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A COMPLETE CHARACTERIZATION
OF CONNECTED LIE GROUPS WITH

THE APPROXIMATION PROPERTY

 U HAAGERUP, S KNUDBY  T DE LAAT

A. – We give a complete characterization of connected Lie groups with the Approx-
imation Property for groups (AP). To this end, we introduce a strengthening of property (T), that
we call property (T∗), which is a natural obstruction to the AP. In order to define property (T∗), we
first prove that for every locally compact group G, there exists a unique left invariant mean m on
the space M0A(G) of completely bounded Fourier multipliers of G. A locally compact group G is
said to have property (T∗) if this mean m is a weak∗ continuous functional. After proving that the
groups SL(3,R), Sp(2,R), and S̃p(2,R) have property (T∗), we address the question which connected
Lie groups have the AP. A technical problem that arises when considering this question from the
point of view of the AP is that the semisimple part of the global Levi decomposition of a connected
Lie group need not be closed. Because of an important permanence property of property (T∗), this
problem vanishes. It follows that a connected Lie group has the AP if and only if all simple factors in
the semisimple part of its Levi decomposition have real rank 0 or 1. Finally, we are able to establish
property (T∗) for all connected simple higher rank Lie groups with finite center.

R. – Nous donnons une caractérisation complète des groupes de Lie connexes ayant la
propriété d’approximation (AP) pour des groupes. À cette fin, nous introduisons un renforcement de
la propriété (T), que nous appelons propriété (T∗) et qui est une obstruction naturelle à AP. Dans le
but de définir la propriété (T∗), nous montrons d’abord que pour tout groupe localement compact G,
l’espace M0A(G) des multiplicateurs complètement bornés de G admet une unique moyenne invariante
à gauche m. Un groupe localement compact G a la propriété (T∗) si m est une forme continue pour
la topologie ∗-faible. Après avoir démontré que les groupes SL(3,R), Sp(2,R) et S̃p(2,R) ont la
propriété (T∗), nous étudions la question de savoir lesquels parmi les groupes de Lie connexes ont l’AP.
Il se pose alors le problème technique que la partie semi-simple de la décomposition de Levi globale
d’un groupe de Lie connexe n’est pas toujours fermée. Grâce à une importante propriété de stabilité de
la propriété (T∗), ce problème disparaît. Il s’en suit qu’un groupe de Lie connexe a l’AP si et seulement
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928 U. HAAGERUP, S. KNUDBY AND T. DE LAAT

si tous les facteurs simples de la partie semi-simple de sa décomposition de Levi ont un rang réel 0 ou 1.
Enfin, nous démontrons que tous les groupes de Lie simples connexes de rang≥ 2 et de centre fini ont
la propriété (T∗).

1. Introduction

The main aim of this article is to provide a complete characterization of connected Lie
groups with the Approximation Property for groups (AP). It continues and relies on the
work of Lafforgue and de la Salle [26] and the work of the first named and the third named
author [20, 21].

A locally compact group G has the AP if there is a net (ϕα) in the Fourier algebra A(G)

ofG such that ϕα → 1 in the weak* topology onM0A(G) (see Section 2 for details). The AP,
which was introduced by the first named author and Kraus in [19], is the natural analogue
for groups of the Banach Space Approximation Property (BSAP) of Grothendieck (see [18]).
To see this, recall first that Banach spaces have a natural noncommutative analogue, namely,
operator spaces. An operator space is a closed linear subspace E of the bounded oper-
ators B( H ) on a Hilbert space H (see [13, 31]). For the class of operator spaces, which
contains the class of C∗-algebras, a well-known analogue of the BSAP is known, namely,
the operator space approximation property (OAP). The first named author and Kraus
proved that a discrete group Γ has the AP if and only if its reduced C∗-algebra C∗λ(Γ) has
the OAP.

The AP is strictly weaker than the well-known properties amenability and weak amenability.
It has not been considered as much as these properties, or the Haagerup property for that
matter, probably because until recently, the only examples of groups without the AP followed
from the theoretical fact that every discrete group with the AP is exact, as established by the
first named author and Kraus. However, in 2010, Lafforgue and de la Salle provided the first
concrete examples of groups without the AP, namely, SL(n,R) for n ≥ 3 and lattices in these
groups [26]. In fact, they also proved that SL(n, F ) (with n ≥ 3) and its lattices do not have
the AP for any non-Archimedean local field F . Their result on real Lie groups was extended
by the first named and the third named author of this article, first to connected simple Lie
groups with real rank at least 2 and finite center [20], by proving that Sp(2,R) does not
satisfy the AP, and then to all connected simple Lie groups with real rank at least 2 [21], by
also considering the universal covering group S̃p(2,R). Indeed, any connected simple Lie
group with real rank at least 2 contains a closed subgroup locally isomorphic to SL(3,R)

or Sp(2,R), which, together with the known permanence properties of the AP, implies
the general result. From this, it follows that a connected semisimple Lie group G that is
isomorphic to a direct product S1 × · · · × Sn of connected simple Lie groups has the AP if
and only if all these Si’s have real rank 0 or 1 (see [21]).

It is straightforward to characterize the AP for more general classes of groups, by using
the known permanence properties of the AP, but we are not able to provide a complete
characterization of connected Lie groups with the AP in this way. However, by using a
natural obstruction to the AP that we introduce in this article, it turns out that we can.
This obstruction, which we call property (T∗), is in fact a strengthening of property (T).
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CONNECTED LIE GROUPS WITH THE APPROXIMATION PROPERTY 929

Property (T), as introduced by Kazhdan in [24], is a rigidity property for groups that has
lead to striking results in several areas of mathematics (see [2]). Recall that a locally compact
group has property (T) if its trivial representation is isolated in the unitary dual of the group
equipped with the Fell topology.

As mentioned above, property (T∗) forms a natural obstruction to the AP, in the sense
that a locally compact group having both the AP and property (T∗) is necessarily compact.
Note that in the same way, property (T) is an obstruction to the Haagerup property.

For a locally compact group G, let M0A(G) denote the space of completely bounded
Fourier multipliers of G (see Section 2). In order to define property (T∗), we first prove the
following result.

T A. – Let G be a locally compact group. Then the space M0A(G) carries a
unique left invariant mean m. This mean is also right invariant.

It is known that M0A(G) is a subspace of the space W (G) of weakly almost periodic
functions on G, which is known to have a unique left invariant mean. It follows that the
mean on M0A(G) is the restriction to M0A(G) of the mean on W (G). It is known from [16,
Chapitre III] that also the Fourier-Stieltjes algebraB(G) (see Section 2) of a locally compact
group G has a unique left invariant mean.

As mentioned before, M0A(G) carries a weak∗ topology (see Section 2.3).

D 1.1. – A locally compact groupG is said to have property (T∗) if the unique
left invariant mean m on M0A(G) is a weak∗ continuous functional.

It is easy to see that compact groups have property (T∗). Also, as mentioned before, any
group satisfying both the AP and property (T∗) is compact. Using a powerful result of Veech
from [36] and the results of [20] and [21], we are able to prove the following result.

T B. – The groups SL(3,R), Sp(2,R), and the universal covering group S̃p(2,R)

of Sp(2,R) have property (T∗).

Property (T∗) satisfies certain permanence properties. One of the essential ones for us is
that whenever π : H → G is a continuous homomorphism between locally compact groups
with dense image and H has property (T∗), then G has property (T∗) (see Proposition 5.9).
Using Theorem B and this permanence property, we are able to prove the following theorem,
which gives a complete characterization of connected Lie groups with the AP. The statement
of the theorem uses the Levi decomposition of connected Lie groups (see Section 2.6),
asserting that any connected Lie group G admits a decomposition G = RS, where R is a
solvable closed normal subgroup ofG and S is a semisimple subgroup ofG. The semisimple
Lie group S is locally isomorphic to a direct product of connected simple factors.

T C. – Let G be a connected Lie group, let G = RS be a Levi decomposition,
and suppose that S is locally isomorphic to the direct product S1 × · · · × Sn of connected
simple factors. Then the following are equivalent:

(i) the group G has the AP,
(ii) the group S has the AP,

(iii) the groups Si, where i = 1, . . . , n, have the AP,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



930 U. HAAGERUP, S. KNUDBY AND T. DE LAAT

(iv) the real rank of the groups Si, where i = 1, . . . , n, is at most 1.

For the Haagerup property, an analogous characterization was given in [7, Chapter 4].
For weak amenability, a characterization was given in [8] under the assumption that the
semisimple part of the Levi decomposition has finite center.

For the proof of Theorem C, we use the fact that a locally compact group with a non-
compact closed subgroup with property (T∗) does not have the AP. Let us point out that it
follows from the proof of Theorem C (see Section 7) that a connected Lie group has the AP
if and only if it contains no non-compact closed subgroups with property (T∗).

It turns out that we can actually generalize property (T∗) to connected simple higher rank
Lie groups with finite center.

T D. – LetG be a connected simple Lie group with real rank at least 2 and finite
center. Then G has property (T∗).

We expect that this theorem is also true without the finite center condition.

The article is organized as follows. In Section 2, we recall some preliminaries on the
Fourier-Stieltjes algebra, the Fourier algebra, completely bounded Fourier multipliers,
the AP, and the Levi decomposition. In Section 3, we recall some results on invariant means
associated with locally compact groups and we prove Theorem A. We discuss a characteri-
zation of property (T) in Section 4. We introduce property (T∗) in Section 5, and we prove
Theorem B in Section 6. In Section 7, we prove Theorem C. Finally, we prove Theorem D
in Section 8.

2. Preliminaries

2.1. The Fourier-Stieltjes algebra and the Fourier algebra

Recall that the Fourier-Stieltjes algebra B(G) of a locally compact group G is the space
of matrix coefficients of strongly continuous unitary representations of G. More precisely,
ϕ ∈ B(G) if there exist a strongly continuous unitary representation π : G → B( H ) and
vectors ξ, η ∈ H such that for all g ∈ G,

(1) ϕ(g) = 〈π(g)ξ, η〉.

With the norm ‖ϕ‖B(G) = inf{‖ξ‖‖η‖}, where the infimum is taken over all vectors ξ, η ∈ H
such that (1) holds, it forms a Banach space. Alternatively, the Fourier-Stieltjes algebra can
be defined as the complex linear span of the continuous positive definite functions on G.

Let λ : G→ B(L2(G)) denote the left regular representation, which is given
by (λ(g)ξ)(h) = ξ(g−1h), where g, h ∈ G and ξ ∈ L2(G). Recall that the Fourier algebra A(G)

consists of the coefficients of λ. More precisely, ϕ ∈ A(G) if there exist ξ, η ∈ L2(G) such
that for all g ∈ G,

(2) ϕ(g) = 〈λ(g)ξ, η〉.

The Fourier algebra A(G) is a Banach space when equipped with the norm ‖ϕ‖A(G) =

inf{‖ξ‖‖η‖}, where the infimum is taken over all vectors ξ, η ∈ H such that (2) holds. We
have ‖ϕ‖A(G) ≥ ‖ϕ‖∞ for all ϕ ∈ A(G), andA(G) is ‖.‖∞-dense in C0(G). It is well-known
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CONNECTED LIE GROUPS WITH THE APPROXIMATION PROPERTY 931

that the Fourier algebra A(G) can be identified with the predual of the group von Neumann
algebra L(G) of G.

Both the Fourier-Stieltjes algebra and the Fourier algebra were introduced by Eymard [14]
(see also [15]).

2.2. Fourier multipliers

A function ϕ : G→ C is said to be a completely bounded (Fourier) multiplier if the map
Mϕ : L(G) → L(G) defined through λ(g) 7→ ϕ(g)λ(g) is completely bounded. The space
of completely bounded multipliers is denoted byM0A(G), and with the norm ‖ϕ‖M0A(G) =

‖Mϕ‖cb, where ‖.‖cb denotes the completely bounded norm, it is a Banach space. It is known
that A(G) ⊂M0A(G).

In [5], Bożejko and Fendler proved the equivalence between completely bounded Fourier
multipliers and Herz-Schur multipliers, which were first studied by Herz [23]. They also
gave another important characterization of completely bounded Fourier multipliers, namely,
ϕ ∈M0A(G) if and only if there exist bounded continuous maps P,Q : G→ H , where H is
a Hilbert space, such that

(3) ϕ(h−1g) = 〈P (g), Q(h)〉

for all g, h ∈ G. In this characterization, ‖ϕ‖M0A(G) = inf{‖P‖∞‖Q‖∞}, where the infimum
is taken over all possible pairs (P,Q) such that (3) holds.

2.3. The Approximation Property

Let G be a locally compact group with left Haar measure dg. For f ∈ L1(G) and
ϕ ∈ L∞(G), we set 〈f, ϕ〉 =

∫
f(g)ϕ(g)dg. Let X denote the completion of L1(G) with

respect to the norm

‖f‖ = sup
{
|〈f, ϕ〉| | ϕ ∈M0A(G), ‖ϕ‖M0A(G) ≤ 1

}
.

ThenX∗ ∼= M0A(G). Thus,X is a predual ofM0A(G), denoted byM0A(G)∗. This predual
defines the weak* topology on M0A(G). For details, we refer to [10, Proposition 1.10].

D 2.1. – ([19]) A locally compact group G is said to have the Approximation
Property for groups (AP) if there exists a net (ϕα) in A(G) such that ϕα → 1 in the weak*
topology on M0A(G).

It was proved in [19] that ifG is a locally compact group and Γ is a lattice inG, thenG has
the AP if and only if Γ has the AP. Also, the AP is known to pass to closed subgroups and
to extensions, the latter meaning that if N is a closed normal subgroup of a locally compact
group G such that both N and G/N have the AP, then G has the AP.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



932 U. HAAGERUP, S. KNUDBY AND T. DE LAAT

2.4. Universal covering groups

Consider a connected Lie group G. A covering group of G is a Lie group G̃ together with
a surjective Lie group homomorphism σ : G̃→ G such that (G̃, σ) is a topological covering
space of G. If a covering space is simply connected, it is called a universal covering space.
Every connected Lie groupG has a universal covering space G̃, and it can be made into a Lie
group. Indeed, let σ : G̃→ G be the corresponding covering map, and let 1̃ ∈ σ−1(1). Then
there exists a unique multiplication on G̃ that makes G̃ into a Lie group in such a way that
σ is a surjective Lie group homomorphism. The group G̃ is called a universal covering group
ofG. The universal covering groups of connected Lie groups are unique up to isomorphism.
For more details, we refer to [25, Section I.11].

2.5. Polar decomposition of Lie groups

Let G be a connected semisimple Lie group with Lie algebra g. Then G has a polar
decomposition G = KAK, where K arises from a Cartan decomposition g = k + p on
the Lie algebra level (K has Lie algebra k), and A is an abelian Lie group such that its Lie
algebra a is a maximal abelian subspace of p. If G has finite center, then the group K is a
maximal compact subgroup. The dimension of the Lie algebra a is called the real rank of G.
In general, if we have a polar decomposition G = KAK, it is not the case that for g ∈ G

there exist unique k1, k2 ∈ K and a ∈ A such that g = k1ak2. However, by choosing
a set of positive roots and restricting to the closure A+ of the positive Weyl chamber A+,
we still have a decomposition G = KA+K. Moreover, if g = k1ak2, where k1, k2 ∈ K

and a ∈ A+, then a is unique. We also use the terminology polar decomposition for such a
KA+K decomposition. For details, see [22, Section IX.1].

2.6. The Levi decomposition of a Lie group

Let G be a connected Lie group with Lie algebra g, and let r be the solvable radical of g.
The Lie algebra g decomposes as g = ros, where s is a semisimple subalgebra. We can write
s = s1⊕ · · ·⊕ sn, where the si’s, with i = 1, . . . , n, denote the simple summands of s. Let R,
S and Si, with i = 1, . . . , n, denote the corresponding analytic subgroups of G. In this way,
S becomes a maximal semisimple analytic subgroup ofG, locally isomorphic to the product
S1 × · · · × Sn of simple factors.

The subgroup R is solvable, normal and closed, but S need not be closed. Also, G = RS,
but R ∩ S may contain more than one element. However, if G is simply connected, the
subgroup S is actually closed and the Levi decomposition becomes a semi-direct product
G = Ro S. For details, we refer to [35, Section 3.18].

3. Invariant means associated with locally compact groups

In this section, we first recall some well-known facts on invariant means associated with
locally compact groups. After that, we prove Theorem A. Let G be a locally compact group,
and let X be a subspace of L∞(G) that is closed under complex conjugation and that
contains the constant functions. Recall that a mean m on X is a positive linear functional
m : X → C satisfying ‖m‖ = m(1) = 1. Let Lg and Rg denote the left and right translation
operator associated with an element g ∈ G, respectively. More precisely, for a function
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CONNECTED LIE GROUPS WITH THE APPROXIMATION PROPERTY 933

ϕ : G→ C, we have (Lgϕ)(h) = ϕ(g−1h) and (Rgϕ)(h) = ϕ(hg) for all g, h ∈ G. A meanm
onX is said to be left invariant ifm(Lgϕ) = m(ϕ) for all ϕ ∈ X and g ∈ G. Right invariant
means are defined similarly. A two-sided invariant mean is a mean that is both left and right
invariant.

Let Cb(G) denote the space of continuous bounded functions on G. Recall that a func-
tion ϕ ∈ Cb(G) is left uniformly continuous if ‖Lgϕ − ϕ‖∞ → 0 as g → 1. Right uniform
continuity is defined analogously, using right translation operators. Note that the definitions
of left and right uniform continuity are often reversed in the literature. Let LUCb(G) and
RUCb(G) denote the left and right uniformly continuous bounded functions on G, respec-
tively, and let UCb(G) denote the two-sided uniformly continuous bounded functions on G.
We have UCb(G) ⊂ LUCb(G) ⊂ Cb(G) ⊂ L∞(G), where each of the inclusions is a (two-
sided) translation invariant ‖.‖∞-closed inclusion.

Recall that G is amenable if there exists a left invariant mean on L∞(G). It is well-known
(see, e.g., [17, Theorem 2.2.1] or [33, Theorem 1.1.9]) that G is amenable if and only if there
exists a left invariant mean on Cb(G) (or, equivalently, on LUCb(G), RUCb(G) or UCb(G)).
The previous assertions can equivalently be formulated for right invariant and two-sided
invariant means.

We now turn to the notion of weakly almost periodic function. The study of such functions
was initiated by Eberlein [12] for locally compact abelian groups and generalized to locally
compact (semi)groups by de Leeuw and Glicksberg [27, 28] (see also [6]).

D 3.1. – A functionϕ ∈ Cb(G) is weakly almost periodic if its orbitO(ϕ,L) =

{Lgϕ | g ∈ G} under left translations (equivalently, its orbit O(ϕ,R) under right transla-
tions) is relatively compact in the weak topology on Cb(G).

The space of weakly almost periodic functions on G is denoted by W (G). For a function
ϕ : G → C defined on a group G, let ϕ̌(g) = ϕ(g−1). The space W (G) is a closed
translation and inversion invariant (i.e., if ϕ ∈ W (G), then ϕ̌ ∈ W (G) as well) subalgebra
of Cb(G) containing the constant functions. It is well-known that W (G) ⊂ UCb(G) (see [6,
Theorem 3.11]).

Let C(ϕ,L) denote the weakly closed convex hull of O(ϕ,L), which coincides with
the norm closed convex hull of O(ϕ,L), and let C(ϕ,R) be defined analogously. The
following powerful result follows from the Ryll-Nardzewski fixed-point theorem (see,
e.g., [17, Appendix 2]).

T 3.2. – (See [17, §3.1] or [6, Theorem 1.25]) Let G be a locally compact group.
Then there exists a unique left invariant mean m on W (G). Explicitly, given a function
ϕ ∈ W (G), its mean m(ϕ) is given by the unique constant in C(ϕ,L), which equals the
unique constant in C(ϕ,R). Moreover, m is right invariant and invariant under inversion,
i.e., m(ϕ̌) = m(ϕ) for all ϕ ∈W (G).

As mentioned in [6, Corollary 3.7], if G is a locally compact group, then C0(G) ⊂W (G).
Moreover, if G is non-compact and ϕ ∈ C0(G), then m(ϕ) = 0.

It is well-known that the Fourier-Stieltjes algebra B(G) (see Section 2.1) of G is a
translation and inversion invariant unital subalgebra of W (G). In fact, the same holds
for the space M0A(G) of completely bounded Fourier multipliers (see Section 2.2), which
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934 U. HAAGERUP, S. KNUDBY AND T. DE LAAT

contains B(G). This is mentioned in [37, p. 2527] and [4, p. 58], but we include a (different)
proof for completeness.

P 3.3. – The algebraM0A(G) is a translation and inversion invariant unital
subalgebra of W (G).

Proof. – We only prove thatM0A(G) ⊂W (G), leaving the other assertions to the reader.
Let ϕ ∈ M0A(G). It is well-known that ϕ ∈ Cb(G). By the characterization of M0A(G) by
Bożejko and Fendler (see Section 2.2), there exist bounded continuous maps P,Q : G→ H
from G to a Hilbert space H such that for all g, h ∈ G, we have ϕ(h−1g) = 〈P (g), Q(h)〉.

For each ξ ∈ H , let T (ξ) be the function on G defined by T (ξ)(h) = 〈ξ,Q(h−1)〉 for h ∈ G.
Clearly, T (ξ) ∈ Cb(G), and T : H → Cb(G) is a bounded linear map with ‖T‖ ≤ ‖Q‖∞.
Hence, T is also weak-weak continuous.

The set B = {ξ ∈ H | ‖ξ‖ ≤ ‖P‖∞} is weakly compact in H , and hence T (B) is weakly
compact in Cb(G). It is easy to check that Rgϕ = T (P (g)), and hence O(ϕ,R) is a subset
of T (B). This shows that O(ϕ,R) is relatively weakly compact in Cb(G), which implies that
ϕ ∈W (G).

C 3.4. – Completely bounded Fourier multipliers are uniformly continuous.

R 3.5. – It is not true, in general, that Fourier multipliers that are not completely
bounded are weakly almost periodic [4, Proposition 5.2.2].

The following theorem implies Theorem A. It also implies the existence of a unique left
invariant mean onB(G). However, this was already known from the work of Godement [16,
Chapitre III].

T 3.6. – LetG be a locally compact group, and letX be a subspace ofW (G) that
is closed under conjugation and left translation and that contains the constant function 1.
Then there exists a unique left invariant mean M on X. If X is, additionally, closed under
right translation, then M is also right invariant. Moreover, if X is closed under inversion,
then M is inversion invariant.

Proof. – The existence of a left invariant mean M follows from Theorem 3.2. Suppose
now that M ′ is a left invariant mean, and let ϕ ∈ X be given. By invariance, M ′ is constant
on the set {Lgϕ | g ∈ G} of left translates ofϕ, and by linearity,M ′ is constant on the convex
hull conv{Lgϕ | g ∈ G}. By Theorem 3.2, there exists a unique constant function M(ϕ) in
the norm closure of conv{Lgϕ | g ∈ G}.

Recall that if (S, µ) is a measure space and X is a subspace of L∞(S, µ) such that X is
closed under conjugation and such that 1 ∈ X, then any mean onX is bounded with respect
to the uniform norm (see [30, Proposition 3.2]). It follows that M ′ is continuous. Hence,
M ′(ϕ) = M ′(M(ϕ)) = M(ϕ). This shows that M ′ = M , which proves uniqueness. The
additional assertions follow directly from Theorem 3.2.

Proof of Theorem A. – As proved in Proposition 3.3, the space M0A(G) is a trans-
lation and inversion invariant unital subalgebra of W (G). The result now follows from
Theorem 3.6.
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4. A characterization of property (T)

In this section, we present a characterization of property (T) based on the unique left
invariant mean on the Fourier-Stieltjes algebra. This characterization is essentially due to
Akemann and Walter [1, Lemma 2] (see also [34, Lemma 3.1]), but since our formulation is
different, because it explicitly involves the mean on the Fourier-Stieltjes algebra, we give a
proof.

Let G be a locally compact group, and let dg be a Haar measure on G. Let C∗(G)

denote the universal C∗-algebra of G. Recall that, for f ∈ L1(G) and ϕ ∈ L∞(G), we
set 〈f, ϕ〉 =

∫
f(g)ϕ(g)dg. If ϕ ∈ B(G), then ϕ can be viewed as a functional on L1(G)

that extends by continuity toC∗(G). Moreover, the Fourier-Stieltjes algebraB(G) is linearly
isomorphic to the dual C∗(G)∗ of C∗(G), and in this way B(G) carries a weak∗ topology.
Note from Theorem 3.6 that B(G) carries a unique left invariant mean.

P 4.1. – For a locally compact group G, the following are equivalent:

(i) the group G has property (T),
(ii) the unique left invariant mean m on B(G) is weak∗ continuous. In other words,

m ∈ C∗(G).

Before proving this proposition, we recall some well-known facts. Let πU denote the
universal representation of bothG andL1(G). Then πU (L1(G)) is norm dense inC∗(G) and
weak operator dense in the von Neumann algebraC∗(G)∗∗. Also, the span of πU (G) is weak
operator dense in C∗(G)∗∗.

The representation 1G of L1(G) coming from the trivial representation of G is given
by 1G(f) =

∫
f(g)dg. This representation extends to a normal ∗-representation 1G : C∗(G)∗∗ → C.

The following identities can easily be shown to hold for all g ∈ G, ϕ ∈ B(G) and
a ∈ L1(G), and hence also by continuity for a ∈ C∗(G)∗∗:

〈πU (g)a, ϕ〉 = 〈a, Lg−1ϕ〉,(4)

〈aπU (g), ϕ〉 = 〈a,Rgϕ〉,(5)

〈a, 1〉 = 1G(a),(6)

〈a, ϕ̃〉 = 〈a∗, ϕ〉,(7)

where ϕ̃(x) = ϕ(x−1). Let p denote the central cover of 1G, i.e., p is a central minimal
projection in C∗(G)∗∗ such that ker 1G = (1− p)C∗(G)∗∗. The following result is contained
in [1, Lemma 2].

L 4.2. – For a locally compact group G, the following are equivalent:

(i) the group G has property (T),
(ii) the central cover of the trivial representation 1G : C∗(G)∗∗ → C belongs to C∗(G).

We can now relate this result to the unique left invariant mean on B(G).

L 4.3. – Let G be a locally compact group, let p be the central cover of the trivial
representation 1G : C∗(G)∗∗ → C, and let m be the unique left invariant mean on B(G). If
Φ: B(G)∗ → C∗(G)∗∗ denotes the canonical isomorphism, then Φ(m) = p.
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Proof. – Put q = Φ(m). Recall that m is also right invariant and inversion invariant. We
know thatm(ϕ) = m(ϕ) for every ϕ ∈ B(G). Since alsom(ϕ̌) = m(ϕ), we obtain, using (7),
that 〈q∗, ϕ〉 = 〈q, ϕ̃〉 = 〈q, ϕ̌〉 = 〈q, ϕ〉 for every ϕ ∈ B(G). This shows that q∗ = q.

As m(1) = 1, we see by (6) that 1G(q) = 1. Also, by (4) and (5), left and right invariance
of m translates into the fact that πU (g)q = q = qπU (g) for every g ∈ G. Hence, for every
a ∈ C∗(G)∗∗, we have aq = 1G(a)q = qa. In particular, we see that q2 = q and qp = q = pq.
It now follows that q is a non-zero subprojection of p, and by minimality of p we conclude
that q = p.

Proof of Proposition 4.1. – The weak∗ continuous functionals inC∗(G)∗∗ are exactly the
elements of C∗(G). The proposition now follows by combining Lemmas 4.2 and 4.3.

5. Property (T∗)

In this section, we introduce and study a strengthening of property (T), which turns out
to be an obstruction to the AP. Recall the following two norms on L1(G). For f ∈ L1(G),
we set

‖f‖C∗(G) = sup{|〈f, ϕ〉| | ϕ ∈ B(G), ‖ϕ‖B(G) ≤ 1},
‖f‖M0A(G)∗= sup{|〈f, ϕ〉| | ϕ ∈M0A(G), ‖ϕ‖M0A(G) ≤ 1}.

The second norm was already used in Section 2.3.

D 5.1. – Let G be a locally compact group, and let m be the unique left
invariant mean on M0A(G). The group G is said to have property (T∗) if m is a weak∗

continuous functional.

We sometimes write mG instead of m, if we want to emphasize the group G. From the
next lemma, it follows that property (T∗) is indeed a strengthening of property (T). Recall
that B(G) ⊂M0A(G).

L 5.2. – The weak∗ topology onB(G) is stronger than the restriction of the weak∗

topology on M0A(G) to B(G).

Proof. – The identity map L1(G) → L1(G) extends to a contractive linear map
M0A(G)∗ → C∗(G). Its Banach space adjoint is then a weak∗-weak∗ continuous contrac-
tion from B(G) to M0A(G) that is easily seen to be the inclusion map.

P 5.3. – For locally compact groups, property (T∗) implies property (T).

Proof. – This follows from the characterization of property (T) given in Proposition 4.1
together with the previous lemma.

P 5.4. – Compact groups have property (T∗).

Proof. – For a compact groupG, the map ϕ 7→ 〈1, ϕ〉 clearly defines a weak∗ continuous
two-sided invariant mean on M0A(G).

The following result shows that property (T∗) is an obstruction to the AP.
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P 5.5. – Let G be a locally compact group with the AP and property (T∗).
Then G is compact.

Proof. – Suppose that G has the AP and property (T∗). Then there is a net (ϕα) in A(G)

such that ϕα → 1 in the weak* topology on M0A(G). Moreover, since m(1) = 1, we have
limαm(ϕα) = 1. However, we know that A(G) ⊂ C0(G) and m(ψ) = 0 for all ψ ∈ C0(G)

if G is non-compact. This leads to a contradiction. Hence, G has to be compact.

R 5.6. – Property (T∗) is strictly stronger than property (T). Indeed, it is well-
known that the non-compact group Sp(n, 1) has property (T), but since it has the AP
(because it is weakly amenable by [9]), it does not have property (T∗).

The following lemma is a technical result that we use in what follows, the proof of which
is left to the reader.

L 5.7. – LetX and Y be Banach spaces, and let T : Y ∗ → X∗ be a bounded linear
operator between their dual spaces. Suppose there exist a dense subspace X0 ⊂ X and a
linear operator S : X0 → Y such that 〈Sx, y〉 = 〈x, Ty〉 for every x ∈ X0 and y ∈ Y ∗. Then
S is bounded and S∗ = T . In particular, T is weak∗-weak∗ continuous.

Recall that the involution f 7→ f∗ on L1(G) is defined by f∗(x) = ∆(x−1)f(x−1), where
∆ denotes the modular function of G.

L 5.8. – Let π : H → G be a continuous group homomorphism of locally compact
groups. If u ∈ Cc(G) is non-negative with ‖u‖1 = 1 and u = u∗, then the linear map
T : M0A(G)→M0A(H) given by

Tϕ = (u ∗ ϕ) ◦ π

is weak∗-weak∗ continuous.

Proof. – For h ∈ L1(H), the map

F : f 7→
∫
H

(f ◦ π)h dµH , f ∈ C0(G)

is a linear functional on C0(G) of norm at most ‖h‖1. Hence, there exists a unique Radon
measure on G, denoted by hµH , such that the functional F is given by integration with
respect to this measure.

Consider the map S : L1(H)→ L1(G) defined by

S(h) = u ∗ hµH , h ∈ L1(H).

A simple computation shows that for every h ∈ L1(H) and ϕ ∈M0A(G),

〈u ∗ hµH , ϕ〉 = 〈h, (u ∗ ϕ) ◦ π〉.

Here we have used that u = u∗. The map T is clearly a contraction. Hence, it follows from
Lemma 5.7 that S extends to a contraction M0A(H)∗ →M0A(G)∗ with adjoint T .

The following permanence property of property (T∗) plays an important role in the char-
acterization of connected Lie groups with the AP in Section 7.
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P 5.9. – Let G and H be locally compact groups, and let π : H → G be a
continuous group homomorphism with dense image. If H has property (T∗), then G has
property (T∗).

Proof. – Choose g ∈ Cc(G) as in Lemma 5.8, and let T : M0A(G) → M0A(H) be the
weak∗-weak∗ continuous linear map from Lemma 5.8. Consider the functional on M0A(G)

given by m(ϕ) = mH(Tϕ), where mH is the unique left invariant mean on M0A(H). We
claim that m is the unique left invariant mean mG on M0A(G). By the results of Section 3,
it suffices to prove that m is a right invariant mean. It is straightforward to see that m is a
mean. For x ∈ H and ϕ ∈M0A(G), it is easy to verify that

Rx(Tϕ) = T (Rπ(x)ϕ).

Since mH is right invariant, it follows that m is π(H)-right invariant. As m is a mean
on M0A(G), it is continuous with respect to the uniform topology ([30, Proposition 3.2]).
Since any ϕ ∈M0A(G) is uniformly continuous (Corollary 3.4) and π(H) is dense in G, we
conclude that m is G-right invariant, and hence mG = m = mH ◦ T .

IfH has property (T∗), thenmH is weak∗ continuous. Since T is weak∗-weak∗ continuous,
it follows that mG is weak∗ continuous.

C 5.10. – Property (T∗) is inherited by quotients: ifG has property (T∗), then
so does G/N for every closed normal subgroup N of G.

L 5.11. – If G is a locally compact group with property (T∗), then there is a
sequence fn ∈ L1(G) with fn ≥ 0 and ‖fn‖1 = 1 for all n ∈ N such that ‖fn −m‖M0A(G)∗ → 0.
Here, m ∈M0A(G)∗ is the left invariant mean on M0A(G).

Proof. – Recall that L1(G) is the set of normal functionals on L∞(G), and that the
normal states are weak∗ dense in the state space of L∞(G). We may extend the mean m ∈W (G)∗

to a state on L∞(G) and then obtain a net fα ∈ L1(G) such that fα ≥ 0, ‖fα‖1 = 1

and fα → m in the weak∗ topology on L∞(G)∗. In particular, fα → m weakly
inside M0A(G)∗. Passing to convex combinations, we may arrange that fα converges
to m in norm inside M0A(G)∗. Clearly, then also a sequence with the desired properties
exists.

P 5.12. – LetG1 andG2 be two locally compact groups. The direct product
G = G1 ×G2 has property (T∗) if and only if G1 and G2 have property (T∗).

Proof. – Suppose thatG1×G2 has property (T∗). From Corollary 5.10, it follows thatG1

and G2 have property (T∗).
Suppose that G1 and G2 have property (T∗). For i = 1, 2, let mi denote the left invariant

mean on M0A(Gi). By the previous lemma, there exist sequences f (i)
n ∈ L1(Gi)

+ such that∫
f

(i)
n dµGi

= 1 and ‖f (i)
n − mi‖M0A(Gi)∗ → 0 for n → ∞ and i = 1, 2. Since mi is left

invariant on M0A(Gi), it follows that

‖Lgi
f (i)
n − f (i)

n ‖M0A(Gi)∗ → 0 for all gi ∈ Gi.

From [9, Lemma 1.4] we know that whenever fi ∈ L1(Gi), then

‖f1 × f2‖M0A(G1×G2)∗ = ‖f1‖M0A(G1)∗‖f2‖M0A(G2)∗ .(8)
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It follows from this that f (1)
n × f (2)

n is a Cauchy sequence in M0A(G)∗. Let

M = lim
n→∞

f (1)
n × f (2)

n .

Then M is a weak∗ continuous mean on M0A(G). It follows from (8) together with the
triangle inequality that

‖Lg(f (1)
n × f (2)

n )− f (1)
n × f (2)

n ‖M0A(G1×G2)∗ → 0 for all g ∈ G1 ×G2.

Therefore M is left invariant, and hence mG = M is weak∗ continuous.

P 5.13. – Let G be a locally compact group with a compact normal
subgroup K. Then G has property (T∗) if and only if G/K has property (T∗).

Proof. – One direction follows from Corollary 5.10. In the other direction, observe first
that the map T : M0A(G)→M0A(G/K) defined by

(Tϕ)(xK) =

∫
K

ϕ(xk)dk

is well-defined and weak∗-weak∗ continuous. Here dk denotes normalized Haar measure
on K. When x ∈ G and ϕ ∈M0A(G), then one can readily check that

T (Lxϕ) = Lẋ(Tϕ),

where ẋ ∈ G/K is the image of x. So by left invariance of mG/K ,

(mG/K ◦ T )(Lxϕ) = mG/K(Lẋ(Tϕ)) = mG/K(Tϕ).

Hence, mG/K ◦ T defines a left invariant mean on M0A(G) so that mG/K ◦ T = mG. It is
now clear that if G/K has property (T∗), then so does G.

The following lemma will be relevant in the next section, where we establish property (T∗)
for some specific groups. For a locally compact group G with a compact subgroup K we
define, for ϕ ∈ C(G) or ϕ ∈ L1(G),

(9) ϕK(g) =

∫
K

∫
K

ϕ(k1gk2)dk1dk2, g ∈ G,

where dk1 and dk2 are normalized Haar measures on K.

L 5.14. – Let G be a locally compact group with a compact subgroup K. For any
ϕ ∈W (G), we have m(ϕ) = m(ϕK).

Proof. – Sinceϕ is left and right uniformly continuous, the functionϕK is a Banach space
integral in W (G) with the uniform norm (see [32, Theorem 3.27]):

ϕK =

∫
K

∫
K

Lk−1
1
Rk2ϕdk1dk2.

As m ∈W (G)∗ and m is two-sided invariant, we have

m(ϕK) =

∫
K×K

m(Lk−1
1
Rk2ϕ)dk1dk2 =

∫
K×K

m(ϕ)dk1dk2 = m(ϕ).
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6. Three groups with property (T∗)

In this section, we prove Theorem B. Hereto, we study the groups SL(3,R), Sp(2,R) and
S̃p(2,R) separately. The first two groups are easier to handle, because they have finite center,
so that we can use the following powerful result of Veech [36, Theorem 1.4].

T 6.1 (Veech). – LetG be a non-compact connected simple Lie group with finite
center. Then W (G) = C0(G)⊕ C1 and

m(ϕ) = lim
g→∞

ϕ(g)

for every ϕ ∈W (G).

Let G be a locally compact group with a subgroup H. A function ϕ : G → C is said to
be H-bi-invariant if ϕ(h1gh2) = ϕ(g) for all g ∈ G and h1, h2 ∈ H, and it is said to be
Int(H)-invariant if ϕ(hgh−1) = ϕ(g) for all g ∈ G and h ∈ H.

T 6.2. – The group SL(3,R) has property (T∗).

Proof. – Let G = SL(3,R), and let K = SO(3) be its maximal compact subgroup.
By (the proof of) [20, Lemma 2.5], the averaging map ϕ 7→ ϕK (see (9)) on M0A(G) is
weak∗-weak∗ continuous. By Lemma 5.14, m(ϕ) = m(ϕK), and hence it suffices to prove
that the restriction m′ of m to the K-bi-invariant completely bounded Fourier multipliers
M0A(K\G/K) is weak∗ continuous.

Let ϕ ∈ M0A(G). By the aforementioned result of Veech (Theorem 6.1), the limit
limg→∞ ϕ(g) exists and agrees with the meanm(ϕ) of ϕ. Hence, the kernel ofm′ is precisely
the subspace M0A(K\G/K)∩C0(G). It is proved in [20, p. 957] that this subspace is weak∗

closed, and hence m′ is weak∗ continuous.

R 6.3. – It is, in fact, not necessary to use Veech’s result. The necessary conse-
quence of this theorem is that the elements of M0(K\G/K) converge if we take the limit
in G to infinity. This fact follows from [20, p. 957], which in particular establishes the value
of the mean at elements of M0A(K\G/K). In Theorem 6.8, we will establish property (T∗)
for S̃p(2,R), in which case we cannot use Veech’s result (because S̃p(2,R) has infinite center),
so in that case we will provide the argument just mentioned.

C 6.4. – For G = SL(3,R), the subspace M0A(G) ∩ C0(G) is weak∗ closed
in M0A(G).

Proof. – By Theorem 6.1, we have that M0A(G) ∩ C0(G) is precisely the kernel
of m ∈M0A(G)∗.

R 6.5. – The universal covering group S̃L(3,R) of SL(3,R) has finite center. It
follows from Theorem 6.2 and Proposition 5.13 that S̃L(3,R) has property (T∗).
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Let I2 denote the 2× 2 identity matrix, and let J be the matrix defined by

J =

(
0 I2

−I2 0

)
.

Recall that the symplectic group Sp(2,R) is defined by

Sp(2,R) = {g ∈ GL(4,R) | gTJg = J}.

Here, gT denotes the transpose of g. Let K be the maximal compact subgroup of Sp(2,R)

given by

K =

{(
A −B
B A

)
∈ M4(R)

∣∣∣∣ A+ iB ∈ U(2)

}
.

This group is isomorphic to U(2). A polar decomposition of Sp(2,R) is given by Sp(2,R) = KAK,
where

A =

D(β, γ) =


eβ 0 0 0

0 eγ 0 0

0 0 e−β 0

0 0 0 e−γ


∣∣∣∣∣ β, γ ∈ R

 .

By restricting to the positive Weyl chamber (see Section 2.5), we obtain the decomposition
G = KA+K, where

A+ = {D(β, γ) ∈ A | β ≥ γ ≥ 0}.

T 6.6. – The group Sp(2,R) has property (T∗).

The proof of this theorem is exactly the same as the proof of Theorem 6.2. The essential
part, that the subspace M0A(K\G/K) ∩ C0(G) is weak∗ closed, was shown in [20, p. 937].
Alternatively, Theorem 6.6 follows from Theorem 6.8 and Corollary 5.10.

C 6.7. – For G = Sp(2,R), the subspace M0A(G) ∩ C0(G) is weak∗ closed
in M0A(G).

T 6.8. – The universal covering group S̃p(2,R) of Sp(2,R) has property (T∗).

Before we prove this theorem, we first describe the structure of S̃p(2,R). For more details
on this, we refer to [21, Section 3].

Let G = Sp(2,R), and let G̃ = S̃p(2,R) be its universal covering group. Let K and
A be as above, so that we have G = KAK. The image of the Lie algebra of K under the
exponential map to G̃ yields a non-compact subgroup K̃ of G̃. Similarly, the image of the
Lie algebra of A under the exponential map to G̃ yields a subgroup Ã. We have Ã ∼= A, and
G̃ has polar decomposition G̃ = K̃ÃK̃ (see [21, Section 3] for details). The group SU(2) is
a natural subgroup of U(2). Let H be the image of SU(2) under this isomorphism, i.e., H is
a Lie subgroup of G isomorphic to SU(2). Similarly, we obtain a subgroup H̃ of G̃, which is
actually isomorphic to SU(2) (and hence compact), since SU(2) is simply connected.

Let C be the following class of functions:

C = {ϕ ∈ C(G̃) | ϕ is H̃-bi-invariant and Int(K̃)-invariant}.
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Consider the generator ( i 0
0 i ) of the Lie algebra of the center of U(2), and let Z denote the

corresponding element of the Lie algebra of K̃. The elements ṽt = ẽxp(tZ) for t ∈ R
are elements of the center of K̃. Here ẽxp denotes the exponential map associated with G̃.
Moreover, the map t 7→ Adṽt

is periodic.
For β ≥ γ ≥ 0, consider the element D(β, γ) = diag(eβ , eγ , e−β , e−γ) ∈ A, and

let D̃(β, γ) be its (unique) associated element in Ã. For ϕ ∈ M0A(G̃), we put ϕ̇(β, γ, t) =

ϕ(ṽ t
2
D̃(β, γ)).

We can now prove the theorem.

Proof of Theorem 6.8. – In [21, Proposition 3.11], it was proved that for all functions ϕ
in M0A(G̃) ∩ C and t ∈ R, the limit

cϕ(t) = lim
s→∞

ϕ̇(2s, s, t)

exists. Moreover, there exist constants C1, C2 > 0 such that for all β ≥ γ ≥ 0, we have

|ϕ̇(β, γ, t)− cϕ(t)| ≤ C1e
−C2

√
β2+γ2‖ϕ‖M0A(G̃).

It was also proved, in [21, Proposition 3.33], that cϕ is a constant function.

Now, letϕ ∈M0A(G̃)∩ C , and suppose that cϕ = 0. We prove thatm(ϕ) = 0. Let ε > 0 be
given. Since ϕ is weakly almost periodic, there exist g1, . . . , gn ∈ G̃ and c1, . . . , cn ≥ 0 with∑n
i=1 ci = 1 such that ‖

∑n
i=1 ciLgi

ϕ −m(ϕ)‖∞ < ε. Since cϕ = 0, there exists an R > 0

such that for all β ≥ γ ≥ 0 with β2 + γ2 ≥ R and all t ∈ R, we have |ϕ(ṽtD̃(β, γ))| < ε. Put

V = {h̃1ṽtD̃(β, γ)h̃2 | t ∈ R, h̃1, h̃2 ∈ H̃, β ≥ γ ≥ 0, β2 + γ2 < R}.

The set V is H̃-bi-invariant. By [21, Lemma 3.7], it follows that |ϕ(g)| < ε for g ∈ G̃ \ V .
Consider the quotient map σ : G̃→ G. Then

σ(V ) ⊂ {k1D(β, γ)k2 | β ≥ γ ≥ 0, β2 + γ2 ≤ R, k1, k2 ∈ K},

which is compact. Hence, finitely many translates of σ(V ) cannot cover G, so finitely
many translates of V cannot cover G̃. Now, let g1, . . . , gn ∈ G̃ be as above, and choose
g ∈ G̃ \ (

⋃n
i=1 giV ). Then |ϕ(g−1

i g)| < ε for i = 1, . . . , n. It follows that |
∑n
i=1 ciϕ(g−1

i g)| < ε,
where c1, . . . , cn ≥ 0 are as above. Hence, we conclude that |m(ϕ)| < 2ε.

We have now shown that, when restricted to M0A(G̃) ∩ C , the kernel of m consists
precisely of those ϕ ∈M0A(G̃)∩ C for which cϕ = 0. By [21, Lemma 3.12], this set is weak∗

closed, and hence the restriction of m to M0A(G̃) ∩ C is weak∗ continuous.
It still remains to prove that m : M0A(G̃) → C is weak∗ continuous. As in [21,

Lemma 3.10], for ϕ ∈M0A(G̃), we define

ϕ C (g) =
1

π

∫ π

0

∫
H̃

∫
H̃

ϕ(h̃1ṽtgṽ
−1
t h̃2) dh̃1dh̃2dt, g ∈ G̃,

where dh̃1 and dh̃2 both denote the normalized Haar measure on the compact group H̃.
Then ϕ C ∈ M0A(G̃) ∩ C and ϕ 7→ ϕ C is weak∗-weak∗ continuous. It is not difficult to see
that m(ϕ) = m(ϕ C ) by adapting the proof of Lemma 5.14. It now follows that m is weak∗

continuous. Hence, G̃ has property (T∗).

The above three theorems imply Theorem B.
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7. The Approximation Property for connected Lie groups

In this section, we prove Theorem C, which provides the complete characterization of
connected Lie groups with the AP. For details about the Levi decomposition, we refer to
Section 2.6.

T C. – Let G be a connected Lie group, let G = RS denote its Levi decompo-
sition, and suppose that S is locally isomorphic to the product S1 × · · · × Sn of connected
simple factors. Then the following are equivalent:

(i) the group G has the AP,
(ii) the group S has the AP,

(iii) the groups Si, with i = 1, . . . , n, have the AP,
(iv) the real rank of the groups Si, with i = 1, . . . , n, is at most 1.

Proof. – The equivalence of (iii) and (iv) is [21, Theorem 5.1].

Suppose (iv) holds. We show that (i) and (ii) hold. Recall that the AP is preserved
under group extensions [19, Theorem 1.15]. Since the group R is solvable, it has the AP.
Thus, to prove (i), it is enough to prove that G/R has the AP. The Lie algebra of G/R is
the Lie algebra of S, so to prove (i) and (ii), it is sufficient to prove that any connected
Lie group S′ locally isomorphic to S1 × · · · × Sn has the AP. Again because of [19,
Theorem 1.15], we may assume that the center of S′ is trivial. If Zi denotes the center of Si,
then S′ ∼= (S1/Z1)× · · · × (Sn/Zn). Each group Si/Zi has real rank at most 1 and hence
has the AP [21, Theorem 5.1]. Hence S′ has the AP.

Suppose (iv) does not hold. We show that (i) and (ii) do not hold. For i = 1, . . . , n, let S̃i
denote the universal covering group of Si and put S̃ = S̃1×· · ·× S̃n. Then S̃ is the universal
covering group of S. Let π : S̃ → S denote the covering homomorphism.

Since the real rank of some S̃i is at least 2, there is a closed subgroup H̃ ⊂ S̃i that
is locally isomorphic to SL(3,R) or Sp(2,R) (see e.g., [3] or [11]). Since H̃ is a quotient
of either S̃L(3,R) or S̃p(2,R) (the universal covering groups of SL(3,R) and Sp(2,R),
respectively), it follows from Corollary 5.10, Remark 6.5, and Theorem 6.8 that H̃ has
property (T∗). If we let H = π(H̃), then H is a Lie subgroup of S locally isomorphic
to H̃. Such a subgroup of S must be closed [11, Corollary 1]. By Corollary 5.10, H has
property (T∗). Since the group H is locally isomorphic to H̃, it is not compact. It follows
from Proposition 5.5 that H and hence S does not have the AP.

If H denotes the closure of H in G, then H has property (T∗) by Proposition 5.9. Also,
H is not compact, since this would imply that H was closed in H (see [29, p. 615]) and hence
compact. It follows from Proposition 5.5 that H and hence G does not have the AP.

The proof is now complete.

We remark that the proof of Theorem C shows moreover that a connected Lie group
without the AP contains a non-compact closed subgroup with property (T∗).
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8. Property (T∗) for connected simple higher rank Lie groups

Using the result of Veech (see Theorem 6.1) that was used in Section 6, we are able to
establish Property (T∗) for connected simple Lie groups with real rank at least 2 and finite
center.

T D. – LetG be a connected simple Lie group with real rank at least 2 and finite
center. Then G has property (T∗).

Proof. – We use again that G contains a closed subgroup H that is locally isomorphic
to SL(3,R) or Sp(2,R). Then H has property (T∗). Let mH denote the unique left invariant
mean on W (H), which is weak∗ continuous on M0A(H).

Fix a function g ∈ Cc(G)+ such that
∫
G
g(x)dx = 1 and g∗ = g. Define T : W (G) →

W (H) by
Tϕ = (g ∗ ϕ)|H , ϕ ∈W (G).

It is clear that T (C0(G)) ⊂ C0(H), and hence (mH ◦ T )(C0(G)) = 0. It now follows from
Veech’s result that mG = mH ◦ T . To finish the proof, we argue that the restriction of T
toM0A(G) is a weak∗-weak∗ continuous map toM0A(H). But this is Lemma 5.8 (take π to
be the inclusion map).

We expect that the above theorem holds without the finite center condition.
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