Inverse problems in multifractal analysis of measures
[Problèmes inverses dans l'analyse multifractale des mesures]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 6, pp. 1457-1510.

Le formalisme multifractal est un cadre adapté pour décrire la distribution aux petites échelles des mesures de Borel finies positives à support compact dans d, dont l'ensemble est ici noté c+(d). Il est dit valide pour une mesure μ lorsque son spectre de Hausdorff est la fonction semi-continue supérieurement obtenue comme transformée de Legendre-Fenchel concave de sa fonction d'énergie libre τμ; c'est le cas pour certaines classes fondamentales de mesures exactement dimensionnelles.

Pour toute fonction τ candidate à être la fonction d'énergie libre d'un élément μ de c+(d), nous construisons une telle mesure, exactement dimensionnelle, et validant le formalisme. Ce résultat s'étend à un formalisme plus fin considérant simultanément spectres de Hausdorff et de packing. D'autre part, pour toute fonction semi-continue supérieurement candidate à être le spectre de Hausdorff inférieur d'une mesure exactement dimensionnelle, nous construisons une telle mesure.

Multifractal formalism is designed to describe the distribution at small scales of the elements of c+(d), the set of positive, finite and compactly supported Borel measures on d. It is valid for such a measure μ when its Hausdorff spectrum is the upper semi-continuous function given by the concave Legendre-Fenchel transform of the free energy function τμ associated with μ; this is the case for fundamental classes of exactly dimensional measures.

For any function τ candidate to be the free energy function of some μc+(d), we construct such a measure, exactly dimensional, and obeying the multifractal formalism. This result is extended to a refined formalism considering jointly Hausdorff and packing spectra. Also, for any upper semi-continuous function candidate to be the lower Hausdorff spectrum of some exactly dimensional μc+(d), we construct such a measure.

DOI : 10.24033/asens.2274
Classification : 28A78, 60F10
Keywords: Multifractal formalism, multifractal analysis, Hausdorff dimension, packing dimension, large deviations, inverse problems.
Mot clés : Formalisme multifractal, analyse multifractale, dimension de Hausdorff, dimension de packing, grandes déviations, problèmes inverses.
@article{ASENS_2015__48_6_1457_0,
     author = {Barral, Julien},
     title = {Inverse problems  in multifractal analysis of measures},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1457--1510},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {6},
     year = {2015},
     doi = {10.24033/asens.2274},
     mrnumber = {3429473},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2274/}
}
TY  - JOUR
AU  - Barral, Julien
TI  - Inverse problems  in multifractal analysis of measures
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1457
EP  - 1510
VL  - 48
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2274/
DO  - 10.24033/asens.2274
LA  - en
ID  - ASENS_2015__48_6_1457_0
ER  - 
%0 Journal Article
%A Barral, Julien
%T Inverse problems  in multifractal analysis of measures
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1457-1510
%V 48
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2274/
%R 10.24033/asens.2274
%G en
%F ASENS_2015__48_6_1457_0
Barral, Julien. Inverse problems  in multifractal analysis of measures. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 6, pp. 1457-1510. doi : 10.24033/asens.2274. http://www.numdam.org/articles/10.24033/asens.2274/

Attia, N.; Barral, J. Hausdorff and packing spectra, large deviations, and free energy for branching random walks in d , Comm. Math. Phys., Volume 331 (2014), pp. 139-187 (ISSN: 0010-3616) | DOI | MR | Zbl

Aversa, V.; Bandt, C. The multifractal spectrum of discrete measures, Acta Univ. Carolin. Math. Phys., Volume 31 (1990), pp. 5-8 (ISSN: 0001-7140) | MR | Zbl

Arbeiter, M.; Patzschke, N. Random self-similar multifractals, Math. Nachr., Volume 181 (1996), pp. 5-42 (ISSN: 0025-584X) | DOI | MR | Zbl

Barral, J. Continuity of the multifractal spectrum of a random statistically self-similar measure, J. Theoret. Probab., Volume 13 (2000), pp. 1027-1060 (ISSN: 0894-9840) | DOI | MR | Zbl

Bayart, F. Multifractal spectra of typical and prevalent measures, Nonlinearity, Volume 26 (2013), pp. 353-367 (ISSN: 0951-7715) | DOI | MR | Zbl

Ben Nasr, F. Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994), pp. 807-810 (ISSN: 0764-4442) | MR | Zbl

Barral, J.; Feng, D.-J. Weighted thermodynamic formalism on subshifts and applications, Asian J. Math., Volume 16 (2012), pp. 319-352 (ISSN: 1093-6106) | DOI | MR | Zbl

Barral, J.; Feng, D.-J. Multifractal formalism for almost all self-affine measures, Comm. Math. Phys., Volume 318 (2013), pp. 473-504 (ISSN: 0010-3616) | DOI | MR | Zbl

Billingsley, P., John Wiley & Sons, Inc., 1965, 195 pages | MR | Zbl

Barral, J.; Mandelbrot, B. B. Multifractal products of cylindrical pulses, Probab. Theory Related Fields, Volume 124 (2002), pp. 409-430 (ISSN: 0178-8051) | DOI | MR | Zbl

Barral, J.; Mandelbrot, B. B., Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2 (Proc. Sympos. Pure Math.), Volume 72, Amer. Math. Soc., Providence, RI, 2004, pp. 17-52 | MR | Zbl

Barral, J.; Mensi, M. Gibbs measures on self-affine Sierpiński carpets and their singularity spectrum, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 1419-1443 (ISSN: 0143-3857) | DOI | MR | Zbl

Brown, G.; Michon, G.; Peyrière, J. On the multifractal analysis of measures, J. Statist. Phys., Volume 66 (1992), pp. 775-790 (ISSN: 0022-4715) | DOI | MR | Zbl

Buczolich, Z.; Nagy, J. Hölder spectrum of typical monotone continuous functions, Real Anal. Exchange, Volume 26 (2000/01), pp. 133-156 (ISSN: 0147-1937) | DOI | MR | Zbl

Ben Nasr, F.; Bhouri, I.; Heurteaux, Y. The validity of the multifractal formalism: results and examples, Adv. Math., Volume 165 (2002), pp. 264-284 (ISSN: 0001-8708) | DOI | MR | Zbl

Ben Nasr, F.; Peyrière, J. Revisiting the multifractal analysis of measures, Rev. Mat. Iberoam., Volume 29 (2013), pp. 315-328 (ISSN: 0213-2230) | DOI | MR | Zbl

Baek, I. S.; Olsen, L.; Snigireva, N. Divergence points of self-similar measures and packing dimension, Adv. Math., Volume 214 (2007), pp. 267-287 (ISSN: 0001-8708) | DOI | MR | Zbl

Barral, J.; Rhodes, R.; Vargas, V. Limiting laws of supercritical branching random walks, C. R. Math. Acad. Sci. Paris, Volume 350 (2012), pp. 535-538 (ISSN: 1631-073X) | DOI | MR | Zbl

Barreira, L.; Schmeling, J. Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Israel J. Math., Volume 116 (2000), pp. 29-70 (ISSN: 0021-2172) | DOI | MR | Zbl

Barral, J.; Seuret, S. The singularity spectrum of Lévy processes in multifractal time, Adv. Math., Volume 214 (2007), pp. 437-468 (ISSN: 0001-8708) | DOI | MR | Zbl

Barral, J.; Seuret, S. The singularity spectrum of the inverse of cookie-cutters, Ergodic Theory Dynam. Systems, Volume 29 (2009), pp. 1075-1095 (ISSN: 0143-3857) | DOI | MR | Zbl

Buczolich, Z.; Seuret, S. Typical Borel measures on [0,1]d satisfy a multifractal formalism, Nonlinearity, Volume 23 (2010), pp. 2905-2918 (ISSN: 0951-7715) | DOI | MR | Zbl

Buczolich, Z.; Seuret, S. Measures and functions with prescribed homogeneous multifractal spectrum, J. Fractal Geom., Volume 1 (2014), pp. 295-333 (ISSN: 2308-1309) | DOI | MR | Zbl

Batakis, A.; Testud, B. Multifractal analysis of inhomogeneous Bernoulli products, J. Stat. Phys., Volume 142 (2011), pp. 1105-1120 (ISSN: 0022-4715) | DOI | MR | Zbl

Collet, P.; Lebowitz, J. L.; Porzio, A. The dimension spectrum of some dynamical systems, J. Statist. Phys. (Proceedings of the symposium on statistical mechanics of phase transitions—mathematical and physical aspects (Trebon, 1986)), Volume 47 (1987), pp. 609-644 (ISSN: 0022-4715) | DOI | MR | Zbl

Cutler, C. D. The Hausdorff dimension distribution of finite measures in Euclidean space, Canad. J. Math., Volume 38 (1986), pp. 1459-1484 (ISSN: 0008-414X) | DOI | MR | Zbl

Cutler, C. D. Measure disintegrations with respect to σ-stable monotone indices and the pointwise representation of packing dimension, Rend. Circ. Mat. Palermo (2) Suppl., Volume 28 (1992), pp. 319-339 | MR | Zbl

Dembo, A.; Zeitouni, O., Applications of Mathematics, 38, Springer, 1998, 396 pages (ISBN: 0-387-98406-2) | DOI | MR | Zbl

Edgar, G. A.; Mauldin, R. D. Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc., Volume 65 (1992), pp. 604-628 (ISSN: 0024-6115) | DOI | MR | Zbl

Falconer, K. Representation of families of sets by measures, dimension spectra and Diophantine approximation, Math. Proc. Cambridge Philos. Soc., Volume 128 (2000), pp. 111-121 (ISSN: 0305-0041) | DOI | MR | Zbl

Falconer, K., John Wiley & Sons, Ltd., Chichester, 2014, 368 pages (ISBN: 978-1-119-94239-9) | MR | Zbl

Falconer, K. The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab., Volume 7 (1994), pp. 681-702 (ISSN: 0894-9840) | DOI | MR | Zbl

Falconer, K. Generalized dimensions of measures on self-affine sets, Nonlinearity, Volume 12 (1999), pp. 877-891 (ISSN: 0951-7715) | DOI | MR | Zbl

Feng, D.-J. The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers, Adv. Math., Volume 195 (2005), pp. 24-101 (ISSN: 0001-8708) | DOI | MR | Zbl

Feng, D.-J. Gibbs properties of self-conformal measures and the multifractal formalism, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 787-812 (ISSN: 0143-3857) | DOI | MR | Zbl

Feng, D.-J. Multifractal analysis of Bernoulli convolutions associated with Salem numbers, Adv. Math., Volume 229 (2012), pp. 3052-3077 (ISSN: 0001-8708) | DOI | MR | Zbl

Feng, D.-J.; Lau, K.-S. Multifractal formalism for self-similar measures with weak separation condition, J. Math. Pures Appl., Volume 92 (2009), pp. 407-428 (ISSN: 0021-7824) | DOI | MR | Zbl

Feng, D.-J.; Olivier, E. Multifractal analysis of weak Gibbs measures and phase transition—application to some Bernoulli convolutions, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 1751-1784 (ISSN: 0143-3857) | DOI | MR | Zbl

Frisch, U.; Parisi, G. Fully developped turbulence and intermittency in turbulence, and predictability in geophysical fluid dynamics and climate dynamics, International school of Physics “Enrico Fermi” (Ghil, M., ed.), North Holland, pp. 84-88

Feng, D.-J.; Wu, J. The Hausdorff dimension of recurrent sets in symbolic spaces, Nonlinearity, Volume 14 (2001), pp. 81-85 (ISSN: 0951-7715) | DOI | MR | Zbl

Heurteaux, Y. Dimension of measures: the probabilistic approach, Publ. Mat., Volume 51 (2007), pp. 243-290 (ISSN: 0214-1493) | DOI | MR | Zbl

Heurteaux, Y. Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist., Volume 34 (1998), pp. 309-338 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Halsey, T. C.; Jensen, M. H.; Kadanoff, L. P.; Procaccia, I.; Shraiman, B. I. Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A, Volume 33 (1986), pp. 1141-1151 (ISSN: 1050-2947) | DOI | MR | Zbl

Hentschel, H. G. E.; Procaccia, I. The infinite number of generalized dimensions of fractals and strange attractors, Phys. D, Volume 8 (1983), pp. 435-444 (ISSN: 0167-2789) | DOI | MR | Zbl

Holley, R.; Waymire, E. C. Multifractal dimensions and scaling exponents for strongly bounded random cascades, Ann. Appl. Probab., Volume 2 (1992), pp. 819-845 (ISSN: 1050-5164) | DOI | MR | Zbl

Iommi, G. Multifractal analysis for countable Markov shifts, Ergodic Theory Dynam. Systems, Volume 25 (2005), pp. 1881-1907 (ISSN: 0143-3857) | DOI | MR | Zbl

Jaffard, S. Old friends revisited: the multifractal nature of some classical functions, J. Fourier Anal. Appl., Volume 3 (1997), pp. 1-22 (ISSN: 1069-5869) | DOI | MR | Zbl

Jaffard, S. The multifractal nature of Lévy processes, Probab. Theory Related Fields, Volume 114 (1999), pp. 207-227 (ISSN: 0178-8051) | DOI | MR | Zbl

Jordan, T.; Rams, M. Multifractal analysis of weak Gibbs measures for non-uniformly expanding C1 maps, Ergodic Theory Dynam. Systems, Volume 31 (2011), pp. 143-164 (ISSN: 0143-3857) | DOI | MR | Zbl

Kesseböhmer, M. Large deviation for weak Gibbs measures and multifractal spectra, Nonlinearity, Volume 14 (2001), pp. 395-409 (ISSN: 0951-7715) | DOI | MR | Zbl

King, J. F. The singularity spectrum for general Sierpiński carpets, Adv. Math., Volume 116 (1995), pp. 1-11 (ISSN: 0001-8708) | DOI | MR | Zbl

Lawler, G. F. The Frontier of a Brownian Path Is Multifractal (1998) (preprint http://www.math.duke.edu/~jose/multifrac.ps )

Lau, K.-S.; Ngai, S.-M. Multifractal measures and a weak separation condition, Adv. Math., Volume 141 (1999), pp. 45-96 (ISSN: 0001-8708) | DOI | MR | Zbl

Ledrappier, F.; Porzio, A. On the multifractal analysis of Bernoulli convolutions. I. Large-deviation results, J. Statist. Phys., Volume 82 (1996), pp. 367-395 (ISSN: 0022-4715) | DOI | MR | Zbl

Ledrappier, F.; Porzio, A. On the multifractal analysis of Bernoulli convolutions. II. Dimensions, J. Statist. Phys., Volume 82 (1996), pp. 397-420 (ISSN: 0022-4715) | DOI | MR | Zbl

Lévy Véhel, J.; Tricot, C., Fractal geometry and stochastics III (Progr. Probab.), Volume 57, Birkhäuser, 2004, pp. 23-42 | MR | Zbl

Lévy Véhel, J.; Vojak, R. Multifractal analysis of Choquet capacities, Adv. in Appl. Math., Volume 20 (1998), pp. 1-43 (ISSN: 0196-8858) | DOI | MR | Zbl

Makarov, N. G. Fine structure of harmonic measure, Algebra i Analiz, Volume 10 (1998), pp. 1-62 (ISSN: 0234-0852) | MR | Zbl

Mattila, P., Cambridge Studies in Advanced Math., 44, Cambridge Univ. Press, Cambridge, 1995, 343 pages (ISBN: 0-521-46576-1; 0-521-65595-1) | DOI | MR | Zbl

Mandelbrot, B. B.; Evertsz, C. J. G.; Hayakawa, Y. Exactly self-similar left sided multifractal measures, Phys. Rev. A, Volume 42 (1990), pp. 4528-4536 | DOI

Molchan, G. M. Scaling exponents and multifractal dimensions for independent random cascades, Comm. Math. Phys., Volume 179 (1996), pp. 681-702 http://projecteuclid.org/euclid.cmp/1104287121 (ISSN: 0010-3616) | DOI | MR | Zbl

Ngai, S.-M. A dimension result arising from the Lq-spectrum of a measure, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 2943-2951 (ISSN: 0002-9939) | DOI | MR | Zbl

Olsen, L. Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. Scand., Volume 86 (2000), pp. 109-129 (ISSN: 0025-5521) | DOI | MR | Zbl

Olsen, L. Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl., Volume 82 (2003), pp. 1591-1649 (ISSN: 0021-7824) | DOI | MR | Zbl

Olsen, L. A multifractal formalism, Adv. Math., Volume 116 (1995), pp. 82-196 (ISSN: 0001-8708) | DOI | MR | Zbl

Olsen, L. Self-affine multifractal Sierpinski sponges in 𝐑d , Pacific J. Math., Volume 183 (1998), pp. 143-199 (ISSN: 0030-8730) | DOI | MR | Zbl

Olsen, L.; Snigireva, N. Multifractal spectra of in-homogenous self-similar measures, Indiana Univ. Math. J., Volume 57 (2008), pp. 1789-1843 (ISSN: 0022-2518) | DOI | MR | Zbl

Patzschke, N. Self-conformal multifractal measures, Adv. in Appl. Math., Volume 19 (1997), pp. 486-513 (ISSN: 0196-8858) | DOI | MR | Zbl

Pesin, Y. B., Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997, 304 pages (ISBN: 0-226-66221-7; 0-226-66222-5) | DOI | MR | Zbl

Peyrière, J., Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2 (Proc. Sympos. Pure Math.), Volume 72, Amer. Math. Soc., Providence, RI, 2004, pp. 217-230 | MR | Zbl

Porzio, A. The dimension spectrum of Axiom A attractors, J. Statist. Phys., Volume 58 (1990), pp. 923-937 (ISSN: 0022-4715) | DOI | MR | Zbl

Pesin, Y.; Weiss, H. A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions, J. Statist. Phys., Volume 86 (1997), pp. 233-275 (ISSN: 0022-4715) | DOI | MR | Zbl

Rand, D. A. The singularity spectrum f(α) for cookie-cutters, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 527-541 (ISSN: 0143-3857) | DOI | MR | Zbl

Riedi, R. H., Theory and applications of long-range dependence, Birkhäuser, 2003, pp. 625-716 | MR | Zbl

Riedi, R. H.; Mandelbrot, B. B. Multifractal formalism for infinite multinomial measures, Adv. in Appl. Math., Volume 16 (1995), pp. 132-150 (ISSN: 0196-8858) | DOI | MR | Zbl

Rockafellar, R. T., Princeton Mathematical Series, 28, Princeton Univ. Press, Princeton, N.J., 1970, 451 pages | MR | Zbl

Rhodes, R.; Vargas, V. Gaussian multiplicative chaos and applications: a review, Probab. Surv., Volume 11 (2014), pp. 315-392 (ISSN: 1549-5787) | DOI | MR | Zbl

Shen, S. Multifractal analysis of some inhomogeneous multinomial measures with distinct analytic Olsen's b and B functions, J. Stat. Phys., Volume 159 (2015), pp. 1216-1235 (ISSN: 0022-4715) | DOI | MR | Zbl

Shmerkin, P. A modified multifractal formalism for a class of self-similar measures with overlap, Asian J. Math., Volume 9 (2005), pp. 323-348 (ISSN: 1093-6106) | DOI | MR | Zbl

Testud, B. Mesures quasi-Bernoulli au sens faible: résultats et exemples, Ann. Inst. H. Poincaré Probab. Statist., Volume 42 (2006), pp. 1-35 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Tricot, C. J. Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., Volume 91 (1982), pp. 57-74 (ISSN: 0305-0041) | DOI | MR | Zbl

Young, L. S. Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems, Volume 2 (1982), pp. 109-124 (ISSN: 0143-3857) | DOI | MR | Zbl

Zhou, X.; Chen, E. Packing dimensions of the divergence points of self-similar measures with OSC, Monatsh. Math., Volume 172 (2013), pp. 233-246 (ISSN: 0026-9255) | DOI | MR | Zbl

Cité par Sources :