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CHARACTERIZATIONS OF RECTIFIABLE
METRIC MEASURE SPACES

 D BATE  S LI

A. – We characterize n-rectifiable metric measure spaces as those spaces that admit a
countable Borel decomposition so that each piece has positive and finite n-densities and one of the
following: is an n-dimensional Lipschitz differentiability space; has n-independent Alberti representa-
tions; satisfies David’s condition for an n-dimensional chart. The key tool is an iterative grid construc-
tion which allows us to show that the image of a ball with a high density of curves from the Alberti
representations under a chart map contains a large portion of a uniformly large ball and hence satisfies
David’s condition. This allows us to apply modified versions of previously known “biLipschitz pieces”
results [8, 12, 10, 21] on the charts.

R. – Nous caractérisons les espaces métriques mesurés n-rectifiables comme étant les
espaces qui admettent une décomposition borélienne dénombrable telle que chaque morceau admet
une n-densité finie et strictement positive, et vérifie l’une des conditions suivantes : c’est un espace
de Lipschitz-différentiabilité de dimension n ; il admet n représentations d’Alberti indépendantes ; il
satisfait à la condition de David pour une carte de dimension n. L’outil essentiel est une construction
de grille itérative qui nous permet de montrer que l’image par une application de carte d’une boule ayant
une grande densité de courbes des représentations d’Alberti contient une grande proportion d’une
boule de grand rayon, et donc vérifie la condition de David. Cela nous permet d’appliquer des versions
modifiées de résultats connus concernant les « morceaux bilipschitz » [8, 12, 10, 21] sur les cartes.

1. Introduction

A metric measure space .X; d; �/ is said to be n-rectifiable if there exists a count-
able family of Lipschitz functions fi defined on measurable subsets Ai � Rn such that
�.Xn

S1
iD1 f .Ai // D 0 and � � Hn. We say that a metric space is n-rectifiable if it is

n-rectifiable when equipped with Hn. Similarly to how rectifiable subsets of Euclidean space
possess many nice properties akin to those of smooth manifolds, rectifiable metric measure
spaces also satisfy many regularity properties. For these reasons, it is highly desirable to find
general conditions that describe when a metric measure space is rectifiable.
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2 D. BATE AND S. LI

Such conditions have been difficult to find. Classically (that is, when the measure is defined
on Euclidean space), this problem was first fully solved by Mattila [16] for Hausdorff measure
and more generally by Preiss [18] for an arbitrary Radon measure. Both of these results
consider the upper and lower n-densities of the measure defined by

‚�;n.�I x/ D lim sup
r!0

�.B.x; r//

.2r/n
and ‚n�.�I x/ D lim inf

r!0

�.B.x; r//

.2r/n

respectively. When these two values agree, we denote the common value by ‚n.�I x/, the
n-dimensional density of � at x. Precisely, Mattila shows that, if ‚n.HnxEI x/ D 1

for Hn-a.e. x 2 E � RN , then E is n-rectifiable. More generally, Preiss showed that if � is a
Radon measure onRN for which‚n.�I x/ exists and is positive and finite�-a.e. then .RN ; �/
is n-rectifiable.

In the metric setting, only partial answers are known. We first partially recall a theorem of
Kirchheim [13] that will be fundamental to our characterization of rectifiable metric measure
spaces.

T 1.1 (Kirchheim [13]). – Let .X; d/ be an n-rectifiable metric space of finite
Hn measure. Then ‚n.Hn

I x/ D 1 for Hn a.e. x.

Conversely, Preiss and Tišer [19] showed that, for dimension 1, a lower Hausdorff density
greater than (a number slightly less than) 3=4 is sufficient to ensure 1-rectifiability.

In a different direction, but with a similar goal, the work of David and Semmes [8, 21, 10]
found conditions under which a Lipschitz function defined on an Ahlfors n-regular space
taking values in Rn is in fact biLipschitz. A metric measure space is said to be Ahlfors
n-regular if there exist C > 0 such that

1

C
rn � �.B.x; r// � Crn

for each x 2 X and r < diam.X/. One may consider this condition to be a quantitative
version of the property that the upper and lower n-densities are positive and finite. David
and Semmes showed that, if the image of every ball under a Lipschitz function contains a
ball of comparable radius centred at the image of centre of the first ball (that is, the function
is a Lipschitz quotient), then the function can be decomposed into biLipschitz pieces. In fact,
they only require that the image contains most (in terms of measure) of a ball of comparable
radius. We will discuss generalizations of this condition, now known as David’s condition,
below. In particular, our main tool of constructing rectifiable subsets of metric measure
spaces will be a generalization of the theorems of David and Semmes that are applicable when
the space only satisfies density estimates, rather than full Ahlfors regularity. See Theorem 5.3
for the statement of the generalization.

More recently, initiated by the striking work of Cheeger [3], there has been much activity
in generalizing the classical theorem of Rademacher to metric measure spaces. Most of all,
this departed from the existing generalizations of Rademacher’s theorem, for example that
of Pansu [17], by not requiring a group structure in the domain to define the derivative.
Let U � X be a Borel set and 'WX ! Rn Lipschitz. We say that .U; '/ form a chart of
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CHARACTERIZATIONS OF RECTIFIABILITY 3

dimension n and that a function f W X ! R is differentiable at x0 2 U with respect to .U; '/
if there exists a unique Df.x0/ 2 Rn (the derivative of f at x0) so that

lim
X3x!x0

jf .x/ � f .x0/ �Df.x0/ � .'.x/ � '.x0//j

d.x; x0/
D 0:

A metric measure space .X; d; �/ is said to be a Lipschitz differentiability space if there
exists a countable set of charts .Ui ; 'i / so that X D

S
i Ui and every real valued Lipschitz

function defined on X is differentiable at almost every point of every chart. A Lipschitz
differentiability space is said to be n-dimensional if every chart map is Rn valued.

Although the concept of a Lipschitz differentiability space is very general, it is known that
some additional structure must exist—it must be possible to decompose the measure into an
integral combination of 1-rectifiable measures known as Alberti representations. Define � to
be the collection of biLipschitz functions  defined on a compact subset of R taking values
in X (known as curve fragments). We say that � has an Alberti representation if there exists
a probability measure P on � and measures � � H1xImage  such that

�.B/ D

Z
�

� .B/ dP

for each Borel set B � X . Further, for a Lipschitz function 'WX ! Rn, an Alberti
representation is in the '-direction of a cone C � Rn if

.' ı /0.t/ 2 C n f0g;

for P a.e.  2 � and � a.e. t 2 dom  . Finally, we say that a collection of n Alberti
representations are '-independent if there exist linearly independent cones in Rn so that each
Alberti representation is in the direction of a cone and no two Alberti representations are in
the direction of the same cone. One of the main results of [1] is that any n-dimensional chart
in a Lipschitz differentiability space has n independent Alberti representations.

There are known examples of Lipschitz differentiability spaces that are not groups
(cf. [2, 5, 14]) and do not admit any rectifiable behaviour beyond the existence of Alberti
representations. Indeed, Cheeger also showed that for many of these spaces to possess a
biLipschitz embedding into any Euclidean space, the dimension of the chart must equal the
Hausdorff dimension of the space, which is not generally true. (More generally, a theorem of
Cheeger-Kleiner [4] proves the same result for a biLipschitz embedding into an RNP Banach
space.) However, there are very natural relationships between rectifiability and differentia-
bility. For example, Rademacher’s theorem easily extends to rectifiable sets via composition
of functions (this concept is at the heart of the relationship between Alberti representations
and differentiability). Further, the proof of Kirchheim’s theorem fundamentally relies on
a version of Rademacher’s theorem for metric space valued Lipschitz functions defined on
Euclidean space. Once this is established, the outline is that of the classical case.

In this paper we give precise conditions when the notions of rectifiability and differentia-
bility agree and hence obtain several characterizations of rectifiable metric measure spaces.
Specifically, we prove the following theorem.

T 1.2. – A metric measure space .X; d; �/ is n-rectifiable (which we denote by
Property (R)) if and only if there exist a countable collection of Borel sets Ui � X with

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



4 D. BATE AND S. LI

�
�
X n

S
i Ui

�
D 0 and Lipschitz functions 'i WX ! Rn such that

0 < ‚n�.�xUi I x/ � ‚
�;n.�xUi I x/ <1

for � a.e. x 2 Ui and every i , and one of the following holds:

(i) Each .Ui ; d; �/ is an n-dimensional Lipschitz differentiability space;
(ii) Each �xUi has n 'i -independent Alberti representations;

(iii) Each Ui satisfies David’s condition a.e. with respect to the function 'i .

See Section 2 for the precise definition of David’s condition that we use. We note that, for
each condition, a different countable decomposition is permitted. Further, in the case that
the space is rectifiable, the Ui can be chosen to have finite Hn measure and so the Hausdorff

density exists and equals 1 at almost every point by Kirchheim’s theorem. Therefore, the
� density must also exist and equals the Radon-Nikodym derivative of�with respect to Hn

at � almost every point.
From this theorem we see that the density estimates force the curve fragments obtained

from Alberti representations to form rectifiable sets. This is not necessarily true without this
condition. For example, the Heisenberg group is a Lipschitz differentiability space consisting
of a single chart of dimension two and hence has two independent Alberti representations but
is purely 2-unrectifiable. (The Heisenberg group is Ahlfors 4-regular.) Furthermore, in [15],
Máthé constructs a measure on R3 with 2 independent Alberti representations that is purely
2-unrectifiable. Indeed, our results are new even for a measure defined on Euclidean space:
the only existing result is a corollary of Csörnyei-Jones [7] that states that a measure on Rn

with n-independent Alberti representations must be absolutely continuous with respect to
Lebesgue measure.

We point out the known and easy implications in our theorem. Firstly, as mentioned
above, by Kirchheim’s theorem we may take a countable decomposition of any rectifiable
metric measure space so that the n-dimensional density of � on each piece exists and is finite
and positive at almost every point of such a piece. Also from Kirchheim [13], we may suppose
that the Lipschitz functions that parametrize a rectifiable set are in fact biLipschitz. Further,
it is easy to see that f .A/, for f WA � Rn ! f .A/ biLipschitz and A closed, equipped with
� � Hn is a Lipschitz differentiability space (the chart map is simply the inverse of f ),
so that (R) implies (i). Secondly, the existence of n independent Alberti representations of an
n-dimensional chart in a Lipschitz differentiability space is proved in [1, Theorem 9.5]. Thus,
within this paper we are interested in proving (ii) implies (iii) and that (iii) implies (R).

An immediate corollary of our theorem is the following.

C 1.3. – Any Ahlfors n-regular n-dimensional Lipschitz differentiability space
is n-rectifiable.

This is a generalization of a result of G. C. David (this David is not the same person
who is the namesake of David’s condition) in [9] where it is shown that tangents of almost
every point of an n-dimensional chart in an Ahlfors n-regular Lipschitz differentiability
spaces are n-rectifiable (in fact he showed even more that they are uniformly rectifiable). In
addition, he showed that k-dimensional charts in Ahlfors s-regular Lipschitz differentiability
spaces for k < s are strongly s-unrectifiable. However, the rectifiability of Ahlfors n-regular

4 e SÉRIE – TOME 50 – 2017 – No 1



CHARACTERIZATIONS OF RECTIFIABILITY 5

Lipschitz differentiability spaces themselves was still unknown. Indeed, this was the starting
point for our work presented in this paper.

The proof of Theorem 1.2 will follow the same outline as that in [9] although we will
need to make all the arguments effective. We quickly go over the general idea. There, for
any tangent Y at a point x 2 X , consider a limiting Lipschitz function f WY ! Rn of '.
To show that Y is rectifiable, it is shown that f is a Lipschitz quotient and hence satisfies
David’s condition. Thus, by applying the machinery developed by David [8], it is concluded
that f can be decomposed into biLipschitz pieces.

We will seek to use the same biLipschitz decomposition machinery and to do so, we need
to show that images of balls contain large portions of uniformly large balls. G. C.David was
able to show that, when taking a tangent, the curve fragments from the Alberti representa-
tions become full Lipschitz curves of Y that are pushed through f to straight lines in Rn and
that f is in fact surjective (see also Schioppa [20] for an earlier proof of this). By using these
straight lines further, it is possible to show that f is locally surjective in a scale invariant way.

As we cannot take a tangent, we do not have access to these full straight lines, but rather
fragmented biLipschitz curves. The heart of our argument is showing that if a ball B � X

has a high density of points that lie on dense long fragmented curves with some certain speed
relative to ', then the image of B under ' contains most of a uniformly large ball. This will
be sufficient to use the biLipschitz pieces decomposition of [10, 21].

Finally, we note that the decomposition of a rectifiable metric measure space into
Lipschitz differentiability spaces, rather than into a single Lipschitz differentiability space
with many charts, is necessary. This is because of the subtle point that a countable union
of Lipschitz differentiability spaces need not actually be a Lipschitz differentiability space,
as the pieces may interact in undesirable ways. This is relevant since, in the definition of the
derivative, we require convergence over the whole space. Of course, if the convergence were
only over the set defining a chart, then the union would trivially be a Lipschitz differentia-
bility space.

As an example, consider the subset of the plane defined by

.f0g � Œ0; 1�/ [ f.x; p=2n/ W n 2 N; 1 � p < 2n odd; ˙x 2 Œ2�n � 4�n; 2�n�g;

equipped with H1. This is a compact metric measure space of finite measure that is a count-
able union of Lipschitz differentiability spaces and is rectifiable. However, the function jxj
is not differentiable at any point of the vertical segment. More generally, the functions
jxj and x cannot both be differentiable with respect to the same chart function and so
the space is not a 1-dimensional Lipschitz differentiability space. It cannot be a higher
dimensional Lipschitz differentiability space for several reasons. For example, it does not
have 2 independent Alberti representations or the fact that the vertical segment is a porous
set of positive measure. In fact, it is easy to see that a countable union of Lipschitz differ-
entiability spaces is a Lipschitz differentiability space if and only if every porous set has
measure zero. Finally, if we restrict the measure to the vertical segment, then we see that it is
also necessary to consider only the support of�, rather than the whole space, in our theorem.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



6 D. BATE AND S. LI
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2. Preliminaries

In this section, we introduce various properties of our metric space. Unless specified
otherwise, we will let B.x; r/ denote the closed ball centered at x with radius r in X . For
simplicity, we will consider a metric measure space to be a complete and separable metric
space equipped with a finite Borel regular measure. However, our main theorem immediately
generalizes to any metric measure space with a Radon measure.

Our first goal is to show the existence of a set of dyadic cubes that we describe now. Unlike
previous versions of dyadic cubes, we do not require the full Ahlfors regularity of X , but
just Ahlfors regular estimates for X around a certain setK. The tradeoff is that we will only
guarantee good covering properties forK and we will only get cubes for small enough scales,
but this will be sufficient for our purposes. The proof is similar to that of Theorem 11 of [6]
with some modification. We will give a proof in Appendix A.

P 2.1. – LetK � X be a compact subset of a metric measure space .X; d; �/
that satisfies

1

C
rn � �.B.x; r// � Crn; 8x 2 K; r < R;(1)

for some R > 0 and C > 1. Then there exist constants a > 0, � > 0, kK 2 Z and a collection
of subsets � D fQk

! � X W k � kK ; ! 2 Ikg so that 16kKC2 � R,

1. �
�
Kn

S
!Q

k
!

�
D 0 8k � kK ,

2. If j � k, then either Qk
˛ � Q

j
! or Qk

˛ \Q
j
! D ;,

3. For each .j; ˛/ and each k 2 fj; jC1; : : : ; kKg, there exists a unique! so thatQj
˛ � Q

k
! ,

4. For each Qk
! , there is some z! 2 K so that

B.z! ; 16
k�1/ � Qk

! � B.z! ; 16
kC1/:(2)

5. For each k; ˛ and t > 0, we have

�fx 2 Qk
˛ \K W dist.x;XnQk

˛/ � t16
k
g � at��.Qk

˛/:(3)

6. For each k; ˛,
1

C
16.k�1/n � �.Qk

˛/ � C16
.kC1/n:(4)

By Properties 2 and 6 of Proposition 2.1, we see that for each Qk
˛ 2 �, the number of

cubes Qk�1
! that Qk

˛ can contain is bounded by a number depending only on C and n. We
let �k D fQk

! 2 � W ! 2 Ikg. Given a cube Q0, we let �.Q0/ D fQ 2 � W Q � Q0g. A
similar definition gives us�k.Q0/. Note that if k is too big, then�k.Q0/ can be empty. For
a cube Q, we let zQ denote the point guaranteed to us to satisfy (2). We let j.Q/ denote the
largest integer such that Q 2 �j.Q/. For convenience, we will also set `.Q/ D 16j.Q/.
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CHARACTERIZATIONS OF RECTIFIABILITY 7

A set of cubes E is said to be a Carleson set if there exists some constant C > 0 so that
the following Carleson estimate is satisfied:X

Q2 E ;Q�Q0

�.Q/ � C�.Q0/; 8Q0 2 �:

Here, C is called the Carleson constant. Given some set A � X , we say that E is an
A-Carleson set if X

Q2 E ;Q�Q0

�.Q \ A/ � C�.Q0/; 8Q0 2 �:

Obviously, any subset of a (A-)Carleson set is also a (A-)Carleson set and any set of disjoint
cubes is a (A-)Carleson set with constant 1. Also, any Carleson set is an A-Carleson set for
any A � X .

Given some � > 1 and some cube Q 2 �, we let

�Q D fx 2 X W dist.x;Q/ � .� � 1/ diam.Q/g:

From now on, we will assume that .X; d; �/ is a metric measure space with

0 < ‚n�.�I x/ � ‚
�;n.�I x/ <1; �–a:e: x 2 X;

and .U; '/ is a chart of dimension n such that �xU has n '-independent Alberti represen-
tations and �.U / > 0. Note that the density conditions imply that X is asymptotically (or
pointwise) doubling, that is

lim sup
r!0

�.B.x; 2r//

�.B.x; r//
<1

for �-a.e. x 2 X . By a nearly identical argument to the standard one for doubling measures
(see [11, Theorem 1.6]), asymptotically doubling measures satisfy the Vitali covering theorem
and hence the Lebesgue density theorem. In particular, the upper and lower densities of�xU ,
for measurable U � X , equal the upper and lower densities of � at almost every point of U .
This allows us to freely restrict our attention to measurable subsets of X .

Let

U.j;R/ D

�
x 2 U W

1

j
rn � �.B.x; r// � jrn; 8r < R

�
:

It is easy to see that each U.j;R/ is a Borel set and since X has positive and finite lower and
upper n-densities almost everywhere, we have that

�

0@U n 1[
jD1

1[
kD1

U.j; k/

1A D 0:
Since a countable union of rectifiable metric measure spaces is rectifiable, it therefore suffices
to show that each U.j;R/ is rectifiable. Therefore, by inner regularity of �, we may reduce
proving the rectifiability of .U; d; �/ to proving the rectifiability of .K; d; �/, whereK is any
compact set for which there exist some constants C > 1 and RK > 0, which we now fix, so
that

1

C
rn � �.B.x; r// � Crn; 8x 2 K; r < RK :(5)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



8 D. BATE AND S. LI

An immediate consequence of these bounds is

1

2nC
HnxK � �xK � 2nC HnxK:(6)

Let � denote the collection of cubes covering K as given by Proposition 2.1.
Given a vector v 2 Rn and an " > 0, we can define the cone

C.v; "/ D fw 2 Rn W jw � .w � v/v=jvj2j < "jwj and w � v > 0g:

We call " the width of the cone.
We now discuss the Alberti representations in X . Firstly, it is easy to see that the set

ofL-Lipschitz curves in� is a closed subset of� (see [1, Lemma 2.7] and also for the topology
used in �). Therefore we may rescale the domains of the curves in � using a Borel function,
so that we may suppose � consists of only 1-Lipschitz functions.

Suppose that we have an Alberti representation in the '-direction of a cone C and that
C1; : : : ; Ck are cones that cover an open neighborhood N of C . Then it is possible to find a
Borel decomposition X D X1 [ � � � [Xk such that each �xXi has an Alberti representation
in the '-direction of Ci . This process is known as refining the Alberti representations, see
[1, Definition 5.10]. Therefore, we may suppose that the Alberti representations are in the
'-direction of cones of width 1=1000n2. Further, by applying a linear transformation to ',
we may suppose that these Alberti representations are in the '-direction of cones centered on
the standard basis vectors. Of course, this linear transformation may not be angle preserving.
However, the amount that the angles may increase is determined by the cones that we started
with, before any refining. Therefore, by making the initial refinement sufficiently fine, we
may suppose that the conditions on the centers and the widths of the refined cones are both
satisfied.

Finally, we may suppose that ' is 1-Lipschitz.
For R; v > 0 we define the setGP.v;R/ to be those y 2 K for which, for each 1 � j � n,

there exists a  2 � and a t in the domain of  such that

1. .t/ D y;
2. for every 0 < r < 4R biLip./, jB.t; r/ \ �1.K/j > .1 � v=100000n2/jB.t; r/j ;
3. for every s > s0 2 dom  , '..s// � '..s0// 2 C.ej ; 1=1000n2/ and

j'..s// � '..s0//j > vd..s/; .s0//:(7)

SinceX is complete and separable and� is Borel regular, the results of [1, Section 2] show that
GP.v;R/ is measurable for any v;R > 0. We remark that the final condition in the definition
ofGP.v;R/ is related to the speed of an Alberti representation: an Alberti representation has
'-speed ı, for ı > 0, if

.' ı /0.t/ > ı Lip.'; .t//Lip.; t/

for P a.e.  2 � and � a.e. t 2 dom  . Although our Alberti representations may not
have a speed, it is easy to see that the space may be decomposed into pieces on which the
induced Alberti representations do have a certain speed (see [1, Corollary 5.9]). Further, [1,
Proposition 2.9] shows that GP.v;R/ converges to a set of full measure in K as v;R! 0.

We also define

DP.v; "; R/ D fx 2 K W �.GP.v;R/ \ B.x; r// � .1 � "/�.B.x; r//;8r < Rg;

4 e SÉRIE – TOME 50 – 2017 – No 1



CHARACTERIZATIONS OF RECTIFIABILITY 9

and

DC.ˇ; ";R/ D fx 2 K W jB.'.x/; ˇr/ \ '.B.x; r/ \K/j � .1 � "/jB.'.x/; ˇr/j;8r < Rg:

For convenience, we let j � j denote the Hausdorff n-measure on Rn rather than the Lebesgue
measure, although the definition of DC is clearly invariant under scalings of the measure.
Note that DC.ˇ; ";R/ � DC.ˇ0; "; R/ and DC.ˇ; ";R/ � DC.ˇ; ";R0/ when ˇ0 � ˇ

and R0 � R.
The points of DC satisfy one of the two conditions of David’s condition. This is the

more important of the two condition that allows one to deduce biLipschitz behavior. See
Section 1 and in particular equation (9) in [8] or Section 9 and in particular Condition 9.1 and
Remark 9.6 of [21] for more information on David’s condition as it was originally introduced.

We can now specify what we mean in the statement of condition (iii) in Theorem 1.2. We
say that U satisfies David’s condition a.e. with respect to the function ' W U ! Rn if for
every " 2 .0; 1/,

�

0@U n 1[
jD1

1[
kD1

DC.1=j; "; 1=k/

1A D 0;
where the DC sets here are defined with respect to U and '.

3. David’s condition

The goal of this section is to prove the following proposition, which proves that Condi-
tion (ii) implies Condition (iii) of Theorem 1.2. Throughout this section, we will assume that
K satisfies the bounds (5) and (6).

P 3.1. – For all " 2 .0; 1/,

�

0@Kn 1[
jD1

1[
kD1

DC.1=j; "; 1=k/

1A D 0:
We will need the following lemma, which is the heart of the iterative step needed for our

grid construction.

L 3.2. – Let x 2 K, v > 0 andR > r > 0. LetQ be an axis-parallel cube in Rn that
has sidelength v

10n
r and whose center xQ satisfies j'.x/ � xQj < v

100n
r . Let fpig2

n

iD1 denote
the centers of the 2n quadrant subcubes of Q. Then at least one of the following must be true:

1. There exists points in fqig2
n

iD1 in B.x; r=2/ \K so that j'.qi / � pi j < v
1000n

r .

2. There exists some y 2 B.x; r=2/ \ K so that B
�
y; v

10000n3
r
�
\ GP.v;R/ D ; and

dist.'.y/;Qc/ � v
100n

r .

Proof. – Suppose the second alternative is false. We may suppose without loss of gener-
ality that xQ D 0. Let us first assume that n D 2. Note then that the centers of the 4 quadrant
cubes are located at �

˙
v

40n
r;˙

v

40n
r
�
;
�
˙

v

40n
r;�

v

40n
r
�
:
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Consider the set B
�
x; v

10000n3
r
�
\ GP.v;R/. As j'.x/ � xQj < v

100n
r , the fact that the

second alternative is false means that this set is not empty and so there exist 0 W D0 ! K

and t0 2 dom  that satisfy the defining properties ofGP.v;R/ for the cone C.e1; 1=1000n2/

such that 0.t0/ 2 B
�
x; v

10000n3
r
�
\ GP.v;R/. As r < R and ' is 1-Lipschitz, we get by

Properties 2 and 3 of GP.v;R/ that there exist points t1; t2 2 B.t0; r=10n/ such thatˇ̌̌
'1.0.t1//C

v

40n
r
ˇ̌̌
<

v

10000n2
r;

ˇ̌̌
'1.0.t2// �

v

40n
r
ˇ̌̌
<

v

10000n2
r:(8)

Indeed, Properties 2 and 3 along with the fact that r < R imply that there exist
t 01; t
0
2 2 B.t0; r=10n/ so that

'1.0.t
0
1// < �

v

20n
r; '1.0.t

0
2// >

v

20n
r:

One then uses Property 2 along with the 1-Lipschitzness of ' to find ti between t0 and t 0i .

Now consider all points of B
�
0.t1/;

v
10000n3

r
�
\ GP.v;R/. By (7) in the definition

of GP.v;R/, we have

d.0.t1/; x/ � d.0.t1/; 0.t0//C d.0.t0/; x/ �
1

10n
r C

v

10000n3
r �

1

2
r;

where we used the fact that  is 1-Lipschitz to bound d.0.t1/; 0.t0//. It is easy to see that
dist.'.0.t1//;Qc/ � v

100n
r . Thus, as the second alternative is false, we can take such a curve

1 W D1 ! K for the coneC.e2; 1=1000n2/ and let 1.t10/ 2 B
�
0.t1/;

v
10000n3

r
�
\K. Again,

by Properties 2 and 3 of GP.v;R/, there exist points t11; t12 2 B.t10; r=10n/ such thatˇ̌̌
'2.1.t11//C

v

40n
r
ˇ̌̌
<

v

10000n2
r;

ˇ̌̌
'2.1.t12// �

v

40n
r
ˇ̌̌
<

v

10000n2
r:

As 1 is traveling in the '-cone C
�
e2;

1
1000n2

�
and starts off at a point near 0.t1/, we get

that ˇ̌̌
'1.1.t11//C

v

40n
r
ˇ̌̌
� j'1.1.t11// � '1.1.t10//j C j'1.1.t10// � '1.0.t1//j

C

ˇ̌̌
'1.0.t1//C

v

40n
r
ˇ̌̌

(8)
�

v

10000n3
r C

v

10000n3
r C

v

10000n2
r �

v

1000n2
r:

The first term of the penultimate inequality comes from the fact that the curve is traveling in
a cone of width 1

1000n2
in the direction of e2 over a length of no more than v

10n
r (in Rn). The

second term comes from how we chose 1.t10/ and the third term comes from (8). A similar
bound holds for

ˇ̌
'1.1.t12//C

v
40n

r
ˇ̌
.

Thus, we see that '.1.t11// and '.1.t12// are within v
1000n

r of the centers of the left two
quadrant subcubes of Q. One may do a similar construction starting from 0.t2/ to get a
curve 2 and points '.2.t21// and '.2.t22// that are within v

1000n
r of the centers of the

right two quadrant subcubes of Q.

In the case of general n, one continues using curves in the remaining directions in the
obvious way. That the width of the aperture of the cones is O.n�2/ and the radius of the
balls in which we are looking for curves is O.n�3/ allows us to guarantee that the errors
accumulated in finding new curves is controlled.
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Consider one of these points p that we have found near the center of a quadrant subcube.
We will again assume n D 2 for simplicity. Let p D '.1.t11//, for instance. Remember that
0 and 1 both satisfy (7), we have that d.i .s/; i .t// < 1

v
j'.i .s//�'.i .t//j. Thus, we have

that

d.1.t11/; x/ � d.1.t11/; 1.t10//C d.1.t10/; 0.t1//C d.0.t1/; 0.t0//C d.0.t0/; x/

�
1

10n
r C

v

10000n3
r C

1

10n
r C

v

10000n3
r �

1

2
r:

A similar estimate holds for the other quadrants. The case of general n follows completely
analogously. Thus, we have shown in the case that the second alternative of the lemma is false
that the first alternative must be true.

We can now prove that points whose neighborhoods have a high density of points in GP
belong to some DC set.

L 3.3. – There exists some constant ˛ > 0 depending only onK and n so that for any
"; v; R > 0 such that R < RK ,

DP.v; "vn; R/ � DC
� v

20n
; ˛";R

�
:

Proof. – Let x 2 DP.v; "; R/ and let r < R. Since K is compact, so is '.B.x; r/ \ K/.
LetQ be the axis-parallel cube centered at '.x/with side length v

10n
r . It is sufficient to show,

for some constant ˛0 depending only on K, that

jQn'.B.x; r/ \K/j � ˛0"v
n�.B.x; r//:

Indeed, we then get that there exists some ˛ depending on ˛0 and n so that for all r < R we
have

jB.'.x/; vr=20n/ \ '.B.x; r/ \K/j � jB.'.x/; vr=20n/j � ˛0"v
n�.B.x; r//

(5)
� jB.'.x/; vr=20n/j � C˛0"v

nrn

� .1 � ˛"/jB.'.x/; vr=20n/j:

We will define the following stopping time process. In the first stage, we start off with
.x;Q; r/. If the first alternative of Lemma 3.2 is satisfied with this triple, we can apply it to get
fqig

2n

iD1 � K, points which map close to the center of the quadrant subcubes fQig2
n

iD1 of Q.
Otherwise, we terminate the process. Assuming the process continues, for our second stage,
we see if the first alternative of Lemma 3.2 applies to the triples f.qi ;Qi ; r=2/g2

n

iD1. Indeed, we
can apply the lemma again given the conclusions of the first alternative. We stop the process
at each subcube where the first alternative fails and continue in the cubes where it doesn’t,
making sure to divide r by a further factor of 2 at each stage. Note that all the points of Q
that the process discovers has a preimage inB.x; r/ as the points discovered at each stage are
no more than 2�k�1r away from a point from the previous stage.

The cubes where the process terminates after finite time fSig1iD1 are disjoint dyadic
subcubes of Q. We will upper bound their collective volume. If Si is a cube where the
process terminates, then by the failure of the first alternative of Lemma 3.2, the second alter-
native must be true. Thus, there exists a ball Bi � X with center in K of radius comparable
to `.Si / completely contained inB.x; r/nGP.v;R/. By (5), we then have that jSi j � ˛0�.Bi /
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for some constant ˛0 > 0 depending only on K. Note that all these balls must be disjoint.
Indeed, let Bi D B.xi ; v

10000n3
ri / and Bj D B.xj ; v

10000n3
rj / be two such balls and suppose

without loss of generality that ri � rj . Then by the second alternative, and the fact that
' is 1-Lipschitz, d.xi ; xj / � v

100n
rj . It easily follows from the triangle inequality that

Bi \ Bj D ;. Thus, we get that
1X
iD1

jSi j � ˛0

1X
iD1

�.Bi / � ˛0�.B.x; r/nGP.v;R// � ˛0"v
n�.B.x; r//:(9)

In the last inequality, we used the fact that x 2 DP.v; "vn; R/.
For almost every p 2 Qn

S1
iD1 Si ,ˇ̌̌

B.p; s/ \
�
Qn

[
Si

�ˇ̌̌
> 0; 8s > 0:

In particular, the process tells us that there must be some point y 2 B.x; r/ \ K that maps
into B.p; s/. As this holds true for all s > 0, we see that p is a limit point of '.B.x; r/\K/.
Thus, as '.B.x; r/\K/ is compact, we get that almost every point of Qn

S
Si is contained

in '.B.x; r/ \K/. We then have that

jQn'.B.x; r/ \K/j �

ˇ̌̌̌
ˇ 1[
iD1

Si

ˇ̌̌̌
ˇ (9)
� ˛0"v

n�.B.x; r//:

We are now ready to prove the main proposition of this section.

Proof of Proposition 3.1. – First observe that

'.B.x; r/ \K/ � B.'.B.y; r/ \K/; d.y; x//

and so, since '.B.x; r/ \ K/ is closed, x 7! j'.B.x; r/ \ K/j is upper semicontinuous.
Therefore, since Lebesgue measure is continuous on balls, we see that DC.ˇ; ";R/ is closed
for any ˇ; ";R > 0 and hence measurable.

Secondly, we know that �
�
K n

S
j

S
k GP.1=j; 1=k/

�
D 0. By the Lebesgue density

theorem, we have for each j; k 2 N and " > 0 that

�

 
GP.1=j; 1=k/n

1[
`Dk

DP.1=j; "=j n; 1=`/

!
D 0;

and so for any " > 0we have�
�
K n

S
j

S
kDP.1=j; "=j

n; 1=k/
�
D 0. Therefore, Lemma 3.3

concludes the proof.

4. BiLipschitz pieces

The main result of this section is Proposition 4.5, which will be the central step in showing
that Condition (iii) implies Condition (R) in Theorem 1.2. A good knowledge of [10, 21] will
be necessary in this section. Fix a cube Q0 2 � for the remainder of the section. We recall
some terminology from [21].

Given ı > 0, the set SI .ı;Q0/ are the subcubes Q 2 �.Q0/ for which there is some
W 2 �.Q0/ such that Q � W and j'.W \ K/j < ı�.W /. We may drop the Q0 from the
parameters list if it is obvious.

4 e SÉRIE – TOME 50 – 2017 – No 1



CHARACTERIZATIONS OF RECTIFIABILITY 13

Given A > 1, we say that two dyadic cubes are A-neighbors (or just neighbors) if

dist.Q;Q0/ � A.diamQC diamQ0/

and
1

A
diam.Q/ � diam.Q0/ � A diam.Q/:

For some Q 2 �, we letbQ D �[fS 2 �j.Q/ W dist.S;Q/ � diam.Q/g
�
\Q0:

Given A > 1 and � > 0, the set MA.�;Q0/ are the subcubes Q 2 �.Q0/ that satisfy the
following properties:

– j'.Q \K/j � .1C �/�1ı�.Q/,
– if R 2 � is a neighbor of Q, then R � Q0, and

.1C �/�1
j'.Q \K/j

�.Q/
�
j'.R \K/j

�.R/
� .1C �/

j'.Q \K/j

�.Q/
;

– if R 2 � is a neighbor of Q,

.1C �/�1
j'.Q \K/j

�.Q/
�
j'.bR \K/j
�.bR/ � .1C �/

j'.Q \K/j

�.Q/
:

We will not actually use the first property of MA.�;Q0/ cubes, but they are defined this way
in [21] (although without the intersection with K) so we keep it to reduce confusion.

Finally, for � > 0, we define the set LD.�;Q0/ to be the subcubes Q 2 �.Q0/ for which
there is some W 2 �.Q0/ such that Q � W and �.W \K/ < ��.W /. Again, we may drop
the Q0 from the list of parameters of both M and LD if it is obvious.

We first prove that the measure of the cubes of SI can be bounded by the measure of the
complement of DC .

L 4.1. – There exists constants c; C > 0 depending only on K so that if ı > 0,
†.cın/ D

S
Q2SI .cın;Q0/

Q and " 2 .0; 1=2/, then

�.†.cın// � C�.Q0nDC.ı; "; 16`.Q0///:(10)

Proof. – Let fQig1iD1 denote the set of maximal cubes of SI .cın/, which are obviously
disjoint. Then †.cın/ D

S1
iD1Qi . Let Q � Q0 and suppose x 2 B.zQ; `.Q/=32/ \

DC.ı; "; 16`.Q0// ¤ ;. Then

j'.Q \K/j � j'.B.x; `.Q/=32/ \K/ \ B.'.x/; ı`.Q/=32/j �
ın

2 � 32n
jB.'.x/; `.Q//j:

(11)

AsB.x; `.Q/=32/ � Q, we get from (2), (4), and (5) thatQ is not a maximal cube of SI .cın/

for some small enough c > 0 depending only onK. Thus, for any i 2 N,B.zQi ; `.Qi /=32/ �
QinDC.ı; "; 16`.Q0//. As there exists some constant C > 0 depending only on K so that
�.Qi / � C�

�
B.zQi ; `.Qi /=32/

�
, we have that

�.†.cın// �

1X
iD1

�.Qi / � C

1X
iD1

�
�
B.zQi ; `.Qi /=32/

�
� C�.Q0nDC.ı; "; 16`.Q0///:
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Note that, for the final inequality, we have used the fact that the balls B.zQi ; `.Qi /=32/ are
disjoint.

We can also show that the space covered by LD has small volume.

L 4.2. – Let � > 0 and ƒ.�/ D K \
S
Q2 LD.�;Q0/

Q. Then

�.ƒ.�// < ��.Q0/:

Proof. – Let fQig1iD1 denote the set of maximal cubes of LD.�/, which are obviously
disjoint. Then ƒ.�/ D

S1
iD1Qi and so

�.ƒ.�// �

1X
iD1

�.Qi \K/ < �

1X
iD1

�.Q/ � ��.Q0/:

By Lemma 8.2 of [21] (or one can easily derive from (2)), we can choose some absolute
constant b 2 .0; 1/ so that if x; y 2 K are distinct points and Q is the smallest cube in �
such that x 2 Q and y 2 2Q, then

d.x; y/ � 10b diam.Q/:

L 4.3. – There exist constants k > 0 depending only on ˇ and �0; A0 > 0 depending
on k and K so that the following holds. Let � < �0, A > A0, " 2 .0; 1=10/, Q 2MA.�;Q0/. If
x; y 2 2Q \Q0 \DC.ˇ; "; 16`.Q0// are such that d.x; y/ > b diam.Q/, then

j'.x/ � '.y/j � k�1d.x; y/:

Proof. – Given a j 2 Z, we define

Tj .x/ D
[
fQ 2 �j W Q \ B.x; 16

j / ¤ ;g:

It is clear then that B.x; 16j / � Tj .x/ � B.x; 16jC2/.
The proof follows the proof of Proposition 9.36 of [21]. Let us suppose that the conclusion

does not hold, so that j'.x/� '.y/j < d.x; y/=k for some k > 0 to be determined, and seek
a contradiction. Let j1 be the largest integer at most j.Q/ so that

Tj1.x/ \ Tj1.y/ D ;:

As d.x; y/ > b diam.Q/, we get that there exists some absolute constant C > 0 so that

0 � j.Q/ � j1 � C:(12)

We will show there exists some c > 0 and k > 0 depending only on ˇ so that

j'.B.x; 16j1/ \K/ \ '.B.y; 16j1/ \K/j � cj'.Q \K/j:(13)

This then proves that

j'.Tj1.x/ \K/ \ '.Tj1.y/ \K/j � cj'.Q \K/j;(14)

which is equation (9.50) of [21]. The rest of the proof will just continue as in the proof of
Proposition 9.36 after Remark 9.56 of [21]. We quickly go over the idea of the argument
although we leave the details to the reader.

By choosing A large enough, we can find a neighborQ1 ofQ such that bQ1 contains both
Tj1.x/ and Tj1.y/. By letting A be sufficiently large again, we can also ensure that the cubes
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of �j1 that make up bQ1 are all neighbors of Q. Thus, as Q 2 MA.�/, we have that each of
these cubes W 2 �j1 so that W � bQ1 satisfies

j'.W \K/j

�.W /
� .1C �/

j'.Q \K/j

�.Q/
:(15)

We also have that

.1C �/�1
j'.Q \K/j

�.Q/
�
j'.bQ1 \K/j
�.bQ1/ :(16)

If one chooses � small enough, one can get that (16) is not consistent with (14) and (15).
This is because (14) says that the images of Tj1.x/ and Tj1.y/ overlap and eat up too much
of each other’s measure and (15) says that the other cubes of bQ1 cannot make up for this lost
measure. This will ensure that we cannot satisfy (16). We thus have a contradiction and so
our initial assumption that j'.x/�'.y/j < k�1d.x; y/ was false. The reader can consult the
proof of Proposition 9.36 in [21] for full details.

We now prove (13). By the condition of MA.�;Q0/, we have that Q � Q0 and so
16j1 � `.Q/ � `.Q0/. Thus, as " 2 .0; 1=4/ and x; y 2 DC.ˇ; "; 16`.Q0//, we get
that

jB.'.x/; ˇ16j1/ \ '.B.x; 16j1/ \K/j �
3

4
jB.'.x/; ˇ16j1/j;

jB.'.y/; ˇ16j1/ \ '.B.y; 16j1/ \K/j �
3

4
jB.'.y/; ˇ16j1/j:

Note that

d.x; y/ � 3 diam.Q/
(2)^(12)
� 96 � 16C 16j1 :

Thus, if k is larger than some constant depending only on ˇ, then

j'.B.x; 16j1/ \K/ \ '.B.y; 16j1/ \K/j �
1

4
jB.'.x/; ˇ16j1/j D .�/:

By (2),Q has diameter no more than 32�16j.Q/ � 32�16C 16j1 . Thus,Q � B.x; 3 diam.Q// �
B.x; 96 � 16C 16j1/. As ' is 1-Lipschitz, we have that

.�/ �
ˇn

384n16Cn
jB.'.x/; 96 � 16C 16j1/j �

ˇn

384n16Cn
j'.Q \K/j:

This finishes the proof of (13).

The following proposition says that the set of cubes not in SI .ı/, LD.�/, andMA.�;Q0/
satisfy aK-Carleson estimate. It is mostly proven in [21], but we will require some nontrivial
changes. The proof will be given in Appendix B.

P 4.4. – Let �; ı > 0 and A > 1. Then there exists some �0 > 0 so that for
each � < �0 there exists some C > 0 depending only these constants and K so thatX

Q2�.Q0/n.MA.�;Q0/[SI .ı;Q0/[ LD.�;Q0//

�.Q \K/ � C�.Q0/:

We can now prove the main result of this section. We are not keeping track of the number
of biLipschitz pieces or the biLipschitz constant—although they can be estimated—as they
are not necessary for our purposes.
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P 4.5. – Let �; ı; " > 0, and Q0 2 � and let ' W K ! Rn be a chart. Assume
.Q0\K/n.†.cı

n/[ƒ.�// has positive measure where c > 0 is the constant from Lemma 4.1.
Then there exists some C > 0 depending only on ı, �, andK so that the following holds. There
exists a finite collection of compact sets fFj gMjD1 in Q0 \K such that 'jFj is biLipschitz and

�
�
.Q0 \K/n

[
Fj

�
� "C ��.Q0/C C�.Q0nDC.ı; 1=10; 16`.Q0///:

Proof. – The proof will follow the usual biLipschitz decomposition method of [10, 12],
except we now use Lemma 4.1 and Lemma 4.2 to control the measure of †.cın/ and ƒ.�/
and we localize to a DC set. We proceed.

We choose A; �; k depending only on ı and K so that Lemma 4.3 applies to points
ofDC.ı; 1=4; 16`.Q// in the cubes ofMA.�;Q0/ and so that � is also small enough to apply
Proposition 4.4. For a cube Q, let eQ denote the union of cubes in Q0 2 �j.Q/.Q0/ so that
Q0 \ 2Q ¤ ;. For L � 1, we define the set

RL D

8<:x 2 .Q0 \K/n.†.cın/ [ƒ.�// W X
Q2�.Q0/nMA.�/

� eQ.x/ � L
9=; :

As .Q0 \ K/n.†.cın/ \ ƒ.�// has positive measure, by Proposition 4.4, there exists some
L0 > 0 depending only on A; �; ı; � so that

�.RL0/ < ":(17)

The usual coding argument from [12] or Section 2 of [10] required to decompose the set

.Q0 \DC.ı; 1=10; 16`.Q///n.†.cı
n/ [ƒ.�/ [RL0/

into the pieces on which ' is biLipschitz remains unchanged. Indeed, the fact that we take
points from DC.ı; 1=10; 16`.Q// allows us to get a weak k-biLipschitz behavior from the
cubes ofMA.�/ by Lemma 4.3. For the convenience of the reader, we provide a quick sketch
of the argument at the end of this proof.

We now bound the measure of .Q0 \K/n
S
Fj . We have that

�..Q0 \K/n
[
Fj / � �.RL0/C �.ƒ.�//C �.†.cı

n//

C �..Q0 \K/nDC.ı; 1=10; 16`.Q0///

(10)^(17)
� "C ��.Q0/C C�.Q0nDC.ı; 1=10; 16`.Q0///

C �.Q0nDC.ı; 1=10; 16`.Q0///

� "C ��.Q0/C .C C 1/�.Q0nDC.ı; 1=10; 16`.Q0///:

The dependencies for C are �; A; ı; �, but � and A depend on ı; � and K so C depends only
on ı, �, and K.

The only thing left is to give a sketch of the encoding argument for biLipschitz decomposi-
tion. Let ` be a constant large enough so that if S 2 �kC` and Q 2 �k , then diamQ < b diamS .
For each k and Q 2 �k.Q0/, we let F .Q/ denote the set of cubes Q0 2 �k.Q0/ so that
Q0 ¤ Q and Q;Q0 � eS for some S 2 �kC`.Q0/nMA.�/. We get from the volume estimates
of the cubes that F .Q/ can contain at most T elements where T depends only on K.

We let A be a set of T C 1 distinct characters. We will associate to each Q 2 �.Q0/

a (possibly empty) string of these characters a.Q/, which we will call words. For Q 2 �,
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let Q� denote the unique parent of Q. The words will satisfy the following properties:
a.Q0/ D ;, if F .Q/ D ; then a.Q/ D a.Q�/, if F .Q/ ¤ ; then a.Q/ is constructed
by appending a letter on the end of a.Q�/ so that if Q0 2 F .Q/ then

– a.Q/ ¤ a.Q0/ if a.Q/ and a.Q0/ are of equal length,
– if a.Q/ is shorter than a.Q0/ then a.Q0/ does not begin with a.Q/,
– if a.Q0/ is shorter than a.Q/ then a.Q/ does not begin with a.Q0/.

Such an encoding scheme can be done inductively. We omit the details although the reader
can consult [8] and [12] for full details.

If x 2 .Q0 \ K/nRL0 , then there are fewer than L0 cubes Q containing x for which
F .Q/ ¤ ;. Thus, we see that there must be some Q 2 � containing x so that for all
Q0 � Q containing x, a.Q/ D a.Q0/, i.e., the coding stabilizes. We let a.x/ D a.Q/
for this Q. One can see that a.Q/ is a word of at most L0 letters. We then have that
.Q0 \ DC.ı; 1=10; 16`.Q///n.RL0 [ †.cın/ [ ƒ.�// can be decomposed into at most
.T C 1/L

0

measurable sets based on what word each point is assigned.
Let x; y be two points of .Q0 \DC.ı; 1=10; 16`.Q///n.RL0 [†.cın/ [ƒ.�// such that

a.x/ D a.y/. We want to show that j'.x/ � '.y/j > kd.x; y/ for some k independent of x
and y. This would show that ' is biLipschitz on the piece corresponding to a.x/. We may as
well suppose x ¤ y. Let S be the smallest cube such that x 2 S and y 2 2S . If S 2 MA.�/,
then we get our needed bound from Lemma 4.3 once one recalls the definition of b as defined
right before the same lemma. Otherwise S 2 �.Q0/nMA.�/. Letting k be so that S 2 �kC`
and Q;Q0 2 �k so that x 2 Q and y 2 Q0, we get that d.x; y/ � b diamS > diamQ

and so Q ¤ Q0. Thus, Q0 2 F .Q/. But this is a contradiction of the fact that a.x/ D a.y/
as the conditions of our encoding scheme ensures that such a situation cannot happen. This
finishes the sketch of the encoding argument.

5. Proof of main theorem

We will need a preliminary lemma.

L 5.1. – Let A be any bounded and finite measurable set in K and "; � > 0. There
exists some J � kK so that for every j � J there exists a finite collection of disjoint cubes
fQkg

M
kD1
� �j so that �.QinA/ < ��.Qi / for each i and �.An

S
i Qi / < ".

Proof. – Let c > 0 be some constant depending only on K with the following property:
if x 2 K is such that

�.B.x; r/ \E/ > .1 � c�/�.B.x; r//; 8r 2 .0; R/;

for some subset E � K, and Q is a cube of diameter no more than R that contains x, then

�.Q \E/ > .1 � �/�.Q/:

That such a constant exists easily follows from (2), (4), and (5).
By Lebesgue’s differentiation theorem, there exists some R > 0 and some subset A0 � A

so that �.AnA0/ < " and

�.B.x; r/ \ A/ > .1 � c�/�.B.x; r//; 8r 2 .0; R/; x 2 A0:
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We can then choose J � kK so that 32 � 16J � R and for every j � J , we let fQigMiD1 � �j
be the cubes that intersect with A0 nontrivially.

We can now prove the main theorem.

Proof of Theorem 1.2. – As mentioned in the introduction, we simply need to prove that
(ii) implies (iii) and (iii) implies (R) in the main theorem.

Recall that, after Section 2, we are reduced to proving thatK is n-rectifiable. As discussed
in Section 2, after possibly taking a further countable Borel decomposition, Proposition 3.1
proves the implication of (iii) from (ii). It thus suffices to show that any DC.ˇ; 1=10;R/ of
positive measure is n-rectifiable. We now fix such a ˇ 2 .0; 1/ and R > 0. We may suppose
without loss of generality that DC.ˇ; 1=10;R/ also is bounded and has finite measure.

Let " > 0. By an application of Lemma 5.1, there exists some j � kK and a finite
collection of cubes fQigMiD1 � �j so that 16jC1 � R,

�
�
DC.ˇ; 1=10;R/n

[
Qi

�
<
"

4
;(18)

�.QinDC.ˇ; 1=10;R// <
"

8C�.DC.ˇ; 1=10;R//
�.Qi /; 8i;(19)

where C > 0 is the constant from Proposition 4.5. Assuming that we had initially chosen
" < 4C�.DC.ˇ; 1=10;R//, which we can and will, we then get from (19) that

MX
iD1

�.Qi / < 2�.DC.ˇ; 1=10;R//:(20)

By choosing � D "=.8�.DC.ˇ; 1=10;R/// and applying Proposition 4.5, for every Qi , there
exists a finite family of compact subsets fFi;j g

mi
jD1 of K so that 'jFi;j is biLipschitz and

�

0@.Qi \K/n[
j

F ij

1A � "

4M
C

"

8�.DC.ˇ; 1=10;R//
�.Qi /C C�.QinDC.ˇ; 1=10; 16

jC1//

�
"

4M
C

"

8�.DC.ˇ; 1=10;R//
�.Qi /C C�.QinDC.ˇ; 1=10;R//:

We can apply Proposition 4.5 because we can use Lemma 4.1, Lemma 4.2, and (19) to prove
that .Qi \K/n.†.cˇn/ [ƒ.�// has positive measure whenever " is chosen small enough.

We let F 0i;j D Fi;j \DC.ˇ; 1=10;R/, which clearly also satisfies

(21) �

0@.Qi \DC.ˇ; 1=10;R//n[
j

F 0i;j

1A
�

"

4M
C

"

8�.DC.ˇ; 1=10;R//
�.Qi /C C�.QinDC.ˇ; 1=10;R//:

Thus, fF 0i;j g
M;mi
iD1;jD1 are a finite collection of bounded subsets of DC.ˇ; 1=10;R/ on each

of which ' is biLipschitz. The last step is to bound the size ofDC.ˇ; 1=10;R/n
S
i;j F

0
i;j . We
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have

�

0@DC.ˇ; 1=10;R/n[
i;j

F 0i;j

1A
� �

�
DC.ˇ; 1=10;R/n

[
Qi

�
C

MX
iD1

�

0@.Qi \DC.ˇ; 1=10;R//n[
j

F 0i;j

1A
(18)^(21)
<

"

2
C

"

8�.DC.ˇ; 1=10;R//

MX
iD1

�.Qi /C C

MX
iD1

�.QinDC.ˇ; 1=10;R//

(19)^(20)
<

3"

4
C

"

8�.DC.ˇ; 1=10;R//

MX
iD1

�.Qi /
(20)
< ":

As " > 0 was arbitrary, this finishes the proof that DC.ˇ; 1=10;R/ is n-rectifiable, which,
as mentioned before, proves thatK is n-rectifiable. Thus, we have shown that (iii) implies (R),
which finishes the proof of Theorem 1.2.

R 5.2. – Note that in the proof of (R) using (iii) (and in the proof of Proposi-
tion 4.4 to be proven in Appendix B below), the only property we used of the Rn target to
get a biLipschitz decomposition of ' is that it is Ahlfors n-regular and so its balls satisfy
the estimate jB.x; r/j � Crn for some C > 0. This is most crucially used in the proof of
Lemma 4.1 to prove that �.Q0nDC.ı; 1=10; `.Q// bounds the measure of †.cın/. Specif-
ically, it is used when deducing that Q is not a maximal cube of SI .cın/ from (11). This
allowed to us show in the proof of Theorem 1.2 that the volume of the SI cubes can be made
negligible. Ahlfors regularity was used again in Lemma 4.3 to prove (13). However, this use of
Ahlfors regularity can be completely avoided with a little more work. See the proof of Claim
9.49 and Remark 9.56 in [21] for more detail.

Thus, we have also proven the following theorem.

T 5.3. – Let .X; d; �/ a metric measure space such that

0 < ‚n�.�I x/ � ‚
�;n.�I x/ <1

for a.e. x and ' W X ! .Y; �/ Lipschitz such that .Y; �; Hn
/ is Ahlfors n-regular. IfX satisfies

David’s condition a.e. with respect to ', then there exists a countable number of Borel sets
Ui � X such that �

�
Xn

S
i Ui

�
D 0 and 'jUi WUi ! Y is biLipschitz.

Note that we really only needed one direction of the Ahlfors regularity assumption of Hn

for '.X/ (remembering that we do not need Ahlfors regularity in Lemma 4.3). Thus, we can
relax our conditions for Y in Theorem 5.3 to general metric space targets with the addition
of this assumption on '.X/. We may further relax this condition so that, for almost every
x 2 X , '.x/ has a positive lower n-density in '.X/. This will only require one further
countable Borel decomposition of X into the sets where a lower n-density estimate holds
below a certain radius for a certain lower bound, as has been done above for other similar
properties.
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Appendix A

Proof of Proposition 2.1

In this appendix, we go over the outline of the proof of Proposition 2.1. The proof of
this theorem is essentially that of Theorem 11 of [6], which a good understanding of will be
helpful. In the areas where we need to make nontrivial changes, we will go over the changes
carefully. We may suppose without loss of generality that �.K/ > 0. Our lemmas and
propositions will be numbered A.X0 where X is the numbering of the corresponding lemma
or proposition in [6]. Let kK 2 Z be maximal so that 16kKC2 � R.

We begin by defining a collection of nets fzk˛ W k � kK ; ˛ 2 Ikg � K so that

d.zk˛ ; z
k
ˇ / � 16

k ; 8˛ ¤ ˇ

and for each k and x 2 K, there exists ˛ 2 Ik so that d.x; zk˛ / < 16
k .

L A.130. – There exists at least one partial ordering of the set f.k; ˛/ W k � kK ; ˛ 2 Ikg
so that

(a) .k; ˛/ � .`; ˇ/) k � `,
(b) For each .k; ˛/ and ` 2 fk; : : : ; kKg, there exists a unique ˇ such that .k; ˛/ � .`; ˇ/,
(c) .k � 1; ˇ/ � .k; ˛/) d.zk˛ ; z

k�1
ˇ

/ < 16k�1,
(d) d.zk˛ ; z

k�1
ˇ

/ < 1
2
16k�1) .k � 1; ˇ/ � .k; ˛/.

This partial ordering is easily constructed by using the net properties of the zk˛ . There
may be some choices that need to be made, which would reflect the fact that there could be
multiple partial orderings, but these choices will not affect the result. We let the reader consult
the proof of Lemma 13 of [6] for the complete details.

Choose one such partial ordering. We then define

Qk
˛ D

[
.`;ˇ/�.k;˛/

B.z`ˇ ; 16
`=8/:

Properties 2-4 of Proposition 2.1 are easily verifiable by our construction of the Qk
˛ and

so we omit the proofs. We actually get the improved estimate

Qk
˛ � B

�
zk˛ ;

3

2
� 16k

�
:(22)

For full details, consult the proof of Theorem 11 of Lemma 13. Property 6 follows easily from
Property 4, (1), and the fact that 16kKC2 � R.

The proof of Property 1 is also easy. Let E D
S
!Q

k
! for some k � kK and x 2 KnE.

Let n � k. Then there exists some zn˛ such that d.zn˛ ; x/ < 16
n. Note that B.zn˛ ; 16

n=8/ � E

by construction. Thus, B.zn˛ ; 16
n=8/ � B.x; 16nC1/ and as x; zn˛ 2 K, we get that

�.E \ B.x; 16nC1//

�.B.x; 16nC1//
�
�.B.zn˛ ; 16

n=8//

�.B.x; 16nC1//
� c > 0;

for some c > 0 depending only on the constants of (1). As this holds for all n � k and x … E,
we get by Lebesgue density theorem that �.KnE/ D 0.

It remains to prove Property 5 (known as the small boundaries condition), which requires
more substantial changes to the proof of the analogous property of Theorem 11 of [6]. We
will need the following lemma:
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L A.170. – For any " > 0, there exists N 2 N such that for every Qk
˛ ,

�fx 2 Qk
˛ W 9� 2 Ik�N so that x 2 Qk�N

� ; dist.Qk�N
� ; XnQk

˛/ < 50 � 16
k�N
g < "�.Qk

˛/:

Proof. – The proof of the modified Lemma 17 is similar to the proof of the original.
Let x 2 Qk�N

� \Qk
˛ as above for some N to be determined. Then we have that there exists

a unique chain of cubes

Qk�N
� D Qk�N

�k�N
� Qk�NC1

�k�NC1
� � � � � Qk

�k
D Qk

˛ :

We let zj D z�j be the points as in Property 4.

We claim that there exists some absolute constant "1 > 0 so that d.zi ; zj / � 2"116j when
k �N C 3 � i < j � k. Suppose not. Then

dist.zj ; XnQk
˛/ � dist.x;XnQ/C d.zj ; x/ � 100 � 16k�N C d.zj ; zi /C d.zi ; x/

(22)
� 100 � 16k�N C 2"116

j
C
3

2
� 16i D .�/:

By choosing "1 smaller than some absolute constant and using the fact that i � k �N C 3,
we get that

.�/ <
1

8
� 16j :

But this is a contradiction of the fact that B.zj ; 16j =8/ � Qk
˛ .

Now for each x 2
S
fQk�N

� � Qk
˛ W d.Q

k�N
� ; XnQk

˛/ < 50 � 16k�N g, we can construct
a chain of cubes and zˇ.x;j / as above for k � N � j � k. Let Sj be the collection of all
points zˇ.x;j / for all such x. Let Gj D

S
z2Sj

B.z; "116
j /. Then we have that the Gj are

disjoint.

Let

E D fx 2 Qk
˛ W 9� 2 Ik�N so that x 2 Qk�N

� ; dist.Qk�N
� ; XnQk

˛/ < 50 � 16
k�N
g:

We have for any k � j � k �N C 3 that

�.E/ � �

0@ [
z2SkCN

B.z; 16kCNC1/

1A
� C 0

X
z2SkCN

�.B.z; "116
kCN //

D

X
w2Sj

X
z2SkCN ;z�w

�.B.z; "116
kCN //

� C 0
X
w2Sj

�.B.w; 16jC1//

� C 0
X
w2Sj

�.B.w; "116
j // � C 0�.Gj /:

Here, the first inequality comes from Property 4 of the cubes. The second and fourth
inequalities come from the (1), the fact that the Sj sets are in K, and the disjointness of
B.z; "116

kCN /. The third inequality comes from Property 4 of the cubes.
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As the Gj are all disjoint, one gets that

�.Q/ �

k�NC3X
jDk

�.Gj / � .N � 3/C
0�1�.E/:

Thus, choosing N > C 0"�1 C 3 allows us to conclude that �.E/ < "�.Q/.

The proof of Property 5 now follows the proof in Theorem 11 of [6]. One defines

Ej .Q
k
˛/ D fQ

k�j

ˇ
� Qk

˛ W dist.Qk�j

ˇ
; XnQk

˛/ � 50 � 16
k�j
g

and ej .Qk
˛/ D

S
Q2Ej .Q

k
˛/
Q. One can verify that if x 2 Qk

˛\K so that d.x;XnQk
˛/ < �16

k ,

then x 2 ej .Qk
˛/ where 16k�j�1 � �16k . For full details, the reader can consult the second

paragraph of proof of Lemma 17 of [6].
Thus, to prove Property 5, it suffices to prove that there is some C 0 > 0 so that

�.ej .Q
k
˛/ \K/ � C

016�j��.Qk
˛/; 8˛; k;8j � 0:

Lemma A.170 says that there exists some J � 0 so that

�.eJ .Q
k
˛// �

1

2
�.Qk

˛/; 8k; ˛:(23)

Define Fn.Qk
˛/ to be a collection of all Qk�nJ

ˇ
� Qk

˛ as follows. For n D 1, F1.Qk
˛/ D

EJ .Q
k
˛/. Then we define inductively

F`C1.Q
k
˛/ D

[
Qk�`J
ˇ

2F`.Q
k
˛/

EJ .Q
k�`J
ˇ /:

Letting fn.Qk
˛/ D

S
S2Fn.Q

k
˛/
S , we get by iteration of (23) that

�.fm.Q
k
˛// � 2

�m�.Qk
˛/:

Thus, we get

�.emJ .Q
k
˛// � 2

�m�.Qk
˛/ D 16

��mJ�.Qk
˛/; 8m � 0:

This finishes the proof.

Appendix B

Proof of Proposition 4.4

B.1. Introduction

The proof of Proposition 4.4 closely follows the proof of Proposition 7.8 in [21], which,
needless to say, a good understanding of will be necessary. Most of the proof will only require
superficial changes. Thus, for convenience, we will not go into much details in these parts
although we will try to give a general overview of how the proof works. There are some
parts where we will have to make nontrivial modifications; most notably, we have to add
an extra condition to a stopping time process defined in [21]. We will go through these
modifications carefully. Our lemmas and propositions will be numbered B.X.Y0 where X.Y
is the numbering of the corresponding lemma or proposition in [21].
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Recall that we have K � X satisfying (5), a collection of cubes � satisfying Proposi-
tion 2.1, and a 1-Lipschitz map ' W K ! Rn. We will recall further necessary concepts
from [21] in the relevant subsections below. Also recall the families of cubes LD.�/ from
Section 4, which was not in [21]. This family of cubes (or more precisely, the complement of
this family) will play a big role in establishing our K-Carleson bound.

Recall that a nonempty collection cubes S � � is called a stopping time region if

– there is a top cube Q.S/ 2 S so that Q � Q.S/ for every Q 2 S and
– if Q 2 S and Q0 2 � with Q � Q0 � Q.S/, then Q0 2 S .

The set of bottom cubes of a stopping time region S is

b.S/ D fQ 2 � W Q � Q.S/;Q … S; and Q is maximal with respect to these propertiesg:

Note that these are disjoint cubes contained in Q.S/ if they exist (b.S/ may in fact be an
empty set).

We quickly go over a general outline of this part of the appendix. In some of the subsec-
tions below, we will give an more in depth overview. Section B.2 establishes some important
technical lemmas that allows us to determine when a collection of cubes isK-Carleson. Most
of the proofs of the original lemmas can be superficially modified to get our needed result.

Sections B.3 gives our first preliminary decomposition of the set of subcubes of some
cube Q0 into stopping time regions for which our map ' has good measure preserving
properties on each stopping time region. The stopping time regions are shown to not be
“too much” and, together with LD.�/, cover a large portion of Q0. This is only a partial
decomposition of the subcubes of a specified cube. See Proposition B.3.60 for the precise
statement and Section B.3 for an overview of the proof.

In Section B.4, we iterate the partial stopping time decomposition of Section B.3 to get
a complete stopping time decomposition of the entire set of subcubes of Q0. As before, '
has good measure preserving properties on each stopping time region. It will be shown that
the number of stopping time regions will not be too large in the sense that all the top cubes
satisfy aK-Carleson condition. There will be a junk set of cubes that will be the cubes of SI

and LD that satisfy a Carleson condition. See Proposition B.4.20 for the precise statement
and Section B.4 for an overview of the proof.

Section B.5 refines the stopping time region decomposition of Section B.4 so that each
stopping time region becomes good (the definition of a good stopping time region is in the
beginning of Section B.5). This requires a decomposition of each stopping time region from
Section B.4 into a collection of good stopping time regions. This will increase the number
of stopping time regions so it will be necessary to show that the top cubes of the collection
of good stopping time regions still are K-Carleson. Note that ' still has good measure
preserving properties on the good stopping time regions because they are subsets of the
stopping time regions of Section B.4. The junk set of SI and LD cubes remain untouched.
See Proposition B.5.50 for the precise statement and Section B.5 for an overview of the proof.

In Section B.6, we improve on the measure preserving properties of '. See (30) for the
definition of G .�/, the specific improvement on measure preservation that we use. We show
that most subcubes of Q0 belong to G .�/. Specifically, if we consider G2 to be all the cubes
in all the stopping time regions of the decomposition of Section B.5, then we show that
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G2n G .�/ is a K-Carleson collection of subcubes. See Proposition B.6.130 and Section B.6
for an overview of the proof.

Finally, we give the proof of Proposition 4.4 in Section B.7 by showing that most cubes
of G .�/ are in MA.�/ in the sense that G .�/nMA.�/ is K-Carleson. This together with the
result of Section B.6 and the fact that the junk set outside of G2 is in SI and LD gives us
our needed result. See Section B.7 for an overview of the proof.

B.2. Section 2 of [21]: Lemmas

In this subsection, we recall some preliminary terminology and lemmas. Most of the
lemmas of Section 2 of [21] establish Carleson bounds. We will convert them to establishing
K-Carleson bounds.

Fix a cubeQ0 and let E a family of cubes. For x 2 Q0, we letN.x/ D NQ0.x/ denote the
number of cubes in E that contain x. Note that all such cubes are then subsets of Q0.

The following lemma will be very important in establishing Carleson bounds.

L B.2.280. – Let E be a family of cubes in � and suppose that there are positive
constants k; � such that

�.fx 2 Q \K W NQ.x/ > Lg/ � .1 � �/�.Q \K/; 8Q 2 �:(24)

Then E is a K-Carleson set with constants depending only on L and �.

The estimate (24) allows one to show that the distribution function

�.t/ D �.fx 2 Q0 \K W NQ0.x/ > tg/

decays exponentially, giving us a bound on the Carleson summation. The full proof of the
original Lemma 2.28 in [21] requires only superficial modifications to give us Lemma B.2.280

and so is omitted. Note that following that proof actually gives the stronger statement thatX
Q02 E ;Q0�Q

�.K \Q0/ � C�.K \Q/; 8Q 2 �;

but we will not need this.
Let � > 0. If a family of cubes E is a K-Carleson set with constant C and does not

contain any cubes for which �.Q \ K/ < ��.Q/, then it follows easily from the definition
of (K-)Carleson sets that E is actually a Carleson set with constant C=�.

Given a family of cubes E , we let EA denote the set of cubes Q such that Q is an
A-neighbor of some Q0 2 E .

We will need the original version of Lemma 2.32 of [21].

L B.2.32. – Let E be a Carleson set with constant C . Then EA is also a Carleson set
with some constant C 0 increased by a factor depending on A and K.

We will also need the following K-Carleson version.

L B.2.320. – Let � > 0 and E be a K-Carleson set with constant C so that
�.Q \K/ � ��.Q/ for all Q 2 E . Then EA is also a K-Carleson set with some constant C 0

increased by a factor depending on K, A, and �.
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Proof. – As E does not contain cubes for which �.Q\K/ < ��.Q/, we have that it is a
Carleson set of constant depending on � and the K-Carleson constant of E . We then apply
Lemma B.2.32 to get that EA is Carleson with constant increased by a factor depending onA,
K, and �. As Carleson sets are K-Carleson, we are done.

Given a T 2 �, we let

CA.T / D fQ 2 � W there is a cube Q0 2 � such that Q and Q0 are neighbors,

and either Q � T;Q0 6� T; or Q0 � T;Q 6� T g:

See (2.33) of [21].

L B.2.340. – There is a constant D so thatX
Q2CA.T /

�.Q \K/ � D�.T /;

where D depends only on A and K.

The proof requires only superficial modifications of the proof of the original Lemma 2.34
in [21] and so is omitted. The small boundaries property of the cubes (Property 5 of Propo-
sition 2.1) is used here. Note by (3) that our cubes have the small boundary property only
when restricted to K, but this is exactly what is needed for the lemma.

We now move to the Carleson set composition lemmas of [21]. Note that K-Carleson
conditions do not compose because theK-Carleson upper bound does not take into account
intersections with K. Thus, we will need that there exists some � > 0 so that all our cubes
in the following lemmas satisfy �.Q \ K/ � ��.Q/. We call these cubes high density
cubes. They help us turn K-Carleson bounds into Carleson bounds, which will lead to nice
composition properties.

L B.2.440. – Let � > 0 and X be a collection of cubes that is a K-Carleson set and
for which each Q 2 X satisfies �.Q \K/ � ��.Q/. Define bXA bybXA D

[
T2X

CA.T /:

Then bXA is also aK-Carleson set, with a constant depending only onK, �, and theK-Carleson
constant for X .

Proof. – Fix some Q0 2 �. As in the proof of Lemma 2.44 of [21], we get thatX
R2bXA;R�Q0

�.R \K/ �
X

R2CA.Q0/

�.R \K/C
X

T2X.Q0/

X
R2CA.T /

�.R \K/:

See the argument before equation (2.47) of [21]. Using Lemma B.2.340, we can convert this
to X

R2bXA;R�Q0
�.R \K/ � D�.Q0/CD

X
T2X.Q0/

�.T /:
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As X is K-Carleson and does not contain cubes for which �.Q\K/ < ��.Q/, we get thatX
R2bXA;R�Q0

�.R \K/ � D0�.Q0/C
D

�

X
T2X.Q0/

�.T \K/ � D0�.Q0/;

where D0 depends on the previous D and �.

L B.2.500. – Let � > 0 and F be a family of stopping-time regions that are disjoint
as subsets of �. Assume that the collection of top cubes fQ.S/ W S 2 F g is a K-Carleson set
with constant C1 and does not contain any cubes for which �.Q \K/ < ��.Q/. Suppose for
each S 2 F we have a collection of cubes E .S/ � S that is a K-Carleson set with constant
C2. Then the union

E � D
[
S2F

E .S/

is a K-Carleson set with constant depending only on C1, C2, and �.

The proof requires only superficial modifications of the proof of the original Lemma 2.50
in [21] once one takes into account that fQ.S/ W S 2 F g contains only high density cubes
and so is actually also a Carleson set. Thus, the proof is omitted.

L B.2.580. – Let � > 0 and F be a family of stopping time regions that are disjoint
as subsets of �. For each S 2 F set

SA D fQ 2 S W Q
0
2 S whenever Q and Q0 are neighbors g;

and set

BA D

[
S2F

.SnSA/:

If the collection of top cubes T D fQ.S/ W S 2 F g is a K-Carleson set and satisfies
�.Q\K/ � ��.Q/ for everyQ 2 T , then BA is also aK-Carleson set with constant depending
only on the K-Carleson constant for fQ.S/gS2F , �, A, and K.

The proof requires only superficial modifications of the proof of the original Lemma 2.58
in [21] once one takes into account that T contains no cubes of low density and so is actually
also a Carleson set. Note that the bottom cubes of a stopping time region b.S/ are still
Carleson with constant 1. Thus, the proof is omitted.

B.3. Section 3 of [21]

The following gives our initial incomplete stopping time region decomposition of �.Q0/
on which ' has the good measure preserving condition of (c). There are not too many
stopping time regions in the sense of (e), but the area covered by stopping time regions isn’t
too small in the sense of (a) and (b). Crucially, we require that all the stopping time regions
consist of cubes of high density.

P B.3.60. – Let �; ı; � > 0 andQ0 2 � such that j'.Q0\K/j � ı�.Q0/ and
�.Q0 \K/ � ��.Q0/. There exist constants k; ˛ > 0 depending only on � , ı, and K so that
the following is true. There exists a family F of pairwise-disjoint stopping time regions of �
and a measurable subset E D E.Q0/ � Q0 \K with the following properties:

4 e SÉRIE – TOME 50 – 2017 – No 1



CHARACTERIZATIONS OF RECTIFIABILITY 27

(a) �.E/ � ˛�.Q0 \K/,
(b) ifQ 2 � satisfiesQ � Q0 andQ\E ¤ ;, then eitherQ lies in S for some stopping-time

region S 2 F or Q 2 LD.�/,
(c) if Q 2 S and S 2 F , then Q � Q0, and

.1C �/�1
j'.Q.S/ \K/j

�.Q.S//
�
j'.Q \K/j

�.Q/
� .1C �/

j'.Q.S/ \K/j

�.Q.S//
;

(d) j'.Q.S/ \K/j � ı�.Q.S// for all S 2 F ,
(e) for each x 2 K, there are at most k choices of S 2 F such that x 2 Q.S/,
(f) �.Q \K/ � ��.Q/ for all Q 2 S and S 2 F .

Proof. – We run the stopping time process of Section 3 of [21] on the subcubes ofQ0 but
with an extra stopping time condition. Specifically, we stop at a cube Q � Q0 if any of the
following conditions are satisfied:

j'.Q \K/j

�.Q/
< .1C �/�1

j'.Q0 \K/j

�.Q0/
;(25)

j'.Q \K/j

�.Q/
> .1C �/

j'.Q0 \K/j

�.Q0/
;(26)

�.K \Q/ < ��.Q/:(27)

Note that the first two conditions may not necessarily be disjoint from the third. We start
with Q0 and only keep the children of Q0 that fail to satisfy each of (25), (26), or (27). We
then apply the process to the kept children and iterate the process on all the kept children.
This gives us one stopping time region S0, which we put into the singleton family F 0. We
then look at the bottom cubes b.S0/. For each Q 2 b.S0/ that satisfies (26) but not (27), we
repeat this stopping time process to get another family of stopping time regions F 1. Here,
we replace theQ0 in the stopping time conditions with the relevant cube of b.S0/. We repeat
again the process for the bottom cubes of all stopping time regions in F 1 that satisfy (26) but
not (27) to get another family of stopping time regions F 2. We keep repeating this process
over and over to more families F 3; F 4; F 5::. Our final family of stopping time regions will
be F D

S1
iD0 F i .

Properties (c) and (d) are immediately verifiable. Property (e) comes from the fact as ' is
1-Lipschitz, we have that

j'.Q \K/j � Hn
.Q \K/

(6)
� C2n�.Q \K/ � C2n�.Q/; 8Q 2 �:(28)

Thus, if a point is contained in k stopping times regions for k large enough, then (26)
must happen too many times and, and, remembering j'.Q0 \ K/j � ı�.Q0/, we will
contradict (28). Property (f) is also immediate from the condition of the stopping time. For
more thorough detail, see the analogous proof in [21].

To constructE, for S 2 F , let b1.S/ denote all the cubes of b.S/ that satisfy (25) but not
(27). If we define

E D .Q0 \K/n
[
S2F

[
Q2b1.S/

Q;

then we see thatE satisfies Property (b). Indeed, suppose thatQ does not lie in any stopping-
time region S 2 F and let Q0 � Q be the maximal cube that contains Q that also does not
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lie in any stopping time region. Then one of (25), (26) or (27) is true forQ0. IfQ0 satisfies (27)
then Q 2 LD.�/. If not, then certainly Q0 cannot satisfy (26) or else it would begin a new
stopping-time process. Therefore, the only other case to consider is ifQ0 does not satisfy (27)
but does satisfy (25). That is, Q0 2 b1.S/ and so Q is disjoint from E.

It remains to lower bound �.E/ as in Property (a). We need the following lemma.

L B.3.160. – Let Q be a cube in � and fQigi be a disjoint family of subcubes for
which

j'.Qi \K/j

�.Qi /
� .1C �/�1

j'.Q \K/j

�.Q/
; 8i:

Then

�

 
.Q \K/n

[
i

Qi

!
�

�

1C �
j'.Q \K/j:

The proof requires only superficial modifications of the proof of the original Lemma 3.16
in [21] and so will be omitted.

Let S 2 F and set E0.S/ D .Q.S/\K/n
S
R2b1.S/

R. We get from Lemma B.3.160 that

�.E0.S// �
�

1C �
j'.Q.S/ \K/j �

�

1C �
ı�.Q.S/ \K/;(29)

where we used Property (d) in the last inequality. This is the analogue of equation (3.26) of
[21]. The rest of the proof of Property (a) only requires superficial modifications of the proof
of the original Property (a). We define

Ej D .Q0 \K/n

j[
iD0

[
S2F i

[
R2b1.S/

R:

We get then that

EjC1 D Ej n
[

S2F jC1

[
R2b1.S/

R

and E D Ek by Property (e). The inequality (29) allows us to estimate (with a little work)

�.EjC1/ �
�

1C �
ı�.Ej /:

This easily gives us our needed lower bound for �.E/ D �.Ek/. See the proof of Lemma 3.6
in [21] for more details.

As was proven in Remark 3.46 of [21], the setG D
S
S2F S is itself a stopping time region.
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B.4. Section 4 of [21]

The following proposition gives our first complete stopping time decomposition of�.Q0/.
The completeness is given in (b) where we are allowed a junk set as defined by (a), (f), and (g).
Crucially, there are not too many stopping time regions as expressed in (e). As before, the
stopping time regions consist only of cubes of high density. We do this by essentially
repeating the stopping time decomposition of Proposition B.3.60 over and over until we have
exhausted all cubes.

P B.4.20. – Let Q0 2 � and fix ı; �; � > 0. There exists a constant k1
depending only on K, ı, and � , as well as a family F 1 of stopping-time regions in � and two
collections fQigi2I and fPj gj2J of cubes in M so that the following are true:

(a) theQi ’s andPj ’s together are pairwise disjoint subcubes ofQ0 and the stopping time regions
F are pairwise disjoint subsets of �.Q0/,

(b) if R 2 �.Q0/ then either R � Qi for some i 2 I , R � Pj for some j 2 J , or R 2 S for
some S 2 F 1 (but not more than one),

(c) if Q 2 S and S 2 F 1, then

.1C �/�1
j'.Q.S/ \K/j

�.Q.S//
�
j'.Q \K/j

�.Q/
� .1C �/

j'.Q.S/ \K/j

�.Q.S//
;

(d) j'.Q.S/ \K/j � ı�.Q.S// for all S 2 F 1,
(e) the family of cubes fQ.S/ W S 2 F 1g is a K-Carleson set with constant k1,
(f) j'.Qi \K/j < ı�.Qi /; 8i 2 I ,
(g) �.Pj \K/ < ��.Pi /; 8j 2 J ,
(h) �.Q \K/ � ��.Q/ for all Q 2 S and S 2 F 1.

Proof. – We may assume that j'.Q0 \ K/j � ı�.Q0/ and �.Q0 \ K/ � ��.Q0/

as otherwise there is nothing to do. As in [21], the union of all the stopping time regions
S 2 F where F is the family of stopping time regions of Proposition B.3.60 is a stopping
time region itself. Thus, we apply Proposition B.3.60 to Q0 to get a family of stopping time
regions F .Q0/ and letG denote the stopping time region that is the union of all cubes of F .
Let b.G/ denote the bottom cubes ofG. By construction, ifQ 2 b.G/, thenQ has to satisfy
at least one of (25) or (27). All the cubes that satisfy (27) we put into fPig. For the other cubes,
we check to see if

j'.Q \K/j < ı�.Q/:

If so, we put it into fQig. Any remaining bottom cube Q0 satisfies '.Q0 \ K/ � ı�.Q0/

and �.Q0 \ K/ � ��.Q0/ and so we apply the stopping time process of Proposition B.3.60

on each of these to get more families of stopping time regions F .Q0/. We continue this way
forever or until we run out of cubes. We let F 1 denote the union of all these F .Q0/. Note
that F 1 is composed of stopping time regions of each F generated by Proposition B.3.60,
not the union of these stopping time regions.

By construction, all the properties besides (e) are satisfied. See the proof of Proposition 4.2
of [21] for more information if needed. The proof of Property (e) is also similar to the proof
of the analogous property in [21] and follows with only superficial modifications after the
following observation. Let G denote the set of cubes for which Proposition B.3.60 was applied
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in the above construction and Q.G/ denote the set of cubes that make up the stopping time
process starting at G 2 G . Thus, G is a subset of fQ.S/ W S 2 F 1g and does not contain
cubes for which �.Q \K/ < ��.Q/.

We also get the following claim.

C B.4.160. – For each cube R 2 �, there is a measurable subset F.R/ of R\K such
that �.F.R// � ˛�.R \ K/ and so that for each y 2 F.R/ there is at most one Q 2 G that
contains y and is contained in R.

The proof requires only superficial modifications of the proof of the original Claim 4.16
in [21]. The set F.R/ is constructed from the modified E.Ti / sets of Proposition B.3.60

where Ti are maximal cubes of �.R/ and G along with additional cubes. Property (a) of
Proposition B.3.60 gives us our needed lower bound for �.F.R//. Note that the modified
set E of Proposition B.3.60 also has the cubes Pj , but this is fine as the construction above
completely terminates at these cubes. For more information, see the proof of Claim 4.16
in [21].

As in [21], Claim B.4.160 and Lemma B.2.280 show that G is K-Carleson. The rest of
the proof of Property (e) requires showing that all the cubes of Q.S/, not just the ones
in G , are K-Carleson. This follows completely analogously as in [21]. We use that each
fQ.S/ 2 F 1g \ Q.G/ is uniformly K-Carleson by Property (e) of Proposition B.3.60 and
eachG 2 G contains only cubes of high density cubes along with Lemma B.2.500 to establish
Property (e). The details are left to the reader.

B.5. Section 5 of [21]

We recall Definition 5.1 of [21], which says that a stopping time region S is good if for each
Q 2 S , either all of its children are in S or none of them are.

We will need the following lemma for the next section.

L B.5.20. – Suppose S � � is a good stopping time region. LetQ 2 S and fTig � S
be a finite family of pairwise-disjoint cubes so that Ti � Q for all i . Then there exists another
finite family of pairwise disjoint cubes fWj g � S so that Wj � Q for all j , each Wj is disjoint
from all the Ti , and

Q \K D

�[
i

.Ti \K/

�
[

�[
j

.Wj \K/

�
:

The proof requires only superficial modifications of the proof of the original Lemma 5.2
in [21] and so will be omitted.

The following proposition says that we can do the a stopping time region decomposition
as in Proposition B.4.20, but we can further specify that all the stopping time regions we get
are good. The proof requires decomposing each stopping time region from Proposition B.4.20

into a collection of good stopping time regions and then verifying that we didn’t violate the
K-Carleson condition of the top cubes.

P B.5.50. – Let Q0 2 � and fix ı; �; � > 0. There exists a constant k2
depending on ı and � , as well as a family F 2 of stopping time regions in� and two collections
fQigi2I and fPj gj2J of cubes so that the following are true:
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(a) the Qi ’s and Pi ’s together form a pairwise disjoint collection of subcubes of Q0 and the
stopping time regions in F 2 are pairwise-disjoint as subsets of �.Q0/,

(b) if R 2 �.Q0/, then either R � Qi for some i 2 I , R � Pj for some j 2 J , or R 2 S for
some S 2 F 2 (but not more than one),

(c) if Q; eQ 2 S and S 2 F 2, then

.1C �/�2
j'.Q \K/j

�.Q/
�
j'.eQ \K/j
�.eQ/ � .1C �/2

j'.Q \K/j

�.Q/
;

(d) j'.Q \K/j � .1C �/�1ı�.Q/ when Q 2 S , S 2 F 2,
(e) the family of cubes fQ.S/ W S 2 F 2g is a K-Carleson set with constant k2,
(f) j'.Qi \K/j < ı�.Qi / for all i 2 I ,
(g) each S 2 F 2 is a good stopping time region,
(h) �.Pj \K/ < ��.Pj / for all j 2 J .
(i) �.Q \K/ � ��.Q/ for all Q 2 S and S 2 F 2.

Proof. – We run the same exact stopping time region decomposition of the proof of
Proposition 5.5 of [21] on F 1 of Proposition B.4.20 to get a family of good stopping time
regions F 2. The decomposition is the obvious one where, for some S 2 F 1, we take a
maximal good stopping time region S0 � S such that Q.S0/ D Q.S/. Then for each
Ri 2 b.S0/, we take again take a maximal good stopping time region Si � S so that
Q.Si / D R. We repeat forever on the bottom cubes that we get or until we run out of bottom
cubes. Thus, Property (g) is satisfied by construction and all other properties besides (e) are
satisfied by the properties of F 1, Qi , and Pj of Proposition B.4.20.

As in [21], we see that a top cube Q 2 fQ.S/ W S 2 F 2g either belongs to fQ.S/ W
S 2 F 1g or has a parent that belong to some S 2 F 1, but one of the children of the
parent (a sibling of Q) does not belong to S . This comes from the good stopping time
decomposition of the stopping time regions in F 1. From the previous proposition, the cubes
that are contained in the former case areK-Carleson, so we do not have to worry about them.
For cubes from the latter case, we have that one of the siblings Q0 of Q must either be a top
cube of some other eS 2 F 1 or belong to one of the family fQigi2I and fPj gj2J .

In the first case, we have from Properties (e) and (h) of Proposition B.4.20 that
fQ.S/ W S 2 F 1g are K-Carleson and contain only high density cubes. Thus, by
Lemma B.2.320, we get that this group of cubes Q0 is also K-Carleson. In the second
case, we have that fQigi2I and fPj gj2J are both Carleson sets because they are composed
of disjoint cubes. Thus, Lemma B.2.32 shows that this group of cubes Q0 are Carleson and
so also K-Carleson. This finishes the proof of Property (e), which finishes the proof of the
entire proposition.

B.6. Section 6 of [21]

We keep the same notation as in the previous sections. We recall some more notation from
[21]. For a cube Q 2 �, we let

�Q D
[
fT 2 �j.Q/ W dist.T;Q/ � diam.Q/g:
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Thus, bQ D �Q \Q0. Given some � > 0, we let

G .�/ D

(
Q 2 �.Q0/ W .1C �/

�1 j'.Q \K/j

�.Q/
�
j'.bQ \K/j
�.bQ/ � .1C �/

j'.Q \K/j

�.Q/

)
:

(30)

Let � be a small number and ı; � > 0. Then we can use Proposition B.5.50 to get a family
F 2 of stopping time regions in Q0 along with two families of mutually disjoint subcubes
fQigi2I and fPj gj2J . We set

G2 D
[
S2F 2

S:

The following property says that, by taking � small enough in Proposition B.5.50, we can
get that most of the cubes in the good stopping time regions are also in G .�/.

P B.6.130. – Let �; ı; � > 0. If we choose � small enough, depending on �
and K, then G2n G .�/ is a K-Carleson set with constant depending only on �; ı; �, and K.

The fact that G2 contains only cubes of high density allows us to transition from
K-Carleson estimates to Carleson estimates. Keeping this in mind, most of the proof
then requires only superficial modifications of the proof of the original Proposition 6.13
in [21].

We now go quickly over the four reductions of the proof of Proposition B.6.130. For our
first reduction, we use Lemma B.2.500 and Property (e) of Proposition B.5.50, to get that it
suffices to show that if � is sufficiently small, then for any S 2 F 2,

Sn G .�/

is K-Carleson with a bound depending only on K and �.
For a S 2 F 2, we define

S 0 D fQ 2 S W T 2 S whenever T 2 �j.Q/ and dist.T;Q/ � diam.Q/g:

For our second reduction, we use Lemma B.2.580 and our first reduction to get that it suffices
to show that if � is sufficiently small, then for every S 2 F 2,

S 0n G .�/

is K-Carleson with constant depending only on � , K, and �.
Fix an S 2 F 2. For our third reduction, we use Lemma B.2.280 to get that it suffices

to show that if � is sufficiently small, then for every Q 2 S there is a measurable subset
D.Q/ � Q \K such that

�.D.Q// � �.Q \K/

and for each x 2 D.Q/, there are at mostm cubesR 2 S 0n G .�/ such thatR � Q and x 2 R.
Here m and  are positive constants that depend only on K.

As is the case in [21], there is one small point in that in Lemma B.2.280, we require the
�.D.Q// bound for allQ 2 � not just S , but the ones in S are the only ones we really need.

Fixing some Q 2 S , we set

B1 D fR 2 S
0
n G .�/ W �R � Qg;
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and

B2 D fR 2 S
0
n G .�/ W R � Q but �R 6� Qg:

We have the following lemma.

L B.6.270. – There is a constant C2 which depends only on K and � so thatX
R2B2

�.R \K/ � C2�.Q \K/:

The proof follows easily from the proof of the original Lemma 6.27 and the fact that
Q 2 S has high density.

Using Lemma B.6.270, we get as in [21] that it suffices to prove the following modification
of the fourth and final reduction of the proof of Proposition B.6.130:

R B.6.290. – It suffices to show for every Q 2 S that if � is small enough
depending on � , �, and K, then there is a measurable subset E.Q/ of Q \ K such that
�.E.Q// � 1

2
�.Q \K/ and there are no cubes of B1 that intersect E.Q/.

To prove the third reduction from Reduction B.6.290, one letsN2.x/ for x 2 Q denote the
number of cubes R 2 B2 such that x 2 R. One then defines

D.Q/ D fx 2 E.Q/ W N2.x/ < 4C2g

where C2 is as in Lemma B.6.270. One then easily gets using Lemma B.6.270 that �.D.Q// �
1
4
�.Q \K/ with m D 4C2 for the third reduction.

For more details of these reductions, see the proof of Proposition 6.13 in [21].

The proof of Reduction B.6.290 itself requires mostly superficial modifications of the proof
of the original Reduction 6.29 in [21]. For instance, we start off with the following Vitali type
lemma that is the original Lemma 6.39 of [21] unmodified:

L B.6.39. – There is a family fRj gj2J of elements of B1 such that

�Ri \ �Rj D ;; when i ¤ j;

and [
R2B1

R �
[
j2J

�Rj ;

where � depends only on K.

The proof is also unchanged and follows the basic structure of the original Vitali lemma.

We thus get that [
R2B1

.R \K/ �
[
j2J

.�Rj \K/:(31)

One easily sees that

�.�R \K/ � �.�R/
(2)^(4)
� C�.R/; 8R 2 B1;(32)
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where C depends on � > 1 and K. Thus, we get the following equation that is analogous to
(6.47) of [21]:

�

0@ [
R2B1

.R \K/

1A (31)
�

X
j2J

�.�Rj \K/
(32)
� C

X
j2J

�.Rj /:(33)

Note that if R 2 B1 then one easily gets that bR D �R by the definitions. One can also
prove the following lemma.

L B.6.560. – If R 2 B1 and � � minf1; �=3g, then

j'.�R \K/j

�.�R/
< .1C �/�1.1C �/2

j'.Q \K/j

�.Q/
:

Proof. – This follows from Property (c) of Proposition B.5.50 and the fact that R and Q
are both in S once we prove that

j'.�R \K/j

�.�R/
< .1C �/�1

j'.R \K/j

�.R/
:(34)

Assume this were not the case. Then as R … G .�/, we must have that

j'.�R \K/j

�.�R/
> .1C �/

j'.R \K/j

�.R/
:(35)

Let N.R/ be the set of cubes in �j.R/ such that �R D
S
T2N.R/ T . As R 2 B1, R is also

in S 0. Thus, by definition of S 0, we have that N.R/ � S and so

j'.T \K/j

�.T /
� .1C �/2

j'.R \K/j

�.R/
; 8T 2 N.R/;(36)

by Property (c) of Proposition B.5.50. Then

j'.�R \K/j �
X

T2N.R/

j'.T \K/j(37)

(36)
�

X
T2N.R/

.1C �/2
j'.R \K/j

�.R/
�.T / D .1C �/2

j'.R \K/j

�.R/
�.�R/:

As we have set � small enough, we see that .1 C �/2 � 1 C � and so this contradicts (35).
Thus, (34) must be true.

Define

V D
[
j2J

�Rj :

Using Lemma B.6.560 and an estimate similar to (37), we can easily get that

j'.V \K/j � .1C �/�1.1C �/2
j'.Q \K/j

�.Q/
�.V /:(38)

We also have the following lemma.

L B.6.610. – We have

j'..Q \K/nV /j � .1C �/2
j'.Q \K/j

�.Q/
�.QnV /:(39)
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Proof. – Let J0 be any arbitrary finite subset of J and set V0 D
S
j2J0
�Rj . LetN.R/ be

as in the proof of Lemma B.6.560. As before, as each Rj 2 B1, we have that N.Rj / � S .
Apply Lemma B.5.20 to the finite set fTig D

S
j2J0

N.Rj / to get a finite collection fW`g of
disjoint subcubes of Q such that each W` lies in S and

.Q \K/nV0 D
[
`

.W` \K/:(40)

Note also that as the W` � Q and is disjoint from fTig, we have[
`

W` � QnV0:(41)

Because each W` lies in S , we get by Property (c) of Proposition B.5.50 that

j'.W` \K/j � .1C �/
2 j'.Q \K/j

�.Q/
�.W`/:(42)

This gives

j'..Q \K/nV0/j
(40)
�

X
`

j'.W` \K/j
(42)
� .1C �/2

j'.Q \K/j

�.Q/

X
`

�.W`/

(41)
� .1C �/2

j'.Q \K/j

�.Q/
�.QnV0/:

As V0 � V , we have shown that

j'..Q \K/nV /j � .1C �/2
j'.Q \K/j

�.Q/
�.QnV0/:

As this holds for any finite subset J0 of J , we can then “pass to the limit” to prove the
lemma.

The two estimates (38) and (39) gives

j'.Q \K/j � .1C �/�1.1C �/2
j'.Q \K/j

�.Q/
�.V /C .1C �/2

j'.Q \K/j

�.Q/
�.QnV /;

from which we can get (with a little work)

�.V / �
�

�
3.1C �/�.Q/;

provided � � 1. One then gets

�

0@ [
R2B1

.R \K/

1A (33)
� C

X
j2J

�.Rj / � C
X
j2J

�.�Rj / � C�.V /

�
C�

�
3.1C �/�.Q/ �

C�

��
3.1C �/�.Q \K/:

In the last inequality, we used the fact that Q 2 S 2 F 2 has high density. Taking � smaller
than ��=6C.1C �/ finishes the proof.
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B.7. Section 7 of [21]: Final proof

We keep the same notation as the previous sections. Choose � and � small enough so that

.1C �/.1C �/2 � 1C �

and � is small enough compared to � for the hypothesis of Proposition B.6.130. We need the
following lemma.

L B.7.110. – �.Q0/nG2 � SI .ı/ [ LD.�/.

This follows directly from Properties (b), (f), and (h) of Proposition B.5.50. One then gets
from Lemma B.7.110 that, to prove Proposition 4.4, it suffices to show that G2nMA.�/ is a
K-Carleson set.

We let G .�/ be as before and so we get from Proposition B.6.130 that G2n G .�/ is
K-Carleson. For each S 2 F 2, we let SA denote the set of cubes Q 2 S such that
every neighbor of Q also lies in S . Then by Lemma B.2.580 and Properties (e) and (i) of
Proposition B.5.50, we have that

S
S2F 2

.SnSA/ is K-Carleson.
Also note that if Q 2 SA but there exists some neighbor of R 2 �.Q0/ of Q such that

R … G .�/ (but R 2 S as Q 2 SA), then Q is a neighbor of a cube in G2n G .�/. Thus,
Lemma B.2.320 gives that this set of Q is K-Carleson.

As G2 is the union of F 2, we see from the previous two paragraphs that we reduce the
proof of Proposition 4.4 to proving the following:

R B.7.150. – Let Q be a cube in G2 such that Q 2 SA for some S 2 F 2 and
R 2 G .�/ whenever R 2 �.Q0/ is a neighbor of Q. Then Q 2MA.�/.

This follows easily from the hypothesis of the reduction and the properties of Proposi-
tion B.5.50. The first property of MA.�/ comes from Property (d) of Proposition B.5.50. The
second property comes from the fact that sinceQ 2 SA, then if R is a neighbor of Q, R 2 S
and so we get our needed property from Property (c) of Proposition B.5.50. The final prop-
erty follows from the second property and the fact that R 2 G .�/. This finishes the proof
Reduction B.7.150, which finishes the proof of Proposition 4.4.
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