Le formalisme multifractal est un cadre adapté pour décrire la distribution aux petites échelles des mesures de Borel finies positives à support compact dans , dont l'ensemble est ici noté . Il est dit valide pour une mesure lorsque son spectre de Hausdorff est la fonction semi-continue supérieurement obtenue comme transformée de Legendre-Fenchel concave de sa fonction d'énergie libre ; c'est le cas pour certaines classes fondamentales de mesures exactement dimensionnelles.
Pour toute fonction candidate à être la fonction d'énergie libre d'un élément de , nous construisons une telle mesure, exactement dimensionnelle, et validant le formalisme. Ce résultat s'étend à un formalisme plus fin considérant simultanément spectres de Hausdorff et de packing. D'autre part, pour toute fonction semi-continue supérieurement candidate à être le spectre de Hausdorff inférieur d'une mesure exactement dimensionnelle, nous construisons une telle mesure.
Multifractal formalism is designed to describe the distribution at small scales of the elements of , the set of positive, finite and compactly supported Borel measures on . It is valid for such a measure when its Hausdorff spectrum is the upper semi-continuous function given by the concave Legendre-Fenchel transform of the free energy function associated with ; this is the case for fundamental classes of exactly dimensional measures.
For any function candidate to be the free energy function of some , we construct such a measure, exactly dimensional, and obeying the multifractal formalism. This result is extended to a refined formalism considering jointly Hausdorff and packing spectra. Also, for any upper semi-continuous function candidate to be the lower Hausdorff spectrum of some exactly dimensional , we construct such a measure.
Keywords: Multifractal formalism, multifractal analysis, Hausdorff dimension, packing dimension, large deviations, inverse problems.
Mot clés : Formalisme multifractal, analyse multifractale, dimension de Hausdorff, dimension de packing, grandes déviations, problèmes inverses.
@article{ASENS_2015__48_6_1457_0, author = {Barral, Julien}, title = {Inverse problems in multifractal analysis of measures}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1457--1510}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {6}, year = {2015}, doi = {10.24033/asens.2274}, mrnumber = {3429473}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2274/} }
TY - JOUR AU - Barral, Julien TI - Inverse problems in multifractal analysis of measures JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 1457 EP - 1510 VL - 48 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2274/ DO - 10.24033/asens.2274 LA - en ID - ASENS_2015__48_6_1457_0 ER -
%0 Journal Article %A Barral, Julien %T Inverse problems in multifractal analysis of measures %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 1457-1510 %V 48 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2274/ %R 10.24033/asens.2274 %G en %F ASENS_2015__48_6_1457_0
Barral, Julien. Inverse problems in multifractal analysis of measures. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 6, pp. 1457-1510. doi : 10.24033/asens.2274. http://www.numdam.org/articles/10.24033/asens.2274/
Hausdorff and packing spectra, large deviations, and free energy for branching random walks in , Comm. Math. Phys., Volume 331 (2014), pp. 139-187 (ISSN: 0010-3616) | DOI | MR | Zbl
The multifractal spectrum of discrete measures, Acta Univ. Carolin. Math. Phys., Volume 31 (1990), pp. 5-8 (ISSN: 0001-7140) | MR | Zbl
Random self-similar multifractals, Math. Nachr., Volume 181 (1996), pp. 5-42 (ISSN: 0025-584X) | DOI | MR | Zbl
Continuity of the multifractal spectrum of a random statistically self-similar measure, J. Theoret. Probab., Volume 13 (2000), pp. 1027-1060 (ISSN: 0894-9840) | DOI | MR | Zbl
Multifractal spectra of typical and prevalent measures, Nonlinearity, Volume 26 (2013), pp. 353-367 (ISSN: 0951-7715) | DOI | MR | Zbl
Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994), pp. 807-810 (ISSN: 0764-4442) | MR | Zbl
Weighted thermodynamic formalism on subshifts and applications, Asian J. Math., Volume 16 (2012), pp. 319-352 (ISSN: 1093-6106) | DOI | MR | Zbl
Multifractal formalism for almost all self-affine measures, Comm. Math. Phys., Volume 318 (2013), pp. 473-504 (ISSN: 0010-3616) | DOI | MR | Zbl
, John Wiley & Sons, Inc., 1965, 195 pages |Multifractal products of cylindrical pulses, Probab. Theory Related Fields, Volume 124 (2002), pp. 409-430 (ISSN: 0178-8051) | DOI | MR | Zbl
, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2 (Proc. Sympos. Pure Math.), Volume 72, Amer. Math. Soc., Providence, RI, 2004, pp. 17-52 | MR | Zbl
Gibbs measures on self-affine Sierpiński carpets and their singularity spectrum, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 1419-1443 (ISSN: 0143-3857) | DOI | MR | Zbl
On the multifractal analysis of measures, J. Statist. Phys., Volume 66 (1992), pp. 775-790 (ISSN: 0022-4715) | DOI | MR | Zbl
Hölder spectrum of typical monotone continuous functions, Real Anal. Exchange, Volume 26 (2000/01), pp. 133-156 (ISSN: 0147-1937) | DOI | MR | Zbl
The validity of the multifractal formalism: results and examples, Adv. Math., Volume 165 (2002), pp. 264-284 (ISSN: 0001-8708) | DOI | MR | Zbl
Revisiting the multifractal analysis of measures, Rev. Mat. Iberoam., Volume 29 (2013), pp. 315-328 (ISSN: 0213-2230) | DOI | MR | Zbl
Divergence points of self-similar measures and packing dimension, Adv. Math., Volume 214 (2007), pp. 267-287 (ISSN: 0001-8708) | DOI | MR | Zbl
Limiting laws of supercritical branching random walks, C. R. Math. Acad. Sci. Paris, Volume 350 (2012), pp. 535-538 (ISSN: 1631-073X) | DOI | MR | Zbl
Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Israel J. Math., Volume 116 (2000), pp. 29-70 (ISSN: 0021-2172) | DOI | MR | Zbl
The singularity spectrum of Lévy processes in multifractal time, Adv. Math., Volume 214 (2007), pp. 437-468 (ISSN: 0001-8708) | DOI | MR | Zbl
The singularity spectrum of the inverse of cookie-cutters, Ergodic Theory Dynam. Systems, Volume 29 (2009), pp. 1075-1095 (ISSN: 0143-3857) | DOI | MR | Zbl
Typical Borel measures on satisfy a multifractal formalism, Nonlinearity, Volume 23 (2010), pp. 2905-2918 (ISSN: 0951-7715) | DOI | MR | Zbl
Measures and functions with prescribed homogeneous multifractal spectrum, J. Fractal Geom., Volume 1 (2014), pp. 295-333 (ISSN: 2308-1309) | DOI | MR | Zbl
Multifractal analysis of inhomogeneous Bernoulli products, J. Stat. Phys., Volume 142 (2011), pp. 1105-1120 (ISSN: 0022-4715) | DOI | MR | Zbl
The dimension spectrum of some dynamical systems, J. Statist. Phys. (Proceedings of the symposium on statistical mechanics of phase transitions—mathematical and physical aspects (Trebon, 1986)), Volume 47 (1987), pp. 609-644 (ISSN: 0022-4715) | DOI | MR | Zbl
The Hausdorff dimension distribution of finite measures in Euclidean space, Canad. J. Math., Volume 38 (1986), pp. 1459-1484 (ISSN: 0008-414X) | DOI | MR | Zbl
Measure disintegrations with respect to -stable monotone indices and the pointwise representation of packing dimension, Rend. Circ. Mat. Palermo (2) Suppl., Volume 28 (1992), pp. 319-339 | MR | Zbl
, Applications of Mathematics, 38, Springer, 1998, 396 pages (ISBN: 0-387-98406-2) | DOI | MR | Zbl
Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc., Volume 65 (1992), pp. 604-628 (ISSN: 0024-6115) | DOI | MR | Zbl
Representation of families of sets by measures, dimension spectra and Diophantine approximation, Math. Proc. Cambridge Philos. Soc., Volume 128 (2000), pp. 111-121 (ISSN: 0305-0041) | DOI | MR | Zbl
, John Wiley & Sons, Ltd., Chichester, 2014, 368 pages (ISBN: 978-1-119-94239-9) |The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab., Volume 7 (1994), pp. 681-702 (ISSN: 0894-9840) | DOI | MR | Zbl
Generalized dimensions of measures on self-affine sets, Nonlinearity, Volume 12 (1999), pp. 877-891 (ISSN: 0951-7715) | DOI | MR | Zbl
The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers, Adv. Math., Volume 195 (2005), pp. 24-101 (ISSN: 0001-8708) | DOI | MR | Zbl
Gibbs properties of self-conformal measures and the multifractal formalism, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 787-812 (ISSN: 0143-3857) | DOI | MR | Zbl
Multifractal analysis of Bernoulli convolutions associated with Salem numbers, Adv. Math., Volume 229 (2012), pp. 3052-3077 (ISSN: 0001-8708) | DOI | MR | Zbl
Multifractal formalism for self-similar measures with weak separation condition, J. Math. Pures Appl., Volume 92 (2009), pp. 407-428 (ISSN: 0021-7824) | DOI | MR | Zbl
Multifractal analysis of weak Gibbs measures and phase transition—application to some Bernoulli convolutions, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 1751-1784 (ISSN: 0143-3857) | DOI | MR | Zbl
Fully developped turbulence and intermittency in turbulence, and predictability in geophysical fluid dynamics and climate dynamics, International school of Physics “Enrico Fermi” (Ghil, M., ed.), North Holland, pp. 84-88
The Hausdorff dimension of recurrent sets in symbolic spaces, Nonlinearity, Volume 14 (2001), pp. 81-85 (ISSN: 0951-7715) | DOI | MR | Zbl
Dimension of measures: the probabilistic approach, Publ. Mat., Volume 51 (2007), pp. 243-290 (ISSN: 0214-1493) | DOI | MR | Zbl
Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist., Volume 34 (1998), pp. 309-338 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A, Volume 33 (1986), pp. 1141-1151 (ISSN: 1050-2947) | DOI | MR | Zbl
The infinite number of generalized dimensions of fractals and strange attractors, Phys. D, Volume 8 (1983), pp. 435-444 (ISSN: 0167-2789) | DOI | MR | Zbl
Multifractal dimensions and scaling exponents for strongly bounded random cascades, Ann. Appl. Probab., Volume 2 (1992), pp. 819-845 (ISSN: 1050-5164) | DOI | MR | Zbl
Multifractal analysis for countable Markov shifts, Ergodic Theory Dynam. Systems, Volume 25 (2005), pp. 1881-1907 (ISSN: 0143-3857) | DOI | MR | Zbl
Old friends revisited: the multifractal nature of some classical functions, J. Fourier Anal. Appl., Volume 3 (1997), pp. 1-22 (ISSN: 1069-5869) | DOI | MR | Zbl
The multifractal nature of Lévy processes, Probab. Theory Related Fields, Volume 114 (1999), pp. 207-227 (ISSN: 0178-8051) | DOI | MR | Zbl
Multifractal analysis of weak Gibbs measures for non-uniformly expanding maps, Ergodic Theory Dynam. Systems, Volume 31 (2011), pp. 143-164 (ISSN: 0143-3857) | DOI | MR | Zbl
Large deviation for weak Gibbs measures and multifractal spectra, Nonlinearity, Volume 14 (2001), pp. 395-409 (ISSN: 0951-7715) | DOI | MR | Zbl
The singularity spectrum for general Sierpiński carpets, Adv. Math., Volume 116 (1995), pp. 1-11 (ISSN: 0001-8708) | DOI | MR | Zbl
The Frontier of a Brownian Path Is Multifractal (1998) (preprint http://www.math.duke.edu/~jose/multifrac.ps )
Multifractal measures and a weak separation condition, Adv. Math., Volume 141 (1999), pp. 45-96 (ISSN: 0001-8708) | DOI | MR | Zbl
On the multifractal analysis of Bernoulli convolutions. I. Large-deviation results, J. Statist. Phys., Volume 82 (1996), pp. 367-395 (ISSN: 0022-4715) | DOI | MR | Zbl
On the multifractal analysis of Bernoulli convolutions. II. Dimensions, J. Statist. Phys., Volume 82 (1996), pp. 397-420 (ISSN: 0022-4715) | DOI | MR | Zbl
, Fractal geometry and stochastics III (Progr. Probab.), Volume 57, Birkhäuser, 2004, pp. 23-42 | MR | Zbl
Multifractal analysis of Choquet capacities, Adv. in Appl. Math., Volume 20 (1998), pp. 1-43 (ISSN: 0196-8858) | DOI | MR | Zbl
Fine structure of harmonic measure, Algebra i Analiz, Volume 10 (1998), pp. 1-62 (ISSN: 0234-0852) | MR | Zbl
, Cambridge Studies in Advanced Math., 44, Cambridge Univ. Press, Cambridge, 1995, 343 pages (ISBN: 0-521-46576-1; 0-521-65595-1) | DOI | MR | Zbl
Exactly self-similar left sided multifractal measures, Phys. Rev. A, Volume 42 (1990), pp. 4528-4536 | DOI
Scaling exponents and multifractal dimensions for independent random cascades, Comm. Math. Phys., Volume 179 (1996), pp. 681-702 http://projecteuclid.org/euclid.cmp/1104287121 (ISSN: 0010-3616) | DOI | MR | Zbl
A dimension result arising from the -spectrum of a measure, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 2943-2951 (ISSN: 0002-9939) | DOI | MR | Zbl
Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. Scand., Volume 86 (2000), pp. 109-129 (ISSN: 0025-5521) | DOI | MR | Zbl
Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl., Volume 82 (2003), pp. 1591-1649 (ISSN: 0021-7824) | DOI | MR | Zbl
A multifractal formalism, Adv. Math., Volume 116 (1995), pp. 82-196 (ISSN: 0001-8708) | DOI | MR | Zbl
Self-affine multifractal Sierpinski sponges in , Pacific J. Math., Volume 183 (1998), pp. 143-199 (ISSN: 0030-8730) | DOI | MR | Zbl
Multifractal spectra of in-homogenous self-similar measures, Indiana Univ. Math. J., Volume 57 (2008), pp. 1789-1843 (ISSN: 0022-2518) | DOI | MR | Zbl
Self-conformal multifractal measures, Adv. in Appl. Math., Volume 19 (1997), pp. 486-513 (ISSN: 0196-8858) | DOI | MR | Zbl
, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997, 304 pages (ISBN: 0-226-66221-7; 0-226-66222-5) | DOI | MR | Zbl
, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2 (Proc. Sympos. Pure Math.), Volume 72, Amer. Math. Soc., Providence, RI, 2004, pp. 217-230 | MR | Zbl
The dimension spectrum of Axiom A attractors, J. Statist. Phys., Volume 58 (1990), pp. 923-937 (ISSN: 0022-4715) | DOI | MR | Zbl
A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions, J. Statist. Phys., Volume 86 (1997), pp. 233-275 (ISSN: 0022-4715) | DOI | MR | Zbl
The singularity spectrum for cookie-cutters, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 527-541 (ISSN: 0143-3857) | DOI | MR | Zbl
, Theory and applications of long-range dependence, Birkhäuser, 2003, pp. 625-716 | MR | Zbl
Multifractal formalism for infinite multinomial measures, Adv. in Appl. Math., Volume 16 (1995), pp. 132-150 (ISSN: 0196-8858) | DOI | MR | Zbl
, Princeton Mathematical Series, 28, Princeton Univ. Press, Princeton, N.J., 1970, 451 pages | MR | Zbl
Gaussian multiplicative chaos and applications: a review, Probab. Surv., Volume 11 (2014), pp. 315-392 (ISSN: 1549-5787) | DOI | MR | Zbl
Multifractal analysis of some inhomogeneous multinomial measures with distinct analytic Olsen's and functions, J. Stat. Phys., Volume 159 (2015), pp. 1216-1235 (ISSN: 0022-4715) | DOI | MR | Zbl
A modified multifractal formalism for a class of self-similar measures with overlap, Asian J. Math., Volume 9 (2005), pp. 323-348 (ISSN: 1093-6106) | DOI | MR | Zbl
Mesures quasi-Bernoulli au sens faible: résultats et exemples, Ann. Inst. H. Poincaré Probab. Statist., Volume 42 (2006), pp. 1-35 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., Volume 91 (1982), pp. 57-74 (ISSN: 0305-0041) | DOI | MR | Zbl
Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems, Volume 2 (1982), pp. 109-124 (ISSN: 0143-3857) | DOI | MR | Zbl
Packing dimensions of the divergence points of self-similar measures with OSC, Monatsh. Math., Volume 172 (2013), pp. 233-246 (ISSN: 0026-9255) | DOI | MR | Zbl
Cité par Sources :