@article{AIHPB_2006__42_1_1_0, author = {Testud, Beno{\^\i}t}, title = {Mesures {quasi-Bernoulli} au sens faible : r\'esultats et exemples}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1--35}, publisher = {Elsevier}, volume = {42}, number = {1}, year = {2006}, doi = {10.1016/j.anihpb.2005.01.002}, mrnumber = {2196969}, zbl = {05021190}, language = {fr}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.01.002/} }
TY - JOUR AU - Testud, Benoît TI - Mesures quasi-Bernoulli au sens faible : résultats et exemples JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 1 EP - 35 VL - 42 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2005.01.002/ DO - 10.1016/j.anihpb.2005.01.002 LA - fr ID - AIHPB_2006__42_1_1_0 ER -
%0 Journal Article %A Testud, Benoît %T Mesures quasi-Bernoulli au sens faible : résultats et exemples %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 1-35 %V 42 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2005.01.002/ %R 10.1016/j.anihpb.2005.01.002 %G fr %F AIHPB_2006__42_1_1_0
Testud, Benoît. Mesures quasi-Bernoulli au sens faible : résultats et exemples. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 1, pp. 1-35. doi : 10.1016/j.anihpb.2005.01.002. http://www.numdam.org/articles/10.1016/j.anihpb.2005.01.002/
[1] Ergodic Theory and Information, Wiley, New York, 1965. | MR | Zbl
,[2] Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 807-810. | MR | Zbl
,[3] Spectre multifractal de mesures boréliennes sur , C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 253-256. | MR | Zbl
, ,[4] The validity of the multifractal formalism : results and examples, Adv. in Math. 165 (2002) 264-284. | MR | Zbl
, , ,[5] On the multifractal analysis of measures, J. Statist. Phys. 66 (1992) 775-790. | MR | Zbl
, , ,[6] Fractal Geometry, Mathematical Foundations and Applications, Wiley, New York, 1990. | MR | Zbl
,[7] Techniques in Fractal Geometry, Wiley, New York, 1997. | MR | Zbl
,[8] Sur la dimension inférieure des mesures, Studia Math. 111 (1994) 1-17. | MR
,[9] The smoothness of -spectrum of self-similar measures with overlaps, J. London Math. Soc. 68 (2003) 102-118. | MR | Zbl
,[10] The pressure function for products of non-negative matrices, Math. Res. Lett. 9 (2002) 363-378. | MR | Zbl
, ,[11] D.J. Feng, K.S. Lau, Differentiability of pressure functions for products of non-negative matrices, preprint. | MR
[12] Sur la comparaison des mesures avec les mesures de Hausdorff, C. R Acad. Sci. Paris Sér. I Math. 321 (1995) 61-65. | MR | Zbl
,[13] Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 309-338. | Numdam | MR | Zbl
,[14] Weierstrass function with random phases, Trans. Amer. Math. Soc. 335 (2003) 3065-3077. | MR | Zbl
,[15] Fractals and self similarity, Indiana Univ. Math. J. 30 (1981) 713-747. | MR | Zbl
,[16] Hausdorff dimension of Sofic affine-invariant sets, Israel J. Math. 94 (1996) 127-138. | MR | Zbl
, ,[17] -spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math. 131 (1998) 225-251. | MR | Zbl
, ,[18] Multifractal measures and a weak separation condition, Adv. in Math. 141 (1999) 45-96. | MR | Zbl
, ,[19] Mesures de Gibbs sur les Cantor réguliers, Ann. Inst. H. Poincaré Phys. Théor. 58 (1983) 267-285. | Numdam | MR | Zbl
,[20] The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984) 1-9. | MR | Zbl
,[21] A dimension result arising from the -spectrum of a measure, Proc. Amer. Math. Soc. 125 (1997) 2943-2951. | MR | Zbl
,[22] Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. 63 (2001) 655-672. | MR | Zbl
, ,[23] E. Olivier, Communication privée.
[24] A multifractal formalism, Adv. in Math. 116 (1995) 82-196. | MR | Zbl
,[25] Multifractal measures, in: Proc. NATO Adv. Study Inst. Il Ciocco, vol. 372, 1997, pp. 175-186. | MR
,[26] On Hausdorff dimension of some fractal sets, Studia Math. 93 (1989) 155-186. | MR | Zbl
, ,[27] Dimensions in a separable metric space, Kyushu J. Math. 49 (1995) 143-162. | MR | Zbl
,[28] B. Testud, Thèse de doctorat, Université Blaise Pascal, Clermont-Ferrand, 2004.
[29] Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982) 57-74. | MR | Zbl
,[30] The Hausdorff dimension of the graphs of continuous self-affine functions, Proc. Amer. Math. Soc. 108 (1990) 921-930. | MR | Zbl
,Cité par Sources :