Nous avons démontré dans [9], qu'un homéomorphisme symplectique qui laisse invariante une sous-variété coïsotrope , préserve également son feuilletage caractéristique. Il induit donc un homéomorphisme sur la réduction symplectique de .
Dans cet article, nous démontrons que l'homéomorphisme ainsi obtenu exhibe certaines propriétés symplectiques. En particulier, dans le cas où la variété symplectique ambiante est un tore et la sous-variété coïsotrope est un sous-tore standard, nous démontrons que l'homéomorphisme réduit préserve les invariants spectraux et donc aussi la capacité spectrale.
Pour démontrer notre résultat principal, nous construisons, à l'aide de l'homologie de Floer lagrangienne, une nouvelle famille d'invariants spectraux qui satisfont un nouveau type d'inégalité triangulaire.
In [9], we proved that symplectic homeomorphisms preserving a coisotropic submanifold , preserve its characteristic foliation as well. As a consequence, such symplectic homeomorphisms descend to the reduction of the coisotropic .
In this article we show that these reduced homeomorphisms continue to exhibit certain symplectic properties. In particular, in the specific setting where the symplectic manifold is a torus and the coisotropic is a standard subtorus, we prove that the reduced homeomorphism preserves spectral invariants and hence the spectral capacity.
To prove our main result, we use Lagrangian Floer theory to construct a new class of spectral invariants which satisfy a non-standard triangle inequality.
DOI : 10.24033/asens.2292
Keywords: Symplectic manifolds, symplectic reduction, $C^0$--symplectic topology, spectral invariants.
Mot clés : Variétés symplectiques, réduction symplectique, topologie symplectique $C^0$, invariants spectraux.
@article{ASENS_2016__49_3_633_0, author = {Humili\`ere, Vincent and Leclercq, R\'emi and Seyfaddini, Sobhan}, title = {Reduction of symplectic homeomorphisms}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {633--668}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {3}, year = {2016}, doi = {10.24033/asens.2292}, mrnumber = {3503828}, zbl = {1341.53114}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2292/} }
TY - JOUR AU - Humilière, Vincent AU - Leclercq, Rémi AU - Seyfaddini, Sobhan TI - Reduction of symplectic homeomorphisms JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 633 EP - 668 VL - 49 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2292/ DO - 10.24033/asens.2292 LA - en ID - ASENS_2016__49_3_633_0 ER -
%0 Journal Article %A Humilière, Vincent %A Leclercq, Rémi %A Seyfaddini, Sobhan %T Reduction of symplectic homeomorphisms %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 633-668 %V 49 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2292/ %R 10.24033/asens.2292 %G en %F ASENS_2016__49_3_633_0
Humilière, Vincent; Leclercq, Rémi; Seyfaddini, Sobhan. Reduction of symplectic homeomorphisms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 633-668. doi : 10.24033/asens.2292. http://www.numdam.org/articles/10.24033/asens.2292/
A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | DOI | MR | Zbl
Floer homology of cotangent bundles and the loop product, Geom. Topol., Volume 14 (2010), pp. 1569-1722 (ISSN: 1465-3060) | DOI | MR | Zbl
A beginner's introduction to Fukaya categories, Contact and symplectic topology (Bourgeois, F. et al., eds.) (Bolyai Soc. Math. Stud.), Volume 26 (2014), pp. 85-136 | DOI | MR | Zbl
, Morse theoretic methods in nonlinear analysis and in symplectic topology (NATO Sci. Ser. II Math. Phys. Chem.), Volume 217, Springer, Dordrecht, 2006, pp. 109-148 | DOI | MR | Zbl
Some quantitative results in symplectic geometry (preprint arXiv:1404.0875, to appear in Invent. math ) | MR
Rigid subsets of symplectic manifolds, Compos. Math., Volume 145 (2009), pp. 773-826 (ISSN: 0010-437X) | DOI | MR | Zbl
Homological Lagrangian monodromy, Geom. Topol., Volume 15 (2011), pp. 1617-1650 (ISSN: 1465-3060) | DOI | MR | Zbl
Coisotropic rigidity and -symplectic geometry, Duke Math. J., Volume 164 (2015), pp. 767-799 (ISSN: 0012-7094) | DOI | MR | Zbl
On some completions of the space of Hamiltonian maps, Bull. Soc. Math. France, Volume 136 (2008), pp. 373-404 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl
Piunikhin-Salamon-Schwarz isomorphisms for Lagrangian intersections, Differential Geom. Appl., Volume 22 (2005), pp. 215-227 (ISSN: 0926-2245) | DOI | MR | Zbl
Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn., Volume 2 (2008), pp. 249-286 (ISSN: 1930-5311) | DOI | MR | Zbl
The Seidel morphism of Cartesian products, Algebr. Geom. Topol., Volume 9 (2009), pp. 1951-1969 (ISSN: 1472-2747) | DOI | MR | Zbl
Hamiltonian disjunction and limits of Lagrangian submanifolds, Int. Math. Res. Not., Volume 1994 (1994), pp. 161-168 (ISSN: 1073-7928) | DOI | MR | Zbl
Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization, J. Mod. Dyn., Volume 6 (2012), pp. 205-249 | MR | Zbl
Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle, J. Differential Geom., Volume 46 (1997), pp. 499-577 http://projecteuclid.org/getRecord?id=euclid.jdg/1214459976 (ISSN: 0022-040X) | MR | Zbl
The group of Hamiltonian homeomorphisms and –symplectic topology, J. Symplectic Geom., Volume 5 (2007), pp. 167-219 http://projecteuclid.org/getRecord?id=euclid.jsg/1202004455 (ISSN: 1527-5256) | DOI | MR | Zbl
–rigidity of characteristics in symplectic geometry, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009), pp. 857-864 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, Contact and symplectic geometry (Cambridge, 1994) (Publ. Newton Inst.), Volume 8, Cambridge Univ. Press, 1996, pp. 171-200 | MR | Zbl
On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., Volume 193 (2000), pp. 419-461 (ISSN: 0030-8730) | DOI | MR | Zbl
Obstructions to the existence and squeezing of Lagrangian cobordisms, J. Topol. Anal., Volume 2 (2010), pp. 203-232 (ISSN: 1793-5253) | DOI | MR | Zbl
A Lagrangian camel, Comment. Math. Helv., Volume 74 (1999), pp. 591-614 (ISSN: 0010-2571) | DOI | MR | Zbl
Symplectic topology as the geometry of generating functions, Math. Annalen, Volume 292 (1992), pp. 685-710 | DOI | MR | Zbl
On the Hofer geometry for weakly exact Lagrangian submanifolds, J. Symplectic Geom., Volume 11 (2013), pp. 475-488 http://projecteuclid.org/euclid.jsg/1384282845 (ISSN: 1527-5256) | DOI | MR | Zbl
Cité par Sources :