Nous donnons une caractérisation complète des groupes de Lie connexes ayant la propriété d'approximation (AP) pour des groupes. À cette fin, nous introduisons un renforcement de la propriété (T), que nous appelons propriété (T) et qui est une obstruction naturelle à AP. Dans le but de définir la propriété (T), nous montrons d'abord que pour tout groupe localement compact , l'espace des multiplicateurs complètement bornés de admet une unique moyenne invariante à gauche . Un groupe localement compact a la propriété (T) si est une forme continue pour la topologie -faible. Après avoir démontré que les groupes , et ont la propriété (T), nous étudions la question de savoir lesquels parmi les groupes de Lie connexes ont l'AP. Il se pose alors le problème technique que la partie semi-simple de la décomposition de Levi globale d'un groupe de Lie connexe n'est pas toujours fermée. Grâce à une importante propriété de stabilité de la propriété (T), ce problème disparaît. Il s'en suit qu'un groupe de Lie connexe a l'AP si et seulement si tous les facteurs simples de la partie semi-simple de sa décomposition de Levi ont un rang réel 0 ou 1. Enfin, nous démontrons que tous les groupes de Lie simples connexes de rang et de centre fini ont la propriété (T).
We give a complete characterization of connected Lie groups with the Approximation Property for groups (AP). To this end, we introduce a strengthening of property (T), that we call property (T), which is a natural obstruction to the AP. In order to define property (T), we first prove that for every locally compact group , there exists a unique left invariant mean on the space of completely bounded Fourier multipliers of . A locally compact group is said to have property (T) if this mean is a weak continuous functional. After proving that the groups , , and have property (T), we address the question which connected Lie groups have the AP. A technical problem that arises when considering this question from the point of view of the AP is that the semisimple part of the global Levi decomposition of a connected Lie group need not be closed. Because of an important permanence property of property (T), this problem vanishes. It follows that a connected Lie group has the AP if and only if all simple factors in the semisimple part of its Levi decomposition have real rank 0 or 1. Finally, we are able to establish property (T) for all connected simple higher rank Lie groups with finite center.
DOI : 10.24033/asens.2299
Keywords: Approximation properties, Lie groups, property (T), invariant means.
Mot clés : Propriétés d'approximation, groupes de Lie, propriété (T), moyennes invariantes.
@article{ASENS_2016__49_4_927_0, author = {Haagerup, Uffe and Knudby, S{\o}ren and de Laat, Tim}, title = {A complete characterization of connected {Lie} groups with the {Approximation} {Property}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {927--946}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {4}, year = {2016}, doi = {10.24033/asens.2299}, mrnumber = {3552017}, zbl = {1368.22003}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2299/} }
TY - JOUR AU - Haagerup, Uffe AU - Knudby, Søren AU - de Laat, Tim TI - A complete characterization of connected Lie groups with the Approximation Property JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 927 EP - 946 VL - 49 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2299/ DO - 10.24033/asens.2299 LA - en ID - ASENS_2016__49_4_927_0 ER -
%0 Journal Article %A Haagerup, Uffe %A Knudby, Søren %A de Laat, Tim %T A complete characterization of connected Lie groups with the Approximation Property %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 927-946 %V 49 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2299/ %R 10.24033/asens.2299 %G en %F ASENS_2016__49_4_927_0
Haagerup, Uffe; Knudby, Søren; de Laat, Tim. A complete characterization of connected Lie groups with the Approximation Property. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 927-946. doi : 10.24033/asens.2299. http://www.numdam.org/articles/10.24033/asens.2299/
Unbounded negative definite functions, Canad. J. Math., Volume 33 (1981), pp. 862-871 (ISSN: 0008-414X) | DOI | MR | Zbl
, Cambridge Univ. Press, 2008 |Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A, Volume 3 (1984), pp. 297-302 | MR | Zbl
Positive and negative definite kernels on discrete groups (1987) (preprint lecture notes at Heidelberg University)
Groupes réductifs, Publ. Math. IHÉS, Volume 27 (1965), pp. 55-150 (ISSN: 0073-8301) | DOI | Numdam | MR
, Gordon and Breach Science Publishers, 1970, 118 pages |, Modern Birkhäuser Classics, Birkhäuser, 2001, 126 pages (ISBN: 978-3-0348-0905-4; 978-3-0348-0906-1) | DOI | MR | Zbl
A family of singular oscillatory integral operators and failure of weak amenability, Duke Math. J., Volume 127 (2005), pp. 429-486 (ISSN: 0012-7094) | DOI | MR | Zbl
Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. math., Volume 96 (1989), pp. 507-549 (ISSN: 0020-9910) | DOI | MR | Zbl
Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math., Volume 107 (1985), pp. 455-500 (ISSN: 0002-9327) | DOI | MR | Zbl
Almost periodic compactifications, Bull. Amer. Math. Soc., Volume 65 (1959), pp. 134-139 (ISSN: 0002-9904) | DOI | MR | Zbl
Applications of almost periodic compactifications, Acta Math., Volume 105 (1961), pp. 63-97 (ISSN: 0001-5962) | DOI | MR | Zbl
Weak amenability and semidirect products in simple Lie groups, Math. Ann., Volume 306 (1996), pp. 737-742 (ISSN: 0025-5831) | DOI | MR | Zbl
Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc., Volume 67 (1949), pp. 217-240 (ISSN: 0002-9947) | DOI | MR | Zbl
, London Mathematical Society Monographs. New Series, 23, The Clarendon Press, Oxford Univ. Press, 2000, 363 pages (ISBN: 0-19-853482-5) | MR | Zbl
L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, Volume 92 (1964), pp. 181-236 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl
, Applications of hypergroups and related measure algebras (Seattle, WA, 1993) (Contemp. Math.), Volume 183, Amer. Math. Soc., Providence, RI, 1995, pp. 111-128 | DOI | MR | Zbl
Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc., Volume 63 (1948), pp. 1-84 (ISSN: 0002-9947) | MR | Zbl
, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., 1969, 113 pages | MR | Zbl
Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., Volume 16 (1955) (ISSN: 0065-9266) | MR | Zbl
Simple Lie groups without the Approximation Property, Duke Math. J., Volume 162 (2013), pp. 925-964 (ISSN: 0012-7094) | DOI | MR | Zbl
Simple Lie groups without the Approximation Property II, Trans. Amer. Math. Soc., Volume 368 (2016), pp. 3777-3809 (ISSN: 0002-9947) | DOI | MR | Zbl
, Pure and Applied Mathematics, 80, Academic Press, Inc., 1978, 628 pages (ISBN: 0-12-338460-5) | MR | Zbl
Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier (Grenoble), Volume 24 (1974), pp. 145-157 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Approximation properties for group -algebras and group von Neumann algebras, Trans. Amer. Math. Soc., Volume 344 (1994), pp. 667-699 (ISSN: 0002-9947) | DOI | MR | Zbl
On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen., Volume 1 (1967), pp. 71-74 (ISSN: 0374-1990) | MR | Zbl
, Progress in Math., 140, Birkhäuser, 2002, 812 pages (ISBN: 0-8176-4259-5) | MR | Zbl
Noncommutative -spaces without the completely bounded approximation property, Duke Math. J., Volume 160 (2011), pp. 71-116 (ISSN: 0012-7094) | DOI | MR | Zbl
The extensibility of local Lie groups of transformations and groups on surfaces, Ann. of Math., Volume 52 (1950), pp. 606-636 (ISSN: 0003-486X) | DOI | MR | Zbl
, Pure and Applied Mathematics, John Wiley & Sons, Inc., 1984, 418 pages (ISBN: 0-471-89390-0) | MR | Zbl
, London Mathematical Society Lecture Note Series, 294, Cambridge Univ. Press, 2003, 478 pages (ISBN: 0-521-81165-1) | DOI | MR | Zbl
, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., 1991, 424 pages (ISBN: 0-07-054236-8) | MR | Zbl
, Lecture Notes in Math., 1774, Springer, 2002, 296 pages (ISBN: 3-540-42852-6) | DOI | MR | Zbl
Minimal projections, integrable representations and property , Arch. Math. (Basel), Volume 43 (1984), pp. 397-406 (ISSN: 0003-889X) | DOI | MR | Zbl
, Graduate Texts in Math., 102, Springer, 1984, 430 pages (ISBN: 0-387-90969-9) | DOI | MR | Zbl
Weakly almost periodic functions on semisimple Lie groups, Monatsh. Math., Volume 88 (1979), pp. 55-68 (ISSN: 0026-9255) | DOI | MR | Zbl
Herz-Schur multipliers and weakly almost periodic functions on locally compact groups, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 2525-2536 (ISSN: 0002-9947) | DOI | MR | Zbl
Cité par Sources :