Il a longtemps été supposé que l'équation de Prandtl n'est bien posée que sous l'hypothèse de monotonie d'Oleinik, ou pour des données analytiques. Nous montrons qu'elle est en fait localement bien posée pour des données appartenant à la classe Gevrey en la variable . Nous améliorons ainsi le résultat classique d'existence locale de solutions analytiques en la variable (classe Gevrey 1). La preuve repose sur de nouvelles estimations, faisant appel à des fonctionnelles d'énergie non-quadratiques.
It has been thought for a while that the Prandtl system is only well-posed under the Oleinik monotonicity assumption or under an analyticity assumption. We show that the Prandtl system is actually locally well-posed for data that belong to the Gevrey class in the horizontal variable . Our result improves the classical local well-posedness result for data that are analytic in (that is Gevrey class 1). The proof uses new estimates, based on non-quadratic energy functionals.
DOI : 10.24033/asens.2270
Keywords: Boundary layer, Prandtl equation, Navier-Stokes equation, Gevrey spaces.
Mot clés : Couche limite, équation de Prandtl, équation de Navier-Stokes, espaces de Gevrey.
@article{ASENS_2015__48_6_1273_0, author = {G\'erard-Varet, David and Masmoudi, Nader}, title = {Well-posedness for the {Prandtl} system without analyticity or monotonicity}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1273--1325}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {6}, year = {2015}, doi = {10.24033/asens.2270}, mrnumber = {3429469}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2270/} }
TY - JOUR AU - Gérard-Varet, David AU - Masmoudi, Nader TI - Well-posedness for the Prandtl system without analyticity or monotonicity JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 1273 EP - 1325 VL - 48 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2270/ DO - 10.24033/asens.2270 LA - en ID - ASENS_2015__48_6_1273_0 ER -
%0 Journal Article %A Gérard-Varet, David %A Masmoudi, Nader %T Well-posedness for the Prandtl system without analyticity or monotonicity %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 1273-1325 %V 48 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2270/ %R 10.24033/asens.2270 %G en %F ASENS_2015__48_6_1273_0
Gérard-Varet, David; Masmoudi, Nader. Well-posedness for the Prandtl system without analyticity or monotonicity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 6, pp. 1273-1325. doi : 10.24033/asens.2270. http://www.numdam.org/articles/10.24033/asens.2270/
Well-posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., Volume 28 (2015), pp. 745-784 (ISSN: 0894-0347) | DOI | MR
Asymptotic stability for the Couette flow in the 2D Euler equations, Appl. Math. Res. Express. AMRX, Volume 1 (2014), pp. 157-175 (ISSN: 1687-1200) | MR | Zbl
Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, Volume 12 (1999), pp. 495-512 (ISSN: 0951-7715) | DOI | MR | Zbl
The stability of solutions of the classical unsteady boundary-layer equation, Phys. Fluids, Volume 28 (1985), pp. 441-443 (ISSN: 0031-9171) | DOI | MR | Zbl
Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., Volume 87 (1989), pp. 359-369 (ISSN: 0022-1236) | DOI | MR | Zbl
Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Differential Equations, Volume 23 (1998), pp. 1-16 (ISSN: 0360-5302) | DOI | MR | Zbl
, Savoirs actuels, 142, CNRS Éditions - EDP Sciences, 2001
On the stability of boundary layers of incompressible Euler equations, J. Differential Equations, Volume 164 (2000), pp. 180-222 (ISSN: 0022-0396) | DOI | MR | Zbl
On the derivation of homogeneous hydrostatic equations, M2AN Math. Model. Numer. Anal., Volume 33 (1999), pp. 965-970 (ISSN: 0764-583X) | DOI | Numdam | MR | Zbl
On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc., Volume 23 (2010), pp. 591-609 (ISSN: 0894-0347) | DOI | MR | Zbl
Remarks on the ill-posedness of the Prandtl equation, Asymptot. Anal., Volume 77 (2012), pp. 71-88 (ISSN: 0921-7134) | MR | Zbl
Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations, Commun. Math. Sci., Volume 1 (2003), pp. 293-316 http://projecteuclid.org/euclid.cms/1118152072 (ISSN: 1539-6746) | DOI | MR | Zbl
, Vydavatelský Servis, Plzeň, 2007, 162 pages (About its history and some related results) (ISBN: 978-80-86843-15-5) |On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., Volume 6 (2014), pp. 3856-3890 | MR
On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., Volume 11 (2013), pp. 269-292 (ISSN: 1539-6746) | DOI | MR | Zbl
Well-posedness of the boundary layer equations, SIAM J. Math. Anal., Volume 35 (2003), pp. 987-1004 (ISSN: 0036-1410) | DOI | MR | Zbl
Analyticity of solutions for a generalized Euler equation, J. Differential Equations, Volume 133 (1997), pp. 321-339 (ISSN: 0022-0396) | DOI | MR | Zbl
, Handbook of differential equations: evolutionary equations. Vol. III, Elsevier/North-Holland, Amsterdam, 2007, pp. 195-275 | DOI | MR | Zbl
On Landau damping, Acta Math., Volume 207 (2011), pp. 29-201 (ISSN: 0001-5962) | DOI | MR | Zbl
Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods (preprint arXiv:1206.3629 ) | MR
On the theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 231-271 (ISSN: 0003-9527) | DOI | MR | Zbl
, Applied Mathematics and Mathematical Computation, 15, Chapman & Hall/CRC, Boca Raton, FL, 1999, 516 pages (ISBN: 1-58488-015-5) | MR | Zbl
Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schrödinger equation, Indiana Univ. Math. J., Volume 47 (1998), pp. 49-73 (ISSN: 0022-2518) | DOI | MR | Zbl
Ill-posedness of the hydrostatic Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., Volume 194 (2009), pp. 877-886 (ISSN: 0003-9527) | DOI | MR | Zbl
Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys., Volume 192 (1998), pp. 433-461 (ISSN: 0010-3616) | DOI | MR | Zbl
On the global existence of solutions to the Prandtl's system, Adv. Math., Volume 181 (2004), pp. 88-133 (ISSN: 0001-8708) | DOI | MR | Zbl
Cité par Sources :