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SEPARABLE EXTENSIONS
IN TENSOR-TRIANGULAR GEOMETRY

AND GENERALIZED QUILLEN STRATIFICATION

 P BALMER

A. – We exhibit a link between the Going-Up Theorem in commutative algebra and
Quillen Stratification in modular representation theory. To this effect, we study the continuous map
induced on spectra by a separable extension of tensor-triangulated categories. We determine the image
of this map and bound the cardinality of its fibers by the degree of the extension. We then prove a weak
form of descent, “up-to-nilpotence,” which allows us to generalize Quillen Stratification to equivariant
derived categories.

R. – Nous montrons un lien entre le théorème du going-up en algèbre commutative et le
théorème de stratification de Quillen en théorie des représentations modulaires. Dans ce but, nous
étudions l’application continue induite sur les spectres par une extension séparable de catégories
triangulées tensorielles. Nous en déterminons l’image et bornons le cardinal de ses fibres par le degré
de l’extension. Nous prouvons alors une forme faible de descente, « à nilpotence près », qui nous
permet de généraliser la stratification de Quillen à d’autres catégories dérivées équivariantes.

Introduction

There are rich and growing connections between commutative algebra and modular repre-
sentation theory, notably via homological methods. Some of these connections can be built
using tensor-triangulated categories. Recall that tensor-triangulated categories also appear in
several other settings, like motivic theory, equivariant stable homotopy theory, or Kasparov’s
KK-theory of C*-algebras, for instance. This framework is the backdrop of tensor-triangular
geometry, or tt-geometry for short, see [2].

In the present work, we use tt-geometry to connect two classical and well-known results,
namely the Going-Up Theorem in commutative algebra and Quillen’s Stratification Theorem
in modular representation theory. Let us first remind the reader:

Research supported by NSF grant DMS-1303073.
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908 P. BALMER

T (Going-Up). – LetR ⊂ A be an integral extension of commutative rings, let q be
a prime inA and p′ a prime inR containing q∩R; then there exists a prime q′ inA containing q
such that q′ ∩R = p′. Further, Spec(A)→ Spec(R) is surjective and a weak form of injectivity
holds, known as “Incomparability”: if q ⊆ q′ are two primes inA such that q∩R = q′∩R then
q = q′.

T (Quillen Stratification [24]). – LetG be a finite group and k be a field of positive
characteristic p dividing the order of G. Let VG := Proj(H•(G,k)) be the projective support
variety of G. Then there is a canonical homeomorphism

(0.1) colim
H∈Or(G,Abelem)

VH
∼−→ VG

where Or(G,Abelem) is the full subcategory of the orbit category ofG on the elementary abelian
p-subgroups of G (see Definition 4.6 if necessary).

It is not obvious to the naked eye why the above two results should be related. Let us
observe the tip of the iceberg: The Going-Up Theorem forces the rings A and R to have the
same Krull dimension; similarly Quillen Stratification forces the Krull dimension of VG to
be the maximum of the dimensions of the VH , i.e., the p-rank ofGminus one – an important
application of [24].

Here, we prove an analogue of Going-Up in tt-geometry and show that it specializes to
Quillen Stratification when applied to modular representation theory. This result illustrates
the connections between the two subjects and the depth of tt-geometry. To go beyond unifica-
tion and connection, we also prove some new results, namely we extend Quillen Stratification
to any tensor-triangulated category receiving the derived category of G.

1. Statement of results

To do tt-geometry, one needs a tt-category K . (Here, “tt” is short for “tensor-triangular”
or “tensor-triangulated,” as appropriate.) In commutative algebra, we use K = Dperf(R),
the homotopy category of bounded complexes of finitely generated projective R-modules.
In modular representation theory, we use K = stab(kG), the stable category of finitely
generated kG-modules modulo the projective ones.

To recover spaces like the affine scheme Spec(R) in the first example and the support
variety VG in the second, we use the spectrum Spc(K ) of a tt-category K . This funda-
mental tool of tt-geometry was introduced in [1] as the universal topological space in which
objects x of K admit reasonable supports supp(x) ⊆ Spc(K ); see Rem. 2.6. The spectrum
can also be constructed by means of prime ideals P in K . By [1], it recovers the Zariski
spectrum Spc(Dperf(R)) ∼= Spec(R) and the support variety Spc(stab(kG)) ∼= VG. This
unification is the key to relate affine schemes and support varieties via tt-geometry. See more
in Remark 2.7.

To exhibit a first analogy between Going-Up and Quillen Stratification, let us observe that
both situations involve not only one tt-category but actually two (or more). In commutative
algebra, it is rather obvious: We have the ring homomorphism R → A, hence an extension-
of-scalars Dperf(R)→ Dperf(A) which is a tt-functor. In modular representation theory, we
also have tt-functors ResGH : stab(kG) → stab(kH) given by restriction from the group G
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SEPARABLE EXTENSIONS IN TT-GEOMETRY 909

to its subgroups H ≤ G, for instance the elementary abelian ones. Another key step in our
discussion is to understand those restriction functors stab(kG) → stab(kH) as a form of
“extension-of-scalars,” similar to the extension-of-scalars of commutative algebra.

This is made possible thanks to a good notion of “ring” in a general tt-category K ,
inspired by commutative algebra but flexible enough to be useful in representation theory
as well. These good rings are the “tt-rings” of [5]: An associative and unital ring object
A ⊗ A

µ−→A in K is called a tt-ring if it is commutative and separable, in the classical
sense (i.e., the multiplication µ has a section σ : A → A ⊗ A which is A-linear on both
sides). Separability of A guarantees that the category A-ModK of good-old A-modules
in K remains triangulated, by [3] (see Remark 2.14). Commutativity ofA allows us to equip
A-ModK with a tensor ⊗A. In short, if A is a tt-ring in a tt-category K , then A-ModK is
again a tt-category and extension-of-scalars FA : K −→A-ModK is a tt-functor.

By [6] the restriction functor ResGH : stab(kG) → stab(kH) is actually such an
extension-of-scalars with respect to the particular tt-ring AGH := k(G/H), with multi-
plication extending k-linearly the rule γ · γ = γ and γ · γ′ = 0 for all γ 6= γ′ in G/H (see
Constr. 4.1). More precisely, there is an equivalence

(1.1) AGH -ModK (G)
∼= K (H)

for K (G) = stab(kG) and of course K (H) = stab(kH); under this equivalence, extension-
of-scalars FAG

H
becomes isomorphic to restriction ResGH . In particular, the induced map on

spectra recovers the usual map on support varieties VH → VG. This recasting of restriction
as an extension-of-scalars is already true for derived categories, i.e., the above (1.1) holds if
K (G) means Db(kG), etc. See details in [6, Part I]. Furthermore we show in [7] that such
results hold quite generally for equivariant tt-categories, way beyond representation theory.

In general, for any tt-category K and any tt-ring A in K , the tt-functor FA : K → A-ModK

induces a continuous map on spectra

(1.2) ϕA := Spc(FA) : Spc(A-ModK )−→ Spc(K ) .

It is clearly important to study this mapϕA in general, independently of Going-Up or Quillen
Stratification. Here is our main tt-geometric result (see details below):

1.3. T (Descent-up-to-nilpotence, see Thm. 3.19). – Let K be a tt-category and
let A be a tt-ring in K . Suppose that A has finite degree and that A detects ⊗-nilpotence of
morphisms. Then we have a coequalizer of topological spaces

(1.4) Spc(A⊗2-ModK )
ϕ1 //
ϕ2

// Spc(A-ModK )
ϕA // Spc(K )

where ϕ1 and ϕ2 are induced by the two obvious homomorphisms A //// A⊗A.

The degree of a tt-ring A has also been introduced in [5] but can easily be considered as
a black-box here. It is the natural measure of the “size” of the tt-ring A. It will allow us to
prove some results by induction on the degree, via Theorem 2.19. Having finite degree is a
mild hypothesis which holds for all tt-rings in all standard tt-categories of compact objects in
algebraic geometry, homotopy theory or modular representation theory, by [5, § 4]. See more
in Section 2.
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910 P. BALMER

The assumption that A detects ⊗-nilpotence is the important condition of the theorem.
It means that if a morphism f in K satisfies A ⊗ f = 0 then f⊗n = 0 for some n ≥ 1. This
property of the tt-ringAwill be called nil-faithfulness. Faithfulness (A⊗f = 0 ⇒ f = 0) is a
special case of interest, as we shall discuss below. Proposition 3.15 provides further equivalent
characterizations of nil-faithfulness, like for instance that A generates K as a thick⊗-ideal,
i.e., supp(A) = Spc(K ).

The strength of (1.4) will be discussed below, when we return to examples. For the
moment, simply note that it tells us that ϕA is onto and that two points of Spc(A-ModK )

have the same image only if they are the image of the same point under ϕ1 and ϕ2. This
result is as good as it gets in full tt-generality. In fact, Theorem 1.3 is the culmination of a
series of results of independent interest, proved in Section 3 and summarized in Theorem 1.5
below. They illustrate how our study of ϕA in tt-geometry mirrors integral extensions in
commutative algebra.

1.5. T. – Let A be a tt-ring in a tt-category K and consider ϕA as in (1.2).

(a) The image of ϕA equals the support of A, that is, Im(ϕA) = supp(A) in Spc(K ). It
will follow that ϕA is onto if and only if A is nil-faithful.

Suppose furthermore that A has finite degree d.

(b) Going-Up: For every Q ∈ Spc(A-ModK ) and every P ′ ∈ {ϕA(Q)} there exists
Q′ ∈ {Q} such that ϕA(Q′) = P ′.

(c) Incomparability: If Q′ ∈ {Q} in Spc(A-ModK ) are such that ϕA(Q) = ϕA(Q′) then
Q = Q′.

(d) The fibers of ϕA are finite and discrete, with at most d points.

The result implies that Spc(A-ModK ) and supp(A) have the same Krull dimension. If A is
nil-faithful then Spc(A-ModK ) and Spc(K ) have the same Krull dimension.

As we shall see, the proofs of these results are quite different from their commutative
algebra counterparts. The main obstacle to the tt-generalization of classical techniques is the
absence of a tt-quotient, i.e., the tt-equivalent of the ring R/I for an ideal I ⊂ R. (Verdier
quotients K /J lead to open subschemes, not to closed ones.) In particular, there is no
“residue field” in general tt-geometry, at least for the moment, and this makes the description
of the fibers of ϕA particularly difficult.

To conclude our discussion, we still want to explain why Theorem 1.3 is called “descent-
up-to-nilpotence” and understand nil-faithfulness in examples.

Conceptually, the category A-ModK should be approached as a simplification of the
original category K . In some sense, it represents a “finite étale extension of K ”. This idea
goes hand-in-hand with Grothendieck’s theory of descent, i.e., the problem of reconstructing
the original category K fromA-ModK and data overA⊗2 andA⊗3. By [4], ifAwas not just
nil-faithful but really faithful (A⊗f=0 ⇒ f=0) thenAwould satisfy descent in K , which
roughly says that

K // A-ModK
// // A⊗2-ModK

is an “equalizer of categories” (plus cocycle conditions over A⊗3). In that case, it is easier to
prove, and even easier to believe, that the contravariant Spc(−) turns the latter “equalizer”
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into the coequalizer of spaces (1.4). The remarkable fact about Theorem 1.3 is that (1.4) is a
coequalizer even whenA is not faithful but only nil-faithful, despite failure of descent in this
situation! This explains the idea of “descent-up-to-nilpotence”.

To fully appreciate the difference between faithful and nil-faithful, i.e., between descent
and descent-up-to-nilpotence, we turn to our example of modular representation theory,
where we will also better understand the coequalizer (1.4).

Let us test the distinction between faithful and nil-faithful on the tt-rings AGH = k(G/H)

that we discussed above, see (1.1). We assume for simplicity that G is a p-group, where
p = char(k) > 0. Then consider in K = stab(kG), the tt-ring

A := k(G/H1)× · · · × k(G/Hn) for subgroups H1, . . . ,Hn ≤ G .

This A is faithful only if one of the Hi equals G, which is sadly restrictive since A-ModK

contains a copy of K in that case. On the other hand, this same A is nil-faithful much more
often, most famously if H1, . . . ,Hn are the elementary abelian p-subgroups of G. In fact,
nil-faithfulness of this particular tt-ring A is Serre’s old theorem on the vanishing of the
Bocksteins [26]; see Thm. 4.3. In other words, descent happens only in the trivial case where
K is a summand of A-ModK but descent-up-to-nilpotence happens much more often. In
fact, in that case, our descent-up-to-nilpotence Theorem 1.3 recovers Quillen Stratification.

Although our goal is not to give a new proof of Quillen’s result, we hope that recovering
such a major result as an example could help the reader grasp the power of Theorem 1.3. To
provide new applications, we extend Quillen Stratification to every tt-category receiving the
derived category. This is Theorem 4.10 below:

1.6. T. – Let p be a prime and G a finite group with p dividing |G|. Let K (G)

be a tt-category which admits a tt-functor Φ : Db(FpG)−→K (G), where Fp is the finite
field with p elements. For every subgroup H ≤ G, consider the tt-ring AH = Φ(Fp(G/H)),
image in K (G) of the complex Fp(G/H) ∈ Db(FpG) concentrated in degree zero. Define
K (H) = AH -ModK (G) the corresponding category of modules. Then the tt-functors
FAH

: K (G)−→K (H) induce a homeomorphism

(1.7) colim
H∈Or(G,Abelem)

Spc(K (H))
∼−→ Spc(K (G)) .

The reason for the notation K (H) is that, in most examples, the category K (G) is
defined for all finite groups G together with an equivalence AH -ModK (G)

∼= K (H), as
in (1.1). As we show in [7], such “monadicity” results happen in most equivariant settings,
way beyond representation theory. They give (1.7) its full flavor since in that case the left-
hand category K (H) is not merely a category of modules in K (G) but the true object of
study over the subgroup H. To give an example for which Spc(K (G)) is not known, one
could take K (G) to be the bounded derived category of equivariant vector bundles over a
variety with G-action. In that case, Quillen Stratification is new. See Example (4.14).

The organization of the paper should now be clear from the table of content.
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912 P. BALMER

2. Recalling tt-rings and their degree

2.1. C. – We use the word triangulated in the sense of [3, § 5], or Künzer [20]
and Maltsiniotis [21]. This is a mild strengthening of Verdier’s traditional definition in which
we require octahedra to satisfy the analogue of the morphism axiom. One can also require
higher triangles but we do not need them here. All examples (stable homotopy categories)
are triangulated in that sense.

2.2. D. – A tt-category K is an essentially small, idempotent-complete
tensor-triangulated category. Hence K is triangulated, all idempotent endomorphisms
in K split, and K is equipped with a symmetric monoidal structure ⊗ : K ×K −→K

such that x⊗− : K → K is exact for all objects x ∈ K . We denote by 1 ∈ K its ⊗-unit.
Throughout this paper, K , L , . . . denote tt-categories. A tt-functor F : K → L is a
functor which is both exact and monoidal, in such a way that the two natural isomorphisms
from F (x⊗Σy) to ΣF (x⊗ y) agree (using in different order the compatibility of F with ⊗,
of F with Σ, and of ⊗ with Σ) and similarly on the left.

2.3. E. – Let X be a quasi-compact and quasi-separated scheme (e. g. a noethe-
rian scheme or an affine scheme) then the derived category K = Dperf(X) of perfect
complexes [10] is a tt-category. For X = Spec(R), this is the tt-category Dperf(R) of the
introduction.

2.4. E. – Let G be a finite group and k a field of positive characteristic p

dividing |G|. Then the derived category Db(kG) := Db(kG – mod) and the stable category
stab(kG) of finitely generated kG-modules are tt-categories and the well-known (Buchweitz-
Rickard) quotient Db(kG)� stab(kG) is a tt-functor. See [25].

2.5. N. – We write x ≤ y when x is a direct summand of y. A triangulated
subcategory J ⊆ K is called a thick⊗-ideal if x ≤ y ∈J ⇒ x ∈J and if K ⊗J ⊆J .
We denote by 〈E 〉 the thick ⊗-ideal generated by a collection of objects E ⊆ K .

2.6. R. – We do not need much tt-geometry here but we simply recall that the
spectrum Spc(K ) of a tt-category K consists of all prime thick ⊗-ideals P ( K , i.e.,
such that x ⊗ y ∈ P implies x ∈ P or y ∈ P. The topology of Spc(K ) has an open
basis composed of all subsets U (x) :=

{
P
∣∣x ∈P

}
, for x ∈ K . The closed complement

supp(x) :=
{

P
∣∣x /∈P

}
is the support of x in Spc(K ).

2.7. R. – Determining tt-spectra is an ongoing enterprise in several fields of
mathematics, with direct link to the classifications of thick ⊗-ideals. This program orig-
inated in stable homotopy theory [19], and extended to algebraic geometry [18, 22, 28]
and modular representation theory [9, 16] prior to [1]. More recent progress has been
made in noncommutative topology [13], for Artin-Tate motives [23], for noncommutative
motives [14], for group rings over commutative algebras [27], for category algebras [29]
and for Lie superalgebras [11]. Still, computing Spc(K ) remains an open challenge for
many important tt-categories K , like equivariant derived categories or equivariant stable
homotopy categories [17].

One basic tt-result that we shall need a few times is the following:
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2.8. L (Existence Lemma [1, Lem. 2.2]). – Let K be a tt-category, J ⊆ K a thick
⊗-ideal and S ⊂ K a ⊗-multiplicative collection of objects (1 ∈ S ⊇ S ⊗ S) such that
S ∩J = ∅. Then there exists P ∈ Spc(K ) such that J ⊆P and P ∩ S = ∅.

2.9. N. – Given n objects x1, . . . , xn in K and a permutation π ∈ Sn, we also
denote by π : x1 ⊗ · · · ⊗ xn

∼→ xπ(1) ⊗ · · · ⊗ xπ(n) the induced isomorphism.

2.10. D. – A ring objectA in K is a monoid (A , µ : A⊗A→ A , η : 1→ A),
i.e., admits associative multiplication µ : A⊗A→ A and two-sided unit η. It is commutative
if µ ◦ (12) = µ. A morphism of (commutative) ring objects, or simply a homomorphism, is a
morphism f : A→ B in K , compatible with multiplications and units. We also say thatB is
an A-algebra or that B is a ring over A.

2.11. N. – For two ring objects A and B, the ring object A × B is A ⊕ B with
component-wise structure. On the other hand, the ring object A ⊗ B has multiplication
(µ1 ⊗ µ2) ◦ (23) : (A⊗B)⊗2−→A⊗B and obvious unit.

2.12. D. – A ring object A is called separable if there exists a morphism
σ : A→ A⊗A such thatµσ = idA and (1⊗µ)◦(σ⊗1) = σµ = (µ⊗1)◦(1⊗σ) : A⊗2 → A⊗2.
This simply means that A is projective as A,A-bimodule.

2.13. R. – If A and B are separable then so are A×B and A⊗B.

2.14. R. – A (left) A-module is a pair (x, ρ) where x ∈ K and where the so-
called action ρ : A ⊗ x → x satisfies the usual associativity and unit conditions. We denote
by A-ModK the category of A-modules with A-linear morphisms and by FA : K → A-ModK

the functor FA(y) = (A⊗ y, µ⊗ 1), etc. For details see [15] or [3].

By [3], whenA is separable, the category ofA-modules in K remains triangulated in such
a way that both the extension-of-scalars functor FA : K −→A-ModK and the forgetful
functor UA : A-ModK −→K are exact. We really mean “modules in the homotopy
category” here, not “homotopy category of modules,” thanks to separability! The key fact
is that the co-unit ε : FAUA → IdA-ModK is split surjective. In particular, every A-module x
is a direct summand of a free one: x ≤ FAUA(x).

The following simple definition [5] plays a central role in our theory.

2.15. D. – A ring object A is a tt-ring if A is commutative and separable.

The terminology is chosen so that if A is a tt-ring in a tt-category K then A-ModK

remains a tt-category. See details in [5], notably about the tensor structure ⊗A over A on
the category A-ModK . The projection formula [5, Prop. 1.2] says that UA(x ⊗A FA(y)) ∼=
UA(x)⊗ y for all x ∈ A-ModK and y ∈ K .

2.16. R. – In commutative algebra, an R-algebra A will not be a tt-ring
in Dperf(R) in general, unless A is finite étale over R. In that case, the tt-category Dperf(A)

coincides with A-ModDperf (R) by [3, Cor. 6.6]. Thus the reader might prefer to think of our
extensions-of-scalars FA : K → A-ModK along tt-rings as finite étale morphisms.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



914 P. BALMER

2.17. R. – Suppose that K = T c consists of the compact objects of a compactly
generated (big) tensor-triangulated category T . Then any smashing localization of T is in
fact an extension-of-scalars with respect to a tt-ring A in T , which is moreover an idem-
potent. Conversely, any ring object such that µ : A ⊗ A → A is an isomorphism yields a
smashing localization. This provides another class of examples of separable extensions. In
this paper, we restrict attention to compact tt-rings A ∈ K , in order to speak of supp(A),
thus excluding smashing localizations. Yet, some of our results might extend to “big” tt-rings
A ∈ T with a suitable notion of “big support”.

2.18. R. – We refer to [5] for the notion of the degree of a tt-ring A. We use it as
a black box here, emphasizing that we do not know any tt-ring of infinite degree. (Even the
big smashing rings of Remark 2.17 actually have degree 1.) In particular the “equivariant”
tt-rings k(G/H) of [6] are of finite degree [G :H] in Db(kG). Furthermore, the degree cannot
increase along tt-functors. The key result allowing induction on the degree is the following [5,
Thm. 3.6]:

2.19. T. – Let A be a tt-ring of finite degree d in a tt-category K . Then there
exists a tt-ring C and a homomorphism g : A ⊗ A → C such that ( µg ) : A ⊗ A ∼→ A × C is
an isomorphism. Moreover, C is of degree d − 1 as a tt-ring in A-ModK , when viewed as an
A-algebra through g ◦ (1⊗ η) : A→ C.

3. Descent up-to-nilpotence

3.1. N. – Given a tt-ring A in a tt-category K , we have a continuous (and
spectral) map ϕA := Spc(FA) : Spc(A-ModK )−→ Spc(K ), as in (1.2). It is defined
by ϕA(P) = F−1

A (P) for every prime P ⊂ A-ModK . See [1, § 3]. See Remark 2.14 for
the functors FA : K � A-ModK : UA.

3.2. L. – For every thick ⊗-ideal J0 ⊆ K , the thick subcategory U−1
A (J0)

of A-ModK is ⊗-ideal and equals the thick ⊗-ideal 〈FA(J0)〉 generated by FA(J0).

Proof. – SinceA is separable, we have z ≤ FAUA(z) for every z ∈ A-ModK (Rem. 2.14).
Now, if y ∈ U−1

A (J0) and x ∈ K then UA(y) ∈ J0 and since J0 is ⊗-ideal,
J0 3 x ⊗ UA(y) ' UA(FA(x) ⊗A y). So FA(x) ⊗A y ∈ U−1

A (J0). Hence for every
z ∈ A-ModK , we have U−1

A (J0) 3 FA(UA(z))⊗A y ≥ z ⊗A y hence z ⊗A y ∈ U−1
A (J0)

as wanted. So, U−1
A (J0) is ⊗-ideal. Let us show that U−1

A (J0) is the smallest thick ⊗-ideal
containing FA(J0). On the one hand, UAFA(x) ' A⊗ x belongs to J0 for every x ∈J0.
So, FA(J0) ⊆ U−1

A (J0) and therefore 〈FA(J0)〉 ⊆ U−1
A (J0) by the above discussion.

Conversely, if z ∈ U−1
A (J0) then FA(UA(z)) ∈ FA(J0) belongs to 〈FA(J0)〉, hence so

does every direct summand of FA(UA(z)), like z itself.

3.3. L. – Let P ∈ Spc(A-ModK ) and let s ∈ A-ModK be an object such that
UA(s) ∈ ϕA(P). Then s ∈P.

Proof. – UA(s) ∈ ϕA(P) = F−1
A (P) reads P 3 FA(UA(s)) ≥ s and P is thick.

3.4. T. – Let A be a tt-ring in a tt-category K . Then:
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(a) For every x ∈ K , we have ϕ−1
A (supp(x)) = supp(FA(x)) in Spc(A-ModK ).

(b) Let S ⊂ A-ModK be a ⊗-multiplicative collection of objects and consider the closed
subset Z (S) =

⋂
s∈S supp(s) in Spc(A-ModK ). Then its image is closed too; more

precisely ϕA(Z (S)) = Z (UA(S)) where UA(S) =
{
UA(s)

∣∣ s ∈ S
}

(not necessarily
⊗-multiplicative). In particular, ϕA is a closed map.

(c) For every y ∈ A-ModK , we have ϕA(supp(y)) =
⋂
n≥1 supp(UA(y⊗n)) in Spc(K ). (1)

(d) The image of ϕA : Spc(A-ModK )→ Spc(K ) is exactly the support of A.

Proof. – Part (a) is a general property of Spc(F ) for any tt-functor F , see [1, Prop. 3.6].
For (b), note that Z (S) =

{
P
∣∣S ∩P = ∅

}
. It follows from Lemma 3.3 thatϕA(Z (S)) ⊆

Z (UA(S)). Conversely, suppose that P0 ∈ Spc(K ) is such that UA(s) /∈P0 for all
s ∈ S (∗) and consider the thick ⊗-ideal J := U−1

A (P0) in A-ModK (Lemma 3.2).
Consider also the ⊗-multiplicative subset T := S ⊗A

{
FA(x)

∣∣x ∈ K rP0

}
in A-ModK .

We claim that T ∩J = ∅. Indeed, suppose ab absurdo, that there exists s ∈ S and
x ∈ K rP0 such that s⊗A FA(x) ∈J = U−1

A (P0). Then P0 3 UA(s⊗A FA(x)) ' UA(s)⊗ x.
Since x /∈P0 and P0 is prime, this implies that UA(s) ∈P0 which contradicts (∗). By
the Existence Lemma 2.8, there exists a prime P ⊂ A-ModK such that P ⊇J and
P ∩ T = ∅. These properties imply

(1) P ⊇ U−1
A (P0), (2) P ∩ S = ∅ (3) P ∩ FA(K rP0) = ∅.

Since U−1
A (P0) = 〈FA(P0)〉 by Lemma 3.2, the first relation above implies P0 ⊆ F−1

A (P).
Combining with (3), which implies F−1

A (P) ⊆ P0, we get P0 = F−1
A (P) = ϕA(P).

Finally, (2) reads P ∈ Z (S) hence P0 = ϕA(P) ∈ ϕA(Z (S)) as wanted.

For (c), let S = {y⊗n, n ≥ 1} so that Z (S) = supp(y). By (b), we deduce ϕA(supp(y)) =⋂
n≥1 supp(UA(y⊗n)).

Part (d) follows from (c) applied to y = 1A since UA(1A) = A.

3.5. T (Going-Up). – Let A be a tt-ring in K . Let Q ∈ Spc(A-ModK ) be a
point and P := ϕA(Q) its image in Spc(K ). Let P ′ ∈ {P} be a point in the closure
of P. Then there exist Q′ ∈ {Q} in the closure of Q such that ϕA(Q′) = P ′. In cash: if
P ′ ⊆P = F−1

A (Q) then there exists Q′ ⊆ Q such that F−1
A (Q′) = P ′.

Proof. – This follows by Theorem 3.4 (b) with S = (A-ModK )rQ. Indeed, {Q} = Z (S)

for that particular S (see [1, Prop. 2.9]) and P ′ ∈ Z (UA(S)) since for every s /∈ Q,
Lemma 3.3 implies that UA(s) /∈ ϕA(Q) = P ⊇P ′ so UA(s) /∈P ′.

3.6. R. – Let F : K → L be a tt-functor, A a tt-ring in K and B := F (A)

the image tt-ring in L . Then there exists a tt-functor F̄ : A-ModK −→B-ModL such that
F̄FA = FBF and UBF̄ = F UA (see [5, Rem. 1.6]):

(3.7)

K
F //

FA

��

L

FB

��
A-ModK

UA

OO

F̄ // B-ModL .

UB

OO

(1) When K is rigid, or A has finite degree, one can prove ϕA(supp(y)) = supp(UA(y)).
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In two places below, we shall apply this construction to F = FA itself. To avoid confusion,
let us say that A1, A2 are two tt-rings in K (later to be A1 = A2 = A). In the above
notation, we set A = A2, L = A1-ModK and F = FA1

. So the ring B = FA1
(A2)

in L has underlying ring A1⊗A2 in K . By [5, Rems. 1.4 and 1.5], we have an identification
B-ModL

∼= (A1 ⊗ A2)-ModK under which the two functors FB and F̄ become the two
functors A1-ModK → (A1 ⊗ A2)-ModK and A2-ModK → (A1 ⊗ A2)-ModK associated
to the two homomorphisms 1⊗ η2 : A1 → A1 ⊗A2 and η1 ⊗ 1 : A2 → A1 ⊗A2.

3.8. L. – Let F : K → L be a tt-functor, A a tt-ring in K and B = F (A) as in
Remark 3.6. Then diagram (3.7) yields a commutative square of spectra:

(3.9)

Spc(K ) Spc(L )
ϕ=Spc(F )oo Q3

P ∈ Spc(A-ModK )

ϕA=Spc(FA)

OO

Spc(B-ModL ) .
ϕ̄=Spc(F̄ )oo

ϕB=Spc(FB)

OO

Let P ∈ Spc(A-ModK ) and Q ∈ Spc(L ) such that ϕA(P) = ϕ(Q). Then there exists
Q′ ∈ Spc(B-ModL ) such that ϕ̄(Q′) ∈ {P} (i.e., ϕ̄(Q′) ⊆P) and ϕB(Q′) = Q.

Proof. – Consider the ⊗-multiplicative S ⊂ B-ModL defined in the following way:
S =

{
F̄ (s)

∣∣ s ∈ A-ModK , s /∈ P
}

. We claim that Q ∩ UB(S) = ∅. Indeed, if
Q 3 UB(F̄ (s)) ' F (UA(s)) for some s /∈ P then UA(s) ∈ F−1(Q) = ϕ(Q) = ϕA(P)

hence s ∈P by Lemma 3.3, which contradicts the choice of s. In other words, Q ∈ Z (UB(S))

and by Theorem 3.4 (b) applied to the tt-ringB in the tt-category L , there exists Q′ ∈ Z (S)

such that ϕB(Q′) = Q. The property Q′ ∈ Z (S) means that F̄ ((A-ModK )−P)∩Q′ = ∅
which means that ϕ̄(Q′) = F̄−1(Q′) ⊆P, as claimed.

3.10. T. – Let A ∈ K be a tt-ring of finite degree d ≥ 1 (see Remark 2.18).

(a) Incomparability: Let P,P ′ ∈ Spc(A-ModK ) be two primes such that P ⊆ P ′ (i.e.,
P ∈ {P ′}) and ϕA(P) = ϕA(P ′). Then P = P ′.

(b) The space Spc(A-ModK ) has the same Krull dimension as supp(A) the latter as a
subspace of Spc(K ).

(c) The fibers of the map ϕA : Spc(A-ModK )→ Spc(K ) are discrete (have Krull dimension
zero) and contain at most d points.

Proof. – Note right away that (b) follows from part (a), Theorem 3.4 (d) and Going-Up
Theorem 3.5. Similarly, (a) implies the discretion of the fibers in (c). So let us prove Incompa-
rability and the bound on the cardinality of the fibers by induction on d = deg(A). For d = 0,
we have A = 1 and there is nothing to prove. This being essentially a convention, let us
discuss the next case. For d = 1, we use [5, Prop. 4.1] which tells us that the multiplication
µ : A⊗A ∼→ A is an isomorphism and FA is simply a (Bousfield, smashing) localization, in
such a way that the map ϕA : Spc(A-ModK ) → Spc(K ) is the inclusion of an open and
closed component of Spc(K ) corresponding to supp(A); again in this case the results are
straightforward. Suppose deg(A) > 1 and the result true for tt-rings of degree d− 1.
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Let us do a preparation useful for (a) and (c). By Theorem 2.19, there exists a ring
isomorphism h = ( µg ) : A ⊗ A ∼→ A × C such that C has degree d − 1, when viewed as tt-
ring in A-ModK . To be careful, let us write C̄ ∈ A-ModK for C viewed as an A-module via
g (1⊗ η), so that C = UA(C̄). See [5, Rem. 1.5], which also recalls the canonical equivalence
C̄-ModL

∼= C-ModK where L := A-ModK in such a way that FC̄ ◦ FA ∼= FC . Consider
now the left-hand diagram of tt-rings below (defining the two homomorphisms gi : A→ C

for i = 1, 2):

1
η //

η

��

A

η⊗1

��
(

1
g2

)

��

A
1⊗η //

(
1
g1

)
--

A⊗A
h

'
$$
A× C

K
FA //

FA

��

A-ModK

F2

��

(
Id
G2

)

��

A-ModK
F1 //

(
Id
G1

)
..

(A⊗A)-ModK

H

' ''
A-ModK ×C-ModK .

These homomorphisms induce the above right-hand diagram of tt-functors, which in turn
induces the following commutative diagram of topological spaces:

(3.11)

Spc(K ) Spc(A-ModK )
ϕAoo

Spc(A-ModK )

ϕA

OO

Spc(A⊗2-ModK )
ϕ1oo

ϕ2

OO

ii

'
(id ψ1)

bb

Spc(A-ModK ) t Spc(C-ModK ),

(id ψ2)

ii

where ϕi = Spc(Fi) and ψi = Spc(Gi), for i = 1, 2. Note that the upper-left square
in (3.11) is nothing but (3.9) applied to F = FA itself. (See the explanations in the second
half of Remark 3.6.) By the construction of C and the discussion above, the functor
G1 : A-ModK → C-ModK

∼= C̄-ModL is just an extension-of-scalar FC̄ with respect
to the tt-ring C̄ in A-ModK , which has degree d − 1. We can therefore apply the induction
hypothesis to the map ψ1, i.e., we can assume that (a) and (c) hold for ψ1.

Before jumping into the proof of (a), note that since ϕA = F−1
A (−) commutes with

arbitrary intersection, an easy application of Zorn’s Lemma shows that any ϕA-fiber admits
a minimal prime inside any given P. So, we can assume P minimal in its ϕA-fiber: If
P̃ ⊆P and ϕA(P̃) = ϕA(P) then P̃ = P. By Lemma 3.8, there exists Q′ ∈ Spc(A⊗2-ModK )

such that ϕ1(Q′) ∈ {P} and ϕ2(Q′) = P ′. In the decomposition of Spc(A⊗2) as
Spc(A) t Spc(C), we have two possibilities. Either Q′ ∈ Spc(A), in which case (since
ϕ1 = ϕ2 = id on the Spc(A) part) we get P ′ = ϕ2(Q′) = Q′ = ϕ1(Q′) ∈ {P}, meaning
P ′ ⊆ P, and we have P = P ′ as wanted. Or Q′ ∈ Spc(C). In that case, by Going-Up
Theorem 3.5 applied to ϕ2 (i.e., to extension-of-scalar F2), we deduce from ϕ2(Q′) = P ′ ⊇P

the existence of Q ⊆ Q′ such that ϕ2(Q) = P. Since Q belongs to {Q′}, it is also in the
Spc(C) part. Nowϕ1(Q) ⊆ ϕ1(Q′) ⊆P and sinceϕAϕ1 = ϕAϕ2, the pointϕ1(Q) belongs
to the same ϕA-fiber as P. Since P is minimal in its fiber, we must have
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ϕ1(Q) = ϕ1(Q′) = P. In short, we have Q ⊆ Q′ in Spc(C) such that ψ1(Q) = ψ1(Q′).
As explained above, we can apply the induction hypothesis to ψ1, hence deduce Q = Q′.
Taking the image under ϕ2 finally gives P = P ′, as wanted.

For (c), let P0 ∈ Spc(K ) and consider its fiber ϕ−1
A (P0) ⊆ Spc(A-ModK ). We need

to show that |ϕ−1
A (P0)| ≤ d. If it is empty, we are done. Otherwise, pick P ∈ ϕ−1

A (P0).
Consider Diagram 3.11 again. We are going to define an injection ϕ−1

A (P0) r {P} ↪→
ψ−1

1 (P) ⊆ Spc(C). This is sufficient since by induction hypothesis, the fibers of ψ1 have
at most d− 1 points. For every P ′ ∈ ϕ−1

A (P0) with P ′ 6= P, there exists by Lemma 3.8 a
prime Q′ ∈ Spc(A⊗2-ModK ) such ϕ2(Q′) = P ′ and ϕ1(Q′) ⊆ P. Since ϕAϕ1 = ϕAϕ2,
the prime ϕ1(Q′) goes to P0 under ϕA and therefore ϕ1(Q′) = P by Incomparability (a).
Under the decomposition of Spc(A⊗2) as Spc(A) t Spc(C), we cannot have Q′ ∈ Spc(A)

for then the relations P = ϕ1(Q′) and P ′ = ϕ2(Q′) force P = P ′ (since ϕ1 = id and
ϕ2 = id on the Spc(A) part). Hence Q′ belongs to the Spc(C) part and ϕ1(Q′) = P now
reads ψ1(Q′) = P. Therefore, we have constructed for every P ′ ∈ ϕ−1

A (P0)r{P} a prime
Q′ ∈ ψ−1

1 (P) such that ψ2(Q′) = P ′. The latter relation shows that different P ′ have
different Q′. Hence the wanted injection ϕ−1

A (P0)r{P} ↪→ ψ−1
1 (P).

3.12. C. – Let A ∈ K be a tt-ring of finite degree and let F : K → L be a
tt-functor. Let B = F (A) in L . Then the induced commutative square (3.9)

Spc(K ) Spc(L )
ϕoo Q3

P ∈ Spc(A-ModK )

ϕA

OO

Spc(B-ModL )
ϕ̄oo

ϕB

OO

is weakly cartesian in the following sense: For every P ∈ Spc(A-ModK ) and Q ∈ Spc(L )

such that ϕA(P) = ϕ(Q) there exists Q′ ∈ Spc(B-ModL ) such that ϕ̄(Q′) = P and
ϕB(Q′) = Q.

Proof. – Choose Q′ as in Lemma 3.8, i.e., with ϕ̄(Q′) ⊆ P and ϕB(Q′) = Q. Then
ϕA(ϕ̄(Q′)) = ϕ(ϕB(Q′)) = ϕ(Q) = ϕA(P). So ϕ̄(Q′) = P by Theorem 3.10 (a).

3.13. R. – The above square is not cartesian in general. For instance, using
C⊗R C ' C× C, we see that for K = Db(R) andA = C, and thus L = Db(C), the square
has one point in three corners but two points in the bottom-right corner.

3.14. T. – Let A be a tt-ring of finite degree. Then we have a coequalizer

Spc(A⊗2-ModK )
ϕ1 //
ϕ2

// Spc(A-ModK )
ϕA // supp(A)

where ϕi is the map induced by extension-of-scalars Fi : A-ModK −→A⊗2-ModK along the
two obvious homomorphisms fi : A→ A⊗A, i.e., f1 = 1⊗ η and f2 = η ⊗ 1.

Proof. – Let W be the coequalizer of ϕ1 and ϕ2. Since ϕAϕ1 = ϕAϕ2, the map ϕA
induces a continuous map ϕ̄ : W → supp(A). By Theorem 3.4 (d), the map ϕ̄ is surjective.
It is injective by Corollary 3.12 for F = FA. (See the explanations in the second half of
Remark 3.6 again.) Finally ϕ̄ is a closed map since ϕA : Spc(A-ModK ) → Spc(K ) is a
closed map by Theorem 3.4 (b).
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We now want to discuss conditions to replace the above supp(A) by Spc(K ).

3.15. P. – Let A be an object in K . The following are equivalent:

(i) It has maximal support: supp(A) = Spc(K ).

(ii) The thick ⊗-ideal generated by A is the whole K ; in symbols: 〈A〉 = K .

If A is a (separable) ring object then the above properties are also equivalent to:

(iii) In some (hence in every) distinguished triangle J
ξ→ 1

η→ A
ζ→ ΣJ over the unit map η,

the morphism ξ is ⊗-nilpotent.

(iv) Extension-of-scalars FA : K → A-ModK is nil-faithful: If a morphism f in K is such
that FA(f) = 0 (i.e., A⊗ f = 0) then f is ⊗-nilpotent.

(v) The image of the forgetful functor UA : A-ModK → K generates K as a thick⊗-ideal;
in symbols: 〈UA(A-ModK )〉 = K .

Proof. – (i) ⇐⇒ (ii) is standard, see [1, Cor. 2.5]. (ii)⇒(iii) follows from the observation
that

{
x ∈ K

∣∣ ξ ⊗ x is ⊗-nilpotent
}

is a thick ⊗-ideal of K which contains A since
η ⊗ A is a split monomorphism. (iii)⇒(iv): If f : x → y is such that A ⊗ f = 0 then
(η ⊗ y)f = 0 and therefore f factors through ξ ⊗ y which is ⊗-nilpotent. (iv)⇒(iii) is
clear. (iii)⇒(ii) is well-known: by the Octahedron axiom cone(ξ⊗n) ∈ 〈cone(ξ)〉 = 〈A〉
and if ξ⊗n = 0 : J⊗n → 1⊗n then 1 ∈ 〈cone(ξ⊗n)〉. To show (ii) ⇐⇒ (v), it suffices
to note that 〈UA(A-ModK )〉 = 〈A〉 in general. Since A = UA(1A), only the inclusion ⊆
requires verification. If (x, %) is an A-module then % : A ⊗ x → x is split by η ⊗ x, hence
〈A〉 3 x = UA(x, %).

3.16. D. – Let us say that an object A ∈ K is nil-faithful if for every
morphism f in K , we have that A ⊗ f = 0 implies f⊗n = 0 for some n ≥ 0. For a
tt-ring A this is equivalent to any of the properties of Proposition 3.15, see (iv).

3.17. C. – Let F : K → L be a tt-functor. If A is a nil-faithful tt-ring in K

then so is F (A) in L .

Proof. – Condition (iii) in Proposition 3.15 is preserved by tt-functors.

3.18. R. – This Corollary really uses the tensor. For instance, if A only gener-
ates K as (thick) triangulated category, it is not necessarily true of F (A) in L .

3.19. T (Descent-up-to-nilpotence). – Let A be a nil-faithful tt-ring of finite
degree. With notation of Theorem 3.14, we have a coequalizer of topological spaces:

Spc(A⊗2-ModK )
ϕ1 //
ϕ2

// Spc(A-ModK )
ϕA // Spc(K ) .

Proof. – In Theorem 3.14, use that supp(A) = Spc(K ) by Proposition 3.15.
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4. Applications

Let G be a finite group and G-sets the category of finite left G-sets. Let k be a field of
positive characteristic p dividing |G|, typically just the prime field Fp = Z/p.

4.1. C. – Let CZ(ZG) be the category of those finitely generated left
ZG-modules which are free as Z-modules. It is a tensor category with

⊗
Z and diagonal

G-action. Consider for everyX ∈ G-sets the permutationZG-moduleZX and, following [6],
define on it a Z-bilinear multiplication µX by setting x · x = x for all x ∈ X and x · x′ = 0

when x 6= x′. This gives a ring object A(X) = (ZX,µX , ηX) in the category CZ(ZG)

with unit ηX : Z → ZX given by 1 7→
∑
x∈X x. For every G-map f : X → Y , define

A(f) : A(Y )→ A(X) by y 7→
∑
x∈f−1(y) x. For instance, A(X → ∗) = ηX . The ring object

A(X) is separable via σ : A(X)→ A(X)⊗ A(X) given by x 7→ x⊗ x. (Note that this map
does not come from G-sets.)

Consequently, for every tensor functor Φ : CZ(ZG)−→K to a tt-category K , for
instance the standard CZ(ZG)−→Db(kG) or CZ(ZG)−→ stab(kG), the composite functor
A := Φ ◦ A : G-setsop−→K provides tt-rings A(X) in K and ring homomorphisms
A(f) : A(Y )→ A(X) for every f : X → Y in G-sets.

4.2. E. – For X = G/H an orbit, our tt-ring AGH = k(G/H) is such an A(X).

4.3. T (Serre’s vanishing of Bocksteins, gone tt). – Consider as above the functor
A : G-setsop−→Db(kG) given by X 7→ A(X) = kX. Let (2) Abelem(G) be the collection
of elementary abelian p-subgroups of G (or only the maximal ones, or representatives up to
conjugacy). Then the following tt-ring in Db(kG)

Aelem :=
∏

H∈Abelem(G)

A(G/H)

is nil-faithful in the sense of Definition 3.16 (and Proposition 3.15).

Proof. – Let K = Db(kG). Since A(G/H) ⊗ − ' ResGH is faithful when [G : H ] is
prime to p, we reduce to G a p-group. By induction on |G| it suffices to show that for every
p-group G which is not elementary abelian, the tt-ring

A :=
∏
H�G

A(G/H)

is nil-faithful in Db(kG). By Proposition 3.15 (v) again, it suffices to prove that 〈A〉 = Db(kG).
Now, Serre’s Theorem [26, Prop. 4] precisely says that there are proper subgroups (of index p)
H1, . . . ,Hm of G such that the product β(z1) · · ·β(zm) vanishes in H2m(G,k), where
β(zi) ∈ H2(G,k) is the Bockstein element associated to zi : G�G/Hi ' Z/p. As an
element of Ext2

kG(k,k) ∼= H2(G,k), this Bockstein is given by an exact sequence of the form

(4.4) β(zi) =
(

0→ k→ k(G/Hi)→ k(G/Hi)→ k→ 0
)
.

If we also denote by β(zi) : k → k[2] the corresponding element in HomK (k,k[2]) ∼=
Ext2

kG(k,k) then its cone is the complex · · · → 0 → k(G/Hi) → k(G/Hi) → 0 → · · ·

(2) In French Picardie, “abelem” is a clever contraction for “abélien élémentaire”.
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appearing above, “in the middle”. In particular, cone(β(zi)) ∈ 〈k(G/Hi)〉 = 〈A(G/Hi)〉.
Therefore, an easy application of the octahedron (or just Yoneda splice) shows that the cone
of our product β(z1) · · ·β(zm) = β(z1)⊗ · · · ⊗ β(zm) belongs to 〈A(G/H1), . . . , A(G/Hm)〉 ⊂ 〈A〉.
Since this product is zero and since cone(0 : k → k[2m]) = k[1] ⊕ k[2m] we get k ∈ 〈A〉 as
wanted.

4.5. R. – I am thankful to Raphaël Rouquier for simplifying my earlier proof of
Theorem 4.3, which involved the following, perhaps interesting, observation. The exact
sequence (4.4) is the cone of an isomorphism ψi : Ji

∼→ J∗i [−2] in Db(kG), where

Ji = (· · · → 0→ k→ k(G/Hi)→ 0→ · · · ) fits in the distinguished triangle Ji
ξi→ k ηi→

A(G/Hi) → ΣJi as in Proposition 3.15. A direct computation shows that the Bock-
stein β(zi) is equal to the composite ξi[2] ◦ ψ−1

i ◦ ξ∗i . In other words, our morphism ξi
appears “twice” in the corresponding Bockstein.

The analogue of Theorem 4.3 also holds for K = stab(kG) by Corollary 3.17.

4.6. D. – Recall that the orbit category Or(G) of the group G has objects
indexed by subgroups H ≤ G, thought of as the corresponding orbit, i.e., morphisms are
given by MorOr(G)(H,K) = MorG-sets(G/H,G/K). We write Or(G,Abelem) for the full
subcategory of Or(G) on those H which are elementary abelian p-groups.

4.7. R. – In [12], Carlson already noted that Serre’s theorem implies that the
support variety VG = Proj(H•(G,k)) is covered by the images of the VH

(4.8) VG =
⋃

H∈Abelem(G)

Res∗ VH .

This equality is part of Quillen’s Stratification Theorem (0.1), which says that:

(4.9) VG ∼= colim
H∈Or(G,Abelem)

VH .

In terms of cohomology rings, (4.8) says that H•(G,k)−→
∏
H H•(H,k) has nilpotent kernel

whereas the colimit-version (4.9) is saying moreover that elements in limH H•(H,k) have
some pr-power coming from H•(G,k). See for instance [8, Cor. II.5.6.4]. Another way to see
how the colimit-version (4.9) is more informative than (4.8) is to note that (4.8) does not
prevent VG from being a point, for instance, whereas (4.9) allowed Quillen to compute the
Krull dimension of VG.

We now want to show that descent-up-to-nilpotence (Theorem 3.19) yields a generaliza-
tion of Quillen’s Stratification Theorem, in its strong form (4.9).

Quillen’s Stratification Theorem (4.9) is the case K = stab(kG) of the following:

4.10. T. – Let K be a tt-category and let Φ : Db(FpG)−→K be a tt-functor.
For every subgroup H ≤ G consider the tt-ring AH = Φ(Fp(G/H)) in K and define
K (H) = AH -ModK the corresponding category of modules. Then the collection of tt-functors
FAH

: K = K (G)−→K (H) induces a homeomorphism

(4.11) ϕ̄ : colim
H∈Or(G,Abelem)

Spc(K (H))
∼−→ Spc(K ) .
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Proof. – Following Construction 4.1, we have a functor A(−) : G-setsop → K , taking
values in tt-rings and homomorphisms and whose restriction to Or(G) recovers the ring
A(G/H) = Φ(Fp(G/H)) = AH of the statement. Since AG = Φ(k) = 1K , since G/G is
the final G-set and since Spc(−) is contravariant, we indeed have a canonical contin-
uous map ϕ̄ as in (4.11) such that precomposed with the canonical map Spc(K (H)) →
colimH Spc(K (H)) gives Spc(FAH

). Consider the tt-ring A :=
∏
H∈Abelem(G)AH , which

is the image in K of the tt-ring Aelem of Serre’s Theorem 4.3. Since Aelem was nil-faithful
in Dperf(FpG), Corollary 3.17 implies that A is also nil-faithful in K . By descent-up-to-
nilpotence (Theorem 3.19), we have a coequalizer of spaces

(4.12) Spc(A⊗2-ModK )
ϕ1 //
ϕ2

// Spc(A-ModK )
ϕA // Spc(K )

where the maps ϕi are induced by fi : A → A ⊗ A given by f1 = 1 ⊗ η and f2 = η ⊗ 1.
Let us identify AH ⊗ AK = Φ(k(G/H)) ⊗ Φ(k(G/K)) ∼= Φ(k(G/H × G/K)) =

A(G/H × G/K), so that the components AH → AH ⊗ AK and AK → AH ⊗ AK of f1

and f2 : A→ A⊗A are simply the images under A : G-setsop → K of the two projections
pr1 : G/H ×G/K → G/H and pr2 : G/H ×G/K → G/K, respectively.

In G-sets, for any two subgroups H,K ≤ G, we have a Mackey isomorphism∐
[g]∈H\G/K

βg :
∐

[g]∈H\G/K

G/(Hg ∩K)
∼→ G/H ×G/K

where the map βg : G/(Hg ∩K)−→G/H ×G/K is [x] 7→ ([xg−1], [x]). As usual, this map
is non-canonical since it involves the choice of g ∈ G for each double class [g] ∈ H\G/K.
Still, we get an isomorphism (first in Db(FpG) and then in K ):∏

H,K∈Abelem(G)
[g]∈H\G/K

A(βg) : A⊗A =
∏

H,K∈Abelem(G)

AH ⊗AK
∼−→

∏
H,K∈Abelem(G)

[g]∈H\G/K

AHg∩K .

Replacing the decompositions for A and A⊗A in (4.12), we obtain a coequalizer

∐
H,K∈Abelem(G)

[g]∈H\G/K

Spc(AHg∩K)
ψ1 //
ψ2

//
∐

H∈Abelem(G)

Spc(AH)

∐
ϕAH // Spc(K )

where the maps ψ1 : Spc(AHg∩K) → Spc(AH) and ψ2 : Spc(AHg∩K) → Spc(AK)

are induced by the composition of the above maps fi : A // // A ⊗ A with the maps
A(βg) : AH ⊗AK → AHg∩K on components. Since all maps come through A : G-setsop → K ,
we can compute these compositions in G-sets already and get

G/H

G/(Hg ∩K) βg //

pr1 βg = αg
33

pr2 βg = α1 ++

G/H ×G/K

pr1

OO

pr2��
G/K
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where αg : G/L → G/L′ denotes [x] 7→ [xg−1] whenever gL ≤ L′. So, for every H,K ≤ G

and g ∈ G, we have

(4.13) ψ1
∣∣ Spc(AHg∩K)

= Spc(A(αg)) and ψ2
∣∣ Spc(AHg∩K)

= Spc(A(α1)) .

We can now compare our coequalizer with the colimit as follows:∐
H,K∈Abelem(G)

[g]∈H\G/K

Spc(AHg∩K)
ψ1 //
ψ2

//
∐

H∈Abelem(G)

Spc(AH)
tϕAH // //

π
'' ''

Spc(K )

π̄xx
colim

H∈Or(G,Abelem)

Spc(AH)

ϕ̄
::

where π is the quotient map and ϕ̄ is the above continuous map such that ϕ̄π = tHϕAH
.

By (4.13), the two maps ψ1 and ψ2 are the images of maps αg and α1 in Or(G,Abelem) via
the functor H 7→ Spc(AH). Therefore by the colimit property π ◦ ψ1 = π ◦ ψ2. Hence, by
the coequalizer property, there is a continuous map π̄ : Spc(K ) → colimH Spc(AH) such
that π̄ ◦ (tϕAH

) = π, as in the above diagram. This π̄ is therefore the inverse of ϕ̄ since π
and tϕAH

are epimorphisms.

4.14. E. – Let X be a scheme over k on which our finite group G acts.
Let K (G) = Db

G(VBX) be the bounded derived category of G-equivariant vector bundles
on X. Then it receives Db(kG) = Db

G(Spec(k)) and AH -ModK(G)
∼= Db

H(VBX) for every
subgroup H ≤ G as can be readily verified from the restriction-coinduction adjunction.
Alternatively, see [7, § 5]. Theorem 4.10 tells us that the spectrum of Db

G(VBX) is the colimit
of the spectra of Db

H(VBX) over H in Or(G,Abelem). Furthermore, the Krull dimension
of Spc(Db

G(VBX)) is the maximum of the Krull dimensions of Spc(Db
H(VBX)) among the

elementary abelian p-subgroups H ≤ G.

Acknowledgements: I would like to thank Serge Bouc, Ivo Dell’Ambrogio, John Greenlees,
Alexander Merkurjev, Mike Prest, Raphaël Rouquier and Jacques Thévenaz for helpful
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