On base point freeness in positive characteristic
[Sur la vacuité du lieu-base en caractéristique positive]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1239-1272.

Nous démontrons que, si (X,A+B) est une paire définie sur un corps algébriquement clos de caractéristique positive telle que (X,B) est fortement F-régulière, A est ample et KX+A+B est strictement nef, alors KX+A+B est ample. De la même manière, nous prouvons que, si (X,A+B) est une paire telle que A est ample et B est grand (« big »), alors une condition nécessaire et suffisante pour que le diviseur KX+A+B soit grand est qu'il soit nef et de dimension nef maximale. Nous utilisons ces résultats pour démontrer un théorème de rationalité pour le seuil nef, ainsi que plusieurs résultats nécessaires au programme des modèles minimaux en caractéristique positive en dimension trois.

We prove that if (X,A+B) is a pair defined over an algebraically closed field of positive characteristic such that (X,B) is strongly F-regular, A is ample and KX+A+B is strictly nef, then KX+A+B is ample. Similarly, we prove that for a log pair (X,A+B) with A being ample and B effective, KX+A+B is big if it is nef and of maximal nef dimension. As an application, we establish a rationality theorem for the nef threshold and various results towards the minimal model program in dimension three in positive characteristic.

Publié le :
DOI : 10.24033/asens.2269
Classification : 14E30, 13A35.
Keywords: Birational geometry, positive characteristic.
Mot clés : Géométrie birationnele, caractéristique positive.
@article{ASENS_2015__48_5_1239_0,
     author = {Cascini, Paolo and Xu, Hiromu Tanaka Chenyang},
     title = {On base point freeness  in positive characteristic},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1239--1272},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {5},
     year = {2015},
     doi = {10.24033/asens.2269},
     mrnumber = {3429479},
     zbl = {1408.14020},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2269/}
}
TY  - JOUR
AU  - Cascini, Paolo
AU  - Xu, Hiromu Tanaka Chenyang
TI  - On base point freeness  in positive characteristic
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1239
EP  - 1272
VL  - 48
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2269/
DO  - 10.24033/asens.2269
LA  - en
ID  - ASENS_2015__48_5_1239_0
ER  - 
%0 Journal Article
%A Cascini, Paolo
%A Xu, Hiromu Tanaka Chenyang
%T On base point freeness  in positive characteristic
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1239-1272
%V 48
%N 5
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2269/
%R 10.24033/asens.2269
%G en
%F ASENS_2015__48_5_1239_0
Cascini, Paolo; Xu, Hiromu Tanaka Chenyang. On base point freeness  in positive characteristic. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1239-1272. doi : 10.24033/asens.2269. https://www.numdam.org/articles/10.24033/asens.2269/

Abhyankar, S. S., Springer Monographs in Math., Springer, 1998, 312 pages | MR | Zbl

Ambro, F. Nef dimension of minimal models, Math. Ann., Volume 330 (2004), pp. 309-322 | DOI | MR | Zbl

Angehrn, U.; Siu, Y. Effective freeness and point separation for adjoint bundles, Invent. Math., Volume 122 (1995), pp. 291-308 | DOI | MR | Zbl

Bauer, T.; Campana, F.; Eckl, T.; Kebekus, S.; Peternell, T.; Rams, S.; Szemberg, T.; Wotzlaw, L. A reduction map for nef line bundles, Complex geometry (Göttingen, 2000), Springer (2002), pp. 27-36 | DOI | MR | Zbl

Birkar, C.; Cascini, P.; Hacon, C. D.; McKernan, J. Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010), pp. 405-468 | DOI | MR | Zbl

Boucksom, S.; Demailly, J.-P.; Păun, M.; Peternell, T. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013), pp. 201-248 | DOI | MR | Zbl

Bombieri, E.; Mumford, D., Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 23-42 | DOI | MR | Zbl

Cossart, V.; Piltant, O. Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra, Volume 320 (2008), pp. 1051-1082 (ISSN: 0021-8693) | DOI | MR | Zbl

Cossart, V.; Piltant, O. Resolution of singularities of threefolds in positive characteristic. II, J. Algebra, Volume 321 (2009), pp. 1836-1976 | DOI | MR | Zbl

Campana, F.; Peternell, T. Algebraicity of the ample cone of projective varieties, J. reine angew. Math., Volume 407 (1990), pp. 160-166 | MR | Zbl

Cutkosky, S., Graduate Studies in Math., 63, Amer. Math. Soc., 2004, 186 pages | MR | Zbl

Eisenbud, D., Graduate Texts in Math., 150, Springer, 1995 | MR | Zbl

Gruson, L.; Raynaud, M. Critères de platitude et de projectivité. Techniques de “platification” d'un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl

Hartshorne, R., Lecture Notes in Math., 156, Springer, 1970 | MR | Zbl

Hochster, M.; Huneke, C. Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc., Volume 3, pp. 31-116 | MR | Zbl

Hacon, C. D.; Xu, C. On the three dimensional minimal model program in positive characteristic (preprint arXiv:1302.0298 ) | MR

Kawamata, Y. Subadjunction of log canonical divisors for a subvariety of codimension 2, Birational algebraic geometry (Baltimore, MD, 1996) (Contemp. Math.), Volume 207 (1997), pp. 79-88 | DOI | MR | Zbl

Keel, S. Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc., Volume 330 (1992), pp. 545-574 (ISSN: 0002-9947) | MR | Zbl

Keel, S. Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math., Volume 149 (1999), pp. 253-286 | DOI | MR | Zbl

Kleiman, S., Fundamental algebraic geometry (Math. Surveys Monogr.), Volume 123, Amer. Math. Soc., 2005, pp. 235-321 | MR

Kollár, J.; Mori, S., Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, 254 pages | MR | Zbl

Kawamata, Y.; Matsuda, K.; Matsuki, K. Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl

Keel, S.; Matsuki, K.; McKernan, J. Log abundance theorem for threefolds, Duke Math. J., Volume 75 (1994), pp. 99-119 | DOI | MR | Zbl

Kollár, J., Cambridge Tracts in Mathematics, 200, Cambridge Univ. Press, 2013, 370 pages | MR | Zbl

Kollár, J. Extremal rays on smooth threefolds, Ann. Sci. École Norm. Sup., Volume 24 (1991), pp. 339-361 | DOI | Numdam | MR | Zbl

Kollár, J., Ergebn. Math. Grenzg., 32, Springer, 1996 | MR | Zbl

Lazarsfeld, R., Ergebn. Math. Grenzg., 48, Springer, Berlin, 2004, 387 pages (ISBN: 3-540-22533-1) | DOI | MR

Miyaoka, Y.; Mori, S. A Numerical Criterion for Uniruledness, Ann. of Math., Volume 124 (1986), pp. 65-69 | DOI | MR | Zbl

Mori, S. Threefolds whose canonical bundles are not numerically effective, Ann. of Math., Volume 116 (1982), pp. 133-176 | DOI | MR | Zbl

Mehta, V. B.; Subramanian, S. Nef line bundles which are not ample, Math. Z., Volume 219 (1995), pp. 235-244 | DOI | MR | Zbl

Mustaţă, M.; Takagi, S.; Watanabe, K. F-thresholds and Bernstein-Sato polynomials, European Congress of Mathematics (2005), pp. 341-364 | MR | Zbl

Prokhorov, Y. G.; Shokurov, V. V. Towards the second main theorem on complements, J. Algebraic Geom., Volume 18 (2009), pp. 151-199 (ISSN: 1056-3911) | DOI | MR | Zbl

Schwede, K. F-adjunction, Algebra & Number Theory, Volume 3 (2009), pp. 907-950 | DOI | MR | Zbl

Schwede, K.; Smith, K. E. Globally F-regular and log Fano varieties, Adv. Math., Volume 224 (2010), pp. 863-894 | DOI | MR | Zbl

Tanaka, H. Minimal models and abundance for positive characteristic log surfaces (preprint arXiv:1201.5699, to appear in Nagoya Math. J ) | MR

Tanaka, H. The trace map of Frobenius and extending sections for threefolds (preprint arXiv:1302.3134 ) | MR

McKernan, J. private Communication (2013)

  • Bernasconi, Fabio; Martin, Gebhard Bounding geometrically integral del Pezzo surfaces, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2024.80
  • Filipazzi, Stefano; Waldron, Joe Connectedness Principle for 3-Folds in Characteristic p>5, Michigan Mathematical Journal, Volume 74 (2024) no. 4 | DOI:10.1307/mmj/20216143
  • Xie, Lingyao; Xue, Qingyuan On the Termination of the MMP for Semistable Fourfolds in Mixed Characteristic, Michigan Mathematical Journal, Volume 74 (2024) no. 5 | DOI:10.1307/mmj/20216172
  • Arvidsson, Emelie; Bernasconi, Fabio; Patakfalvi, Zsolt On the properness of the moduli space of stable surfaces over Z [1/30], Moduli, Volume 1 (2024) | DOI:10.1112/mod.2024.1
  • XU, ZHENG NOTE ON THE THREE-DIMENSIONAL LOG CANONICAL ABUNDANCE IN CHARACTERISTIC >3, Nagoya Mathematical Journal, Volume 255 (2024), p. 694 | DOI:10.1017/nmj.2024.3
  • Hacon, Christopher; Witaszek, Jakub On the relative minimal model program for fourfolds in positive and mixed characteristic, Forum of Mathematics, Pi, Volume 11 (2023) | DOI:10.1017/fmp.2023.6
  • Blanc, Jérémy; Fanelli, Andrea; Terpereau, Ronan Connected Algebraic Groups Acting on three-dimensional Mori Fibrations, International Mathematics Research Notices, Volume 2023 (2023) no. 2, p. 1572 | DOI:10.1093/imrn/rnab293
  • Takamatsu, Teppei; Yoshikawa, Shou Minimal model program for semi-stable threefolds in mixed characteristic, Journal of Algebraic Geometry, Volume 32 (2023) no. 3, p. 429 | DOI:10.1090/jag/813
  • Stigant, Liam On the boundedness of globally F-split varieties, Mathematische Zeitschrift, Volume 303 (2023) no. 4 | DOI:10.1007/s00209-023-03236-3
  • Bhatt, Bhargav; Ma, Linquan; Patakfalvi, Zsolt; Schwede, Karl; Tucker, Kevin; Waldron, Joe; Witaszek, Jakub Globally ++-regular varieties and the minimal model program for threefolds in mixed characteristic, Publications mathématiques de l'IHÉS, Volume 138 (2023) no. 1, p. 69 | DOI:10.1007/s10240-023-00140-8
  • Beheshti, Roya; Lehmann, Brian; Riedl, Eric; Tanimoto, Sho Rational curves on del Pezzo surfaces in positive characteristic, Transactions of the American Mathematical Society, Series B, Volume 10 (2023) no. 14, p. 407 | DOI:10.1090/btran/138
  • Zhuang, Ziquan Fano varieties with large Seshadri constants in positive characteristic, Annales de l'Institut Fourier, Volume 72 (2022) no. 2, p. 685 | DOI:10.5802/aif.3477
  • Hacon, Christopher; Witaszek, Jakub The minimal model program for threefolds in characteristic 5, Duke Mathematical Journal, Volume 171 (2022) no. 11 | DOI:10.1215/00127094-2022-0024
  • Das, Omprokash; Waldron, Joe On the log minimal model program for threefolds over imperfect fields of characteristic p>5p>5, Journal of the London Mathematical Society, Volume 106 (2022) no. 4, p. 3895 | DOI:10.1112/jlms.12677
  • Hacon, Christopher; Witaszek, Jakub On the Relative Minimal Model Program for Threefolds in Low Characteristics, Peking Mathematical Journal, Volume 5 (2022) no. 2, p. 365 | DOI:10.1007/s42543-021-00037-7
  • Cascini, Paolo New directions in the Minimal Model Program, Bollettino dell'Unione Matematica Italiana, Volume 14 (2021) no. 1, p. 179 | DOI:10.1007/s40574-020-00250-9
  • Witaszek, Jakub On the canonical bundle formula and log abundance in positive characteristic, Mathematische Annalen, Volume 381 (2021) no. 3-4, p. 1309 | DOI:10.1007/s00208-021-02231-5
  • Tanaka, Hiromu On p‐power freeness in positive characteristic, Mathematische Nachrichten, Volume 294 (2021) no. 10, p. 1968 | DOI:10.1002/mana.202000118
  • Xu, Chenyang; Zhang, Lei Nonvanishing for 3-folds in characteristic p>5, Duke Mathematical Journal, Volume 168 (2019) no. 7 | DOI:10.1215/00127094-2018-0066
  • Bernasconi, Fabio Non-normal purely log terminal centres in characteristic p3 p ⩾ 3, European Journal of Mathematics, Volume 5 (2019) no. 4, p. 1242 | DOI:10.1007/s40879-018-00310-7
  • Zhang, Lei Abundance for non‐uniruled 3‐folds with non‐trivial Albanese maps in positive characteristics, Journal of the London Mathematical Society, Volume 99 (2019) no. 2, p. 332 | DOI:10.1112/jlms.12171
  • Das, Omprokash; Waldron, Joe On the abundance problem for 3-folds in characteristic p>5 p > 5, Mathematische Zeitschrift, Volume 292 (2019) no. 3-4, p. 937 | DOI:10.1007/s00209-018-2110-5
  • Tanaka, Hiromu Behavior of canonical divisors under purely inseparable base changes, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2018 (2018) no. 744, p. 237 | DOI:10.1515/crelle-2015-0111
  • BIRKAR, CAUCHER; CHEN, YIFEI; ZHANG, LEI IITAKA CONJECTURE FOR 3-FOLDS OVER FINITE FIELDS, Nagoya Mathematical Journal, Volume 229 (2018), p. 21 | DOI:10.1017/nmj.2016.61
  • Birkar, Caucher; Waldron, Joe Existence of Mori fibre spaces for 3-folds in char p, Advances in Mathematics, Volume 313 (2017), p. 62 | DOI:10.1016/j.aim.2017.03.032
  • Cascini, Paolo; Tanaka, Hiromu; Witaszek, Jakub On log del Pezzo surfaces in large characteristic, Compositio Mathematica, Volume 153 (2017) no. 4, p. 820 | DOI:10.1112/s0010437x16008265
  • Tanaka, Hiromu Semiample perturbations for log canonical varieties over an F-finite field containing an infinite perfect field, International Journal of Mathematics, Volume 28 (2017) no. 05, p. 1750030 | DOI:10.1142/s0129167x17500306
  • Birkar, Caucher The augmented base locus of real divisors over arbitrary fields, Mathematische Annalen, Volume 368 (2017) no. 3-4, p. 905 | DOI:10.1007/s00208-016-1441-y
  • Nakamura, Yusuke; Witaszek, Jakub On the base point free theorem and Mori dream spaces for log canonical threefolds over the algebraic closure of a finite field, Mathematische Zeitschrift, Volume 287 (2017) no. 3-4, p. 1343 | DOI:10.1007/s00209-017-1871-6
  • Witaszek, Jakub Effective bounds on singular surfaces in positive characteristic, Michigan Mathematical Journal, Volume 66 (2017) no. 2 | DOI:10.1307/mmj/1491465684
  • Wang, Yuan On relative rational chain connectedness of threefolds with anti-big canonical divisors in positive characteristics, Pacific Journal of Mathematics, Volume 290 (2017) no. 1, p. 231 | DOI:10.2140/pjm.2017.290.231
  • Patakfalvi, Zsolt; Schwede, Karl; Tucker, Kevin Positive characteristic algebraic geometry, Surveys on Recent Developments in Algebraic Geometry, Volume 95 (2017), p. 33 | DOI:10.1090/pspum/095/01640
  • Zhang, Lei A Note on Iitaka's Conjecture C3,1 in Positive Characteristics, Taiwanese Journal of Mathematics, Volume 21 (2017) no. 3 | DOI:10.11650/tjm/7931
  • Patakfalvi, Zsolt Frobenius techniques in birational geometry, arXiv (2016) | DOI:10.48550/arxiv.1610.03390 | arXiv:1610.03390
  • Das, Omprokash; Hacon, Christopher D. On the Adjunction Formula for 3-folds in characteristic p>5, arXiv (2015) | DOI:10.48550/arxiv.1505.05903 | arXiv:1505.05903
  • Wang, Yuan On relative rational chain connectedness of threefolds with anti-big canonical divisors in positive characteristics, arXiv (2015) | DOI:10.48550/arxiv.1512.06189 | arXiv:1512.06189
  • Birkar, Caucher; Chen, Yifei; Zhang, Lei Iitaka's Cn,m conjecture for 3-folds over finite fields, arXiv (2015) | DOI:10.48550/arxiv.1507.08760 | arXiv:1507.08760
  • Birkar, Caucher; Waldron, Joe Existence of Mori fibre spaces for 3-folds in char p, arXiv (2014) | DOI:10.48550/arxiv.1410.4511 | arXiv:1410.4511
  • Chiecchio, Alberto; Enescu, Florian; Miller, Lance Edward; Schwede, Karl Test ideals in rings with finitely generated anti-canonical algebras, arXiv (2014) | DOI:10.48550/arxiv.1412.6453 | arXiv:1412.6453
  • Birkar, Caucher Existence of flips and minimal models for 3-folds in char p, arXiv (2013) | DOI:10.48550/arxiv.1311.3098 | arXiv:1311.3098
  • Xu, Chenyang On base point free theorem of threefolds in positive characteristic, arXiv (2013) | DOI:10.48550/arxiv.1311.3819 | arXiv:1311.3819
  • Birkar, Caucher The augmented base locus of real divisors over arbitrary fields, arXiv (2013) | DOI:10.48550/arxiv.1312.0239 | arXiv:1312.0239

Cité par 42 documents. Sources : Crossref, NASA ADS