[Rigidité des caractéristiques en géométrie symplectique]
Cet article porte sur un résultat de rigidité du feuilletage caractéristique en géométrie symplectique. Un homéomorphisme symplectique (au sens d’Eliashberg-Gromov) qui préserve une hypersurface lisse préserve également son feuilletage caractéristique.
The paper concerns a -rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.
Keywords: symplectic geometry
Mot clés : géometrie symplectique
@article{ASENS_2009_4_42_5_857_0, author = {Opshtein, Emmanuel}, title = {$\mathcal {C}^0$-rigidity of characteristics in symplectic geometry}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {857--864}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {5}, year = {2009}, doi = {10.24033/asens.2111}, mrnumber = {2571960}, zbl = {1186.53054}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2111/} }
TY - JOUR AU - Opshtein, Emmanuel TI - $\mathcal {C}^0$-rigidity of characteristics in symplectic geometry JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 857 EP - 864 VL - 42 IS - 5 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2111/ DO - 10.24033/asens.2111 LA - en ID - ASENS_2009_4_42_5_857_0 ER -
%0 Journal Article %A Opshtein, Emmanuel %T $\mathcal {C}^0$-rigidity of characteristics in symplectic geometry %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 857-864 %V 42 %N 5 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2111/ %R 10.24033/asens.2111 %G en %F ASENS_2009_4_42_5_857_0
Opshtein, Emmanuel. $\mathcal {C}^0$-rigidity of characteristics in symplectic geometry. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 5, pp. 857-864. doi : 10.24033/asens.2111. http://www.numdam.org/articles/10.24033/asens.2111/
[1] Symplectic rigidity for Anosov hypersurfaces, Ergodic Theory Dynam. Systems 26 (2006), 1399-1416. | Zbl
& ,[2] Symplectic boundaries: creating and destroying closed characteristics, Geom. Funct. Anal. 7 (1997), 269-321. | Zbl
,[3] A theorem on the structure of wave fronts and its application in symplectic topology, Funktsional. Anal. i Prilozhen. 21 (1987), 65-72. | Zbl
,[4] Convex symplectic manifolds, in Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 135-162. | Zbl
& ,[5] Towards the definition of symplectic boundary, Geom. Funct. Anal. 2 (1992), 211-220. | MR | Zbl
& ,[6] Unseen symplectic boundaries, in Manifolds and geometry (Pisa, 1993), Sympos. Math., XXXVI, Cambridge Univ. Press, 1996, 178-189. | MR | Zbl
& ,[7] Periodic flows on three-manifolds, Ann. of Math. 95 (1972), 66-82. | MR | Zbl
,[8] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347. | MR | Zbl
,[9] Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, 1994. | MR | Zbl
& ,[10] Local non-squeezing theorems and stability, Geom. Funct. Anal. 5 (1995), 364-386. | MR | Zbl
& ,[11] Hamiltonian disjunction and limits of Lagrangian submanifolds, Int. Math. Res. Not. 1994 (1994). | MR | Zbl
& ,[12] Introduction to symplectic topology, second éd., Oxford Mathematical Monographs, Oxford Univ. Press, 1998. | MR | Zbl
& ,[13] Maximal symplectic packings in , Compos. Math. 143 (2007), 1558-1575. | MR | Zbl
,[14] Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Mosc. Math. J. 3 (2003), 593-619, 745. | MR | Zbl
, & ,[15] Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36 (1976), 225-255. | MR | Zbl
,Cité par Sources :