[Une preuve de la correspondance de Landau-Ginzburg/Calabi-Yau via la conjecture de la transformation crépante]
Nous établissons une nouvelle relation (la correspondance MLK) entre la théorie FJRW twistée et la théorie de Gromov-Witten en tout genre. Cela nous permet de montrer que la conjecture de la transformation crépante pour le type de Fermat en genre zéro implique la correspondance de Landau-Ginzburg/Calabi-Yau. Nous nous servons de ce résultat pour prouver la correspondance de Landau-Ginzburg/Calabi-Yau pour le type de Fermat, généralisant les résultats de A. Chiodo et Y. Ruan de [6].
We establish a new relationship (the MLK correspondence) between twisted FJRW theory and local Gromov-Witten theory in all genera. As a consequence, we show that the Landau-Ginzburg/Calabi-Yau correspondence is implied by the crepant transformation conjecture for Fermat type in genus zero. We use this to then prove the Landau-Ginzburg/Calabi-Yau correspondence for Fermat type, generalizing the results of A. Chiodo and Y. Ruan in [7].
DOI : 10.24033/asens.2312
Keywords: Crepant resolution, Landau-Ginzburg/Calabi-Yau correspondence, mirror symmetry, MLK correspondence.
Mot clés : Résolution crépante, correspondance de Landau-Ginzburg/Calabi-Yau, symétrie miroir, correspondance MLK.
@article{ASENS_2016__49_6_1403_0, author = {Lee, Yuan-Pin and Priddis, Nathan and Shoemaker, Mark}, title = {A proof of the {Landau-Ginzburg/} {Calabi-Yau} correspondence via the crepant transformation conjecture}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1403--1443}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {6}, year = {2016}, doi = {10.24033/asens.2312}, mrnumber = {3592361}, zbl = {1360.14133}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2312/} }
TY - JOUR AU - Lee, Yuan-Pin AU - Priddis, Nathan AU - Shoemaker, Mark TI - A proof of the Landau-Ginzburg/ Calabi-Yau correspondence via the crepant transformation conjecture JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1403 EP - 1443 VL - 49 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2312/ DO - 10.24033/asens.2312 LA - en ID - ASENS_2016__49_6_1403_0 ER -
%0 Journal Article %A Lee, Yuan-Pin %A Priddis, Nathan %A Shoemaker, Mark %T A proof of the Landau-Ginzburg/ Calabi-Yau correspondence via the crepant transformation conjecture %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1403-1443 %V 49 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2312/ %R 10.24033/asens.2312 %G en %F ASENS_2016__49_6_1403_0
Lee, Yuan-Pin; Priddis, Nathan; Shoemaker, Mark. A proof of the Landau-Ginzburg/ Calabi-Yau correspondence via the crepant transformation conjecture. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1403-1443. doi : 10.24033/asens.2312. http://www.numdam.org/articles/10.24033/asens.2312/
Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math., Volume 130 (2008), pp. 1337-1398 | DOI | MR | Zbl
Using stacks to impose tangency conditions on curves, Amer. J. Math., Volume 129 (2007), pp. 405-427 (ISSN: 0002-9327) | DOI | MR | Zbl
Some Applications of the Mirror Theorem for Toric Stacks (preprint arXiv:1401.2611 ) | MR
Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J., Volume 147 (2009), pp. 377-438 | DOI | MR | Zbl
A mirror theorem for toric stacks, Compos. Math., Volume 151 (2015), pp. 1878-1912 (ISSN: 0010-437X) | DOI | MR | Zbl
Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math., Volume 165 (2007), pp. 15-53 (ISSN: 0003-486X) | DOI | MR | Zbl
Towards an enumerative geometry of the moduli space of twisted curves and th roots, Compos. Math., Volume 144 (2008), pp. 1461-1496 (ISSN: 0010-437X) | DOI | MR | Zbl
The Crepant Transformation Conjecture for Toric Complete Intersections (preprint arXiv:1410.0024 ) | MR
Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. IHÉS, Volume 119 (2014), pp. 127-216 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Wall-crossings in toric Gromov-Witten theory. I. Crepant examples, Geom. Topol., Volume 13 (2009), pp. 2675-2744 (ISSN: 1465-3060) | DOI | MR | Zbl
Landau-Ginzburg/Calabi-Yau correspondence for the complete intersections and (preprint arXiv:1301.5530 ) | MR
The Quantum Lefschetz Principle for Vector Bundles as a Map Between Givental Cones (preprint arXiv:1405.2893 )
Geometric Quantization with Applications to Gromov-Witten Theory (preprint arXiv:1309.1150 ) | MR
, Orbifolds in mathematics and physics (Madison, WI, 2001) (Contemp. Math.), Volume 310, Amer. Math. Soc., 2002, pp. 25-85 | DOI | MR | Zbl
A new cohomology theory of orbifold, Comm. Math. Phys., Volume 248 (2004), pp. 1-31 | DOI | MR | Zbl
Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. math., Volume 182 (2010), pp. 117-165 | DOI | MR | Zbl
Quantum cohomology and crepant resolutions: a conjecture, Ann. Inst. Fourier (Grenoble), Volume 63 (2013), pp. 431-478 http://aif.cedram.org/item?id=AIF_2013__63_2_431_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Twisted -spin potential and Givental's quantization, Adv. Theor. Math. Phys., Volume 13 (2009), pp. 1335-1369 http://projecteuclid.org/getRecord?id=euclid.atmp/1282054097 (ISSN: 1095-0761) | DOI | MR | Zbl
The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math., Volume 178 (2013), pp. 1-106 | DOI | MR | Zbl
Semisimple Frobenius structures at higher genus, Int. Math. Res. Not., Volume 2001 (2001), pp. 1265-1286 (ISSN: 1073-7928) | DOI | MR | Zbl
, Frobenius manifolds (Aspects Math., E36), Friedr. Vieweg, Wiesbaden, 2004, pp. 91-112 | DOI | MR | Zbl
Equivariant Gromov-Witten invariants, Int. Math. Res. Not., Volume 1996 (1996), pp. 613-663 | DOI | MR | Zbl
, Clay Mathematics Monographs, 1, Amer. Math. Soc., Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003, 929 pages (ISBN: 0-8218-2955-6) | MR | Zbl
Hypergeometric functions and mirror symmetry in toric varieties (preprint arXiv:math/9912109 ) | MR
An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., Volume 222 (2009), pp. 1016-1079 (ISSN: 0001-8708) | DOI | MR | Zbl
, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) (Adv. Stud. Pure Math.), Volume 59, Math. Soc. Japan, Tokyo, 2010, pp. 111-166 | DOI | MR | Zbl
, Algebraic geometry—Seattle 2005. Part 1 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 309-323 | MR | Zbl
Invariance of quantum rings under ordinary flops III: A quantum splitting principle, Camb. J. Math., Volume 4 (2016), pp. 333-401 | DOI | MR | Zbl
A Landau-Ginzburg/Calabi-Yau correspondence for the mirror quintic, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 1045-1091 http://aif.cedram.org/item?id=AIF_2016__66_3_1045_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Matrix factorizations and cohomological field theories, J. reine angew. Math., Volume 714 (2016), pp. 1-122 (ISSN: 0075-4102) | DOI | MR | Zbl
The structure of 2D semi-simple field theories, Invent. math., Volume 188 (2012), pp. 525-588 (ISSN: 0020-9910) | DOI | MR | Zbl
Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol., Volume 14 (2010), pp. 1-81 | DOI | MR | Zbl
, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, pp. 235-269 | MR | Zbl
, Mirror symmetry, II (AMS/IP Stud. Adv. Math.), Volume 1, Amer. Math. Soc., 1997, pp. 143-211 | MR | Zbl
Cité par Sources :