR | Zbl

Preiss, D. Geometry of measures in 𝐑n: distribution, rectifiability, and densities, Ann. of Math., Volume 125 (1987), pp. 537-643 (ISSN: 0003-486X) | DOI | MR | Zbl

Preiss, D.; Tišer, J. On Besicovitch's 12-problem, J. London Math. Soc., Volume 45 (1992), pp. 279-287 (ISSN: 0024-6107) | DOI | MR | Zbl

Schioppa, A. Derivations and Alberti representations (2014) | MR

Semmes, S. Measure-preserving quality within mappings, Rev. Mat. Iberoam., Volume 16 (2000), pp. 363-458 | DOI | MR | Zbl

Cité par Sources :