Separable extensions in tensor-triangular geometry and generalized Quillen stratification
[Extensions séparables en géométrie triangulaire tensorielle et stratification de Quillen généralisée]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 907-925.

Nous montrons un lien entre le théorème du going-up en algèbre commutative et le théorème de stratification de Quillen en théorie des représentations modulaires. Dans ce but, nous étudions l'application continue induite sur les spectres par une extension séparable de catégories triangulées tensorielles. Nous en déterminons l'image et bornons le cardinal de ses fibres par le degré de l'extension. Nous prouvons alors une forme faible de descente, « à nilpotence près », qui nous permet de généraliser la stratification de Quillen à d'autres catégories dérivées équivariantes.

We exhibit a link between the Going-Up Theorem in commutative algebra and Quillen Stratification in modular representation theory. To this effect, we study the continuous map induced on spectra by a separable extension of tensor-triangulated categories. We determine the image of this map and bound the cardinality of its fibers by the degree of the extension. We then prove a weak form of descent, “up-to-nilpotence,” which allows us to generalize Quillen Stratification to equivariant derived categories.

DOI : 10.24033/asens.2298
Classification : 18E30, 20J05, 13B24, 55U35.
Keywords: Separable, tt-category, descent, nilpotence, Quillen stratification.
Mot clés : Séparable, tt-catégorie, descente, nilpotence, stratification de Quillen.
@article{ASENS_2016__49_4_907_0,
     author = {Balmer, Paul},
     title = {Separable extensions  in tensor-triangular geometry  and generalized {Quillen} stratification},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {907--925},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {4},
     year = {2016},
     doi = {10.24033/asens.2298},
     mrnumber = {3552016},
     zbl = {1376.18004},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2298/}
}
TY  - JOUR
AU  - Balmer, Paul
TI  - Separable extensions  in tensor-triangular geometry  and generalized Quillen stratification
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 907
EP  - 925
VL  - 49
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2298/
DO  - 10.24033/asens.2298
LA  - en
ID  - ASENS_2016__49_4_907_0
ER  - 
%0 Journal Article
%A Balmer, Paul
%T Separable extensions  in tensor-triangular geometry  and generalized Quillen stratification
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 907-925
%V 49
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2298/
%R 10.24033/asens.2298
%G en
%F ASENS_2016__49_4_907_0
Balmer, Paul. Separable extensions  in tensor-triangular geometry  and generalized Quillen stratification. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 907-925. doi : 10.24033/asens.2298. http://www.numdam.org/articles/10.24033/asens.2298/

Balmer, P. The spectrum of prime ideals in tensor triangulated categories, J. reine angew. Math., Volume 588 (2005), pp. 149-168 (ISSN: 0075-4102) | DOI | MR | Zbl

Balmer, P. Tensor triangular geometry, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 85-112 | MR | Zbl

Balmer, P. Separability and triangulated categories, Adv. Math., Volume 226 (2011), pp. 4352-4372 (ISSN: 0001-8708) | DOI | MR | Zbl

Balmer, P. Descent in triangulated categories, Math. Ann., Volume 353 (2012), pp. 109-125 (ISSN: 0025-5831) | DOI | MR | Zbl

Balmer, P. Splitting tower and degree of tt-rings, Algebra Number Theory, Volume 8 (2014), pp. 767-779 (ISSN: 1937-0652) | DOI | MR | Zbl

Balmer, P. Stacks of group representations, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 189-228 (ISSN: 1435-9855) | DOI | MR | Zbl

Benson, D. J.; Carlson, J. F.; Rickard, J. Thick subcategories of the stable module category, Fund. Math., Volume 153 (1997), pp. 59-80 (ISSN: 0016-2736) | DOI | MR | Zbl

Balmer, P.; Dell'Ambrogio, I.; Sanders, B. Restriction to finite-index subgroups as étale extensions in topology, KK–theory and geometry, Algebr. Geom. Topol., Volume 15 (2015), pp. 3025-3047 (ISSN: 1472-2747) | DOI | MR | Zbl

Benson, D. J., Cambridge Studies in Advanced Math., 30, Cambridge Univ. Press, Cambridge, 1998, 246 pages (ISBN: 0-521-63653-1) | MR | Zbl

(Berthelot, P.; Grothendieck, A.; Illusie, L., eds.), Sém. de Géométrie Algébrique du Bois-Marie, 1966–1967 (SGA6), Springer Lecture Notes, 225, 1971 | Zbl

Boe, B.; Kujawa, J.; Nakano, D. Tensor triangular geometry for classical Lie superalgebras (preprint arXiv:1402.3732 ) | MR

Carlson, J. F. Cohomology and induction from elementary abelian subgroups, Q. J. Math., Volume 51 (2000), pp. 169-181 (ISSN: 0033-5606) | DOI | MR | Zbl

Dell'Ambrogio, I. Tensor triangular geometry and KK-theory, J. Homotopy Relat. Struct., Volume 5 (2010), pp. 319-358 | MR | Zbl

Dell'Ambrogio, I.; Tabuada, G. Tensor triangular geometry of non-commutative motives, Adv. Math., Volume 229 (2012), pp. 1329-1357 (ISSN: 0001-8708) | DOI | MR | Zbl

Eilenberg, S.; Moore, J. C. Adjoint functors and triples, Illinois J. Math., Volume 9 (1965), pp. 381-398 (ISSN: 0019-2082) | DOI | MR | Zbl

Friedlander, E. M.; Pevtsova, J. Π-supports for modules for finite group schemes, Duke Math. J., Volume 139 (2007), pp. 317-368 (ISSN: 0012-7094) | DOI | MR | Zbl

Greenlees, J. P. C.; May, J. P., Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 277-323 | DOI | MR | Zbl

Hopkins, M. J., Homotopy theory (Durham, 1985) (London Math. Soc. Lecture Note Ser.), Volume 117, Cambridge Univ. Press, Cambridge, 1987, pp. 73-96 | MR | Zbl

Hopkins, M. J.; Smith, J. H. Nilpotence and stable homotopy theory. II, Ann. of Math., Volume 148 (1998), pp. 1-49 (ISSN: 0003-486X) | DOI | MR | Zbl

Künzer, M. Heller triangulated categories, Homology, Homotopy Appl., Volume 9 (2007), pp. 233-320 http://projecteuclid.org/euclid.hha/1201127339 (ISSN: 1532-0073) | DOI | MR | Zbl

Maltsiniotis, G. Catégories triangulées supérieures (2005) (preprint http://people.math.jussieu.fr/~maltsin/ps/triansup.ps )

Neeman, A. The chromatic tower for D(R) , Topology, Volume 31 (1992), pp. 519-532 (ISSN: 0040-9383) | DOI | MR | Zbl

Peter, T. J. Prime ideals of mixed Artin-Tate motives, J. K-Theory, Volume 11 (2013), pp. 331-349 (ISSN: 1865-2433) | DOI | MR | Zbl

Quillen, D. The spectrum of an equivariant cohomology ring. I, II, Ann. of Math., Volume 94 (1971) (ISSN: 0003-486X) | MR | Zbl

Rickard, J. Derived categories and stable equivalence, J. Pure Appl. Algebra, Volume 61 (1989), pp. 303-317 (ISSN: 0022-4049) | DOI | MR | Zbl

Serre, J.-P. Sur la dimension cohomologique des groupes profinis, Topology, Volume 3 (1965), pp. 413-420 (ISSN: 0040-9383) | DOI | MR | Zbl

Stevenson, G. Disconnecting spectra via localization sequences, J. K-Theory, Volume 11 (2013), pp. 324-329 (Appendix to D. Benson, S. Iyengar, H. Krause, Module categories for group algebras over commutative rings) (ISSN: 1865-2433) | DOI | MR

Thomason, R. W. The classification of triangulated subcategories, Compositio Math., Volume 105 (1997), pp. 1-27 (ISSN: 0010-437X) | DOI | MR | Zbl

Xu, F. Spectra of tensor triangulated categories over category algebras, Arch. Math. (Basel), Volume 103 (2014), pp. 235-253 (ISSN: 0003-889X) | DOI | MR | Zbl

Cité par Sources :