Well-posedness for the Prandtl system without analyticity or monotonicity
[Caractère bien posé de l'équation de Prandtl sans monotonie ou analycité]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 6, pp. 1273-1325.

Il a longtemps été supposé que l'équation de Prandtl n'est bien posée que sous l'hypothèse de monotonie d'Oleinik, ou pour des données analytiques. Nous montrons qu'elle est en fait localement bien posée pour des données appartenant à la classe Gevrey 7/4 en la variable x. Nous améliorons ainsi le résultat classique d'existence locale de solutions analytiques en la variable x (classe Gevrey 1). La preuve repose sur de nouvelles estimations, faisant appel à des fonctionnelles d'énergie non-quadratiques.

It has been thought for a while that the Prandtl system is only well-posed under the Oleinik monotonicity assumption or under an analyticity assumption. We show that the Prandtl system is actually locally well-posed for data that belong to the Gevrey class 7/4 in the horizontal variable x. Our result improves the classical local well-posedness result for data that are analytic in x (that is Gevrey class 1). The proof uses new estimates, based on non-quadratic energy functionals.

Publié le :
DOI : 10.24033/asens.2270
Classification : 35Q30, 35Q31, 35Q35.
Keywords: Boundary layer, Prandtl equation, Navier-Stokes equation, Gevrey spaces.
Mot clés : Couche limite, équation de Prandtl, équation de Navier-Stokes, espaces de Gevrey.
@article{ASENS_2015__48_6_1273_0,
     author = {G\'erard-Varet, David and Masmoudi, Nader},
     title = {Well-posedness for the {Prandtl} system   without analyticity or monotonicity},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1273--1325},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {6},
     year = {2015},
     doi = {10.24033/asens.2270},
     mrnumber = {3429469},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2270/}
}
TY  - JOUR
AU  - Gérard-Varet, David
AU  - Masmoudi, Nader
TI  - Well-posedness for the Prandtl system   without analyticity or monotonicity
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1273
EP  - 1325
VL  - 48
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2270/
DO  - 10.24033/asens.2270
LA  - en
ID  - ASENS_2015__48_6_1273_0
ER  - 
%0 Journal Article
%A Gérard-Varet, David
%A Masmoudi, Nader
%T Well-posedness for the Prandtl system   without analyticity or monotonicity
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1273-1325
%V 48
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2270/
%R 10.24033/asens.2270
%G en
%F ASENS_2015__48_6_1273_0
Gérard-Varet, David; Masmoudi, Nader. Well-posedness for the Prandtl system   without analyticity or monotonicity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 6, pp. 1273-1325. doi : 10.24033/asens.2270. http://www.numdam.org/articles/10.24033/asens.2270/

Alexandre, R.; Wang, Y.-G.; Xu, C.-J.; Yang, T. Well-posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., Volume 28 (2015), pp. 745-784 (ISSN: 0894-0347) | DOI | MR

Bedrossian, J.; Masmoudi, N. Asymptotic stability for the Couette flow in the 2D Euler equations, Appl. Math. Res. Express. AMRX, Volume 1 (2014), pp. 157-175 (ISSN: 1687-1200) | MR | Zbl

Brenier, Y. Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, Volume 12 (1999), pp. 495-512 (ISSN: 0951-7715) | DOI | MR | Zbl

Cowley, S. J.; Hocking, L. M.; Tutty, O. R. The stability of solutions of the classical unsteady boundary-layer equation, Phys. Fluids, Volume 28 (1985), pp. 441-443 (ISSN: 0031-9171) | DOI | MR | Zbl

Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., Volume 87 (1989), pp. 359-369 (ISSN: 0022-1236) | DOI | MR | Zbl

Ferrari, A. B.; Titi, E. S. Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Differential Equations, Volume 23 (1998), pp. 1-16 (ISSN: 0360-5302) | DOI | MR | Zbl

Guyon, É.; Hulin, J.-P.; Petit, L., Savoirs actuels, 142, CNRS Éditions - EDP Sciences, 2001

Grenier, E. On the stability of boundary layers of incompressible Euler equations, J. Differential Equations, Volume 164 (2000), pp. 180-222 (ISSN: 0022-0396) | DOI | MR | Zbl

Grenier, E. On the derivation of homogeneous hydrostatic equations, M2AN Math. Model. Numer. Anal., Volume 33 (1999), pp. 965-970 (ISSN: 0764-583X) | DOI | Numdam | MR | Zbl

Gérard-Varet, D.; Dormy, E. On the ill-posedness of the Prandtl equation, J. Amer. Math. Soc., Volume 23 (2010), pp. 591-609 (ISSN: 0894-0347) | DOI | MR | Zbl

Gérard-Varet, D.; Nguyen, T. Remarks on the ill-posedness of the Prandtl equation, Asymptot. Anal., Volume 77 (2012), pp. 71-88 (ISSN: 0921-7134) | MR | Zbl

Hong, L.; Hunter, J. K. Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations, Commun. Math. Sci., Volume 1 (2003), pp. 293-316 http://projecteuclid.org/euclid.cms/1118152072 (ISSN: 1539-6746) | DOI | MR | Zbl

Kufner, A.; Maligranda, L.; Persson, L.-E., Vydavatelský Servis, Plzeň, 2007, 162 pages (About its history and some related results) (ISBN: 978-80-86843-15-5) | MR | Zbl

Kukavica, I.; Masmoudi, N.; Vicol, V.; Wong, T. K. On the local well-posedness of the Prandtl and the hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., Volume 6 (2014), pp. 3856-3890 | MR

Kukavica, I.; Vicol, V. On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., Volume 11 (2013), pp. 269-292 (ISSN: 1539-6746) | DOI | MR | Zbl

Lombardo, M. C.; Cannone, M.; Sammartino, M. Well-posedness of the boundary layer equations, SIAM J. Math. Anal., Volume 35 (2003), pp. 987-1004 (ISSN: 0036-1410) | DOI | MR | Zbl

Levermore, C. D.; Oliver, M. Analyticity of solutions for a generalized Euler equation, J. Differential Equations, Volume 133 (1997), pp. 321-339 (ISSN: 0022-0396) | DOI | MR | Zbl

Masmoudi, N., Handbook of differential equations: evolutionary equations. Vol. III, Elsevier/North-Holland, Amsterdam, 2007, pp. 195-275 | DOI | MR | Zbl

Mouhot, C.; Villani, C. On Landau damping, Acta Math., Volume 207 (2011), pp. 29-201 (ISSN: 0001-5962) | DOI | MR | Zbl

Masmoudi, N.; Wong, T. K. Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods (preprint arXiv:1206.3629 ) | MR

Masmoudi, N.; Wong, T. K. On the Hs theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 231-271 (ISSN: 0003-9527) | DOI | MR | Zbl

Oleinik, O. A.; Samokhin, V. N., Applied Mathematics and Mathematical Computation, 15, Chapman & Hall/CRC, Boca Raton, FL, 1999, 516 pages (ISBN: 1-58488-015-5) | MR | Zbl

Oliver, M.; Titi, E. S. Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Schrödinger equation, Indiana Univ. Math. J., Volume 47 (1998), pp. 49-73 (ISSN: 0022-2518) | DOI | MR | Zbl

Renardy, M. Ill-posedness of the hydrostatic Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., Volume 194 (2009), pp. 877-886 (ISSN: 0003-9527) | DOI | MR | Zbl

Sammartino, M.; Caflisch, R. E. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys., Volume 192 (1998), pp. 433-461 (ISSN: 0010-3616) | DOI | MR | Zbl

Xin, Z.; Zhang, L. On the global existence of solutions to the Prandtl's system, Adv. Math., Volume 181 (2004), pp. 88-133 (ISSN: 0001-8708) | DOI | MR | Zbl

Cité par Sources :