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ON BASE POINT FREENESS
IN POSITIVE CHARACTERISTIC

 P CASCINI, H TANAKA  C XU

A. – We prove that if (X, A + B) is a pair defined over an algebraically closed field of
positive characteristic such that (X, B) is strongly F -regular, A is ample and KX +A+B is strictly nef,
then KX + A + B is ample. Similarly, we prove that for a log pair (X, A + B) with A being ample and
B effective, KX +A+B is big if it is nef and of maximal nef dimension. As an application, we establish
a rationality theorem for the nef threshold and various results towards the minimal model program in
dimension three in positive characteristic.

R. – Nous démontrons que, si (X, A+B) est une paire définie sur un corps algébriquement
clos de caractéristique positive telle que (X, B) est fortement F -régulière, A est ample et KX+A+B est
strictement nef, alors KX +A+B est ample. De la même manière, nous prouvons que, si (X, A+B) est
une paire telle que A est ample et B est grand (« big »), alors une condition nécessaire et suffisante pour
que le diviseur KX + A + B soit grand est qu’il soit nef et de dimension nef maximale. Nous utilisons
ces résultats pour démontrer un théorème de rationalité pour le seuil nef, ainsi que plusieurs résultats
nécessaires au programme des modèles minimaux en caractéristique positive en dimension trois.

1. Introduction

One of the main objectives of the minimal model program is the study of the linear
system associated to an adjoint divisor. For example, in characteristic 0, we have a good
understanding of the linear system given by a multiple of a Q-divisor L which is the sum
of the canonical divisor and an ample Q-divisor (e.g., see [18], [26], [5] and the references
therein). A fundamental tool in birational geometry is Kawamata’s base point free theorem
which asserts that if such a Q-divisor L is nef then it is semiample (see [26]).

Because of the failure of the Kodaira vanishing theorem in positive characteristic, Kawa-
mata’s base point free theorem and its generalizations are not known to hold in this case.
The aim of this paper is to present a new approach to the base point free theorem in posi-
tive characteristic. We prove a special case of this result as well as several results which, in
characteristic 0, are known to follow from the base point free theorem.
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1240 P. CASCINI, H. TANAKA AND C. XU

1.1. Strictly nef divisors

We first study strictly nef adjoint divisors, with possibly real coefficients. Recall that an
R-Cartier R-divisor L on a proper variety X is said to be strictly nef if its intersection with
any curve onX is positive. Mumford has constructed the first example of a strictly nef divisor
which is not ample (see [15, Example 10]). See [29, Remark 3.2] for a similar example in
positive characteristic. However, we show:

T 1.1. – Let (X,B) be a strongly F -regular pair defined over an algebraically
closed field k of characteristic p > 0, where B is an effective R-divisor. Assume that A is an
ample R-divisor such that KX +A+B is strictly nef. Then KX +A+B is ample.

From Theorem 1.1, we immediately obtain the following result:

C 1.2. – Let (X,∆) be a strongly F -regular projective pair with an effective
R-divisor ∆ over an algebraically closed field k of characteristic p > 0 such that KX + ∆

is big and strictly nef. Then KX + ∆ is ample.

In addition, we obtain the following result on the rationality of the nef threshold:

T 1.3. – Let (X,B) be a strongly F -regular pair defined over an algebraically
closed field of characteristic p > 0, where B is an effective Q-divisor. Assume that KX + B

is not nef and A is an ample Q-divisor. Let

λ := min{t > 0 | KX +B + tA is nef }.

Then there exists a curve C in X such that (KX + λA + B) · C = 0. In particular, λ is a
rational number.

When X is smooth and B = 0, the results follow from Mori’s cone theorem [31]. We note
that the assumption that (X,B) is strongly F -regular is analogous but more restrictive than
the assumption that (X,B) is klt. In fact, in characteristic 0, all these statements are direct
consequences of Kawamata’s base point free theorem as we know that if (X,B) is a projective
klt pair such that B is big and KX + B is nef, then KX + B is indeed semi-ample (see e.g.,
[26, 3.3]).

In positive characteristic, since [16] new techniques involving the Frobenius map have
been developed to establish the positive characteristic analogs of many of the results, which
in characteristic 0, are traditionally deduced from vanishing theorems. Very roughly, this is
the general strategy that we follow in this paper as well.

On the other hand, the techniques used to prove the above results were inspired by an
earlier attempt of the second author to prove Fujita’s conjecture, which in turn was inspired
by the proof of the effective base point free theorem in characteristic zero, by Angehrn and
Siu [3]. In their paper, the authors construct zero-dimensional subschemes which are minimal
log canonical centers for a suitable pair and using Nadel’s vanishing theorems they are able
to extend non-trivial sections to the whole variety. In positive characteristic, using the idea of
twisting by Frobenius, the analogue would be to construct zero dimensional F -pure centers
and use F -adjunction (see [34] for more details). Unfortunately there is a technical issue due
to the index of the adjoint divisor, which we are not able to deal with, in general. Therefore,
instead of using one divisor to cut the center, we study the trace map for all the powers of
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ON BASE POINT FREENESS IN POSITIVE CHARACTERISTIC 1241

Frobenius and assign different coefficients for each of these. For this reason, we introduce
the use of F -threshold functions to replace the classical F -pure threshold and obtain a zero
dimensional subscheme from which we can lift sections (see Subsection 3.1 and 3.2 for more
details). Theorem 1.1 and Theorem 1.3 are proven in Section 4.

1.2. Divisors of maximal nef dimension

Using the same methods as above but cutting at two very general points, we study adjoint
divisors of maximal nef dimension. More specifically, given a log pair (X,B) such that
KX + B is nef, the nef reduction map associated to KX + B (see Subsection 2.4 for the
definition) has proven to be a powerful tool to approach the Abundance conjecture (e.g., see
[7, Section 9] and [2] for more details). Recall that a divisor over a proper variety X is said
to be of maximal nef dimension if its intersection with any movable curve in X is positive
(see Subsection 2.1 for the definition of movable curve). Thus, we obtain the following weak
version of the base point free theorem:

T 1.4. – Let X be a normal projective variety over an algebraically closed field of
characteristic p > 0. Assume that A is an ample R-divisor and B ≥ 0 is an R-divisor such that
KX +B is R-Cartier andKX +A+B is nef and of maximal nef dimension. ThenKX +A+B

is big.

Note that the previous theorem does not require any assumption on the singularities of
the pair (X,B), nor on the coefficients of B.

As an application, we obtain the following result on the extremal ray associated to a nef
but not big adjoint divisor:

C 1.5. – Let X be a normal projective variety, defined over an algebraically
closed field of characteristic p > 0. Assume thatA is an ample R-divisor,B ≥ 0 is an R-divisor
such that KX +B is R-Cartier and L = KX +A+B is nef and not big. Assume that

NE(X) ∩ L⊥ = R

is an extremal ray of NE(X).

Then X is covered by rational curves C such that [C] ∈ R and

−(KX +B) · C ≤ 2 dimX.

Theorem 1.4 and Corollary 1.5 are proven in Section 5.

R 1.6. – We were informed by J. McKernan that Theorem 1.4 and Corollary 1.5
were independently obtained by him using different methods [28].
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1242 P. CASCINI, H. TANAKA AND C. XU

1.3. Threefolds

We now focus on the study of three dimensional projective varieties. We first prove the
following version of the cone theorem:

T 1.7. – Let X be a Q-factorial projective threefold defined over an algebraically
closed field of characteristic p > 0. Let B be an effective Q-divisor on X whose coefficients are
strictly less than one. Assume that KX + B is not nef. Then there exist an ample Q-divisor A
such that KX +A+B is not nef and finitely many curves C1, . . . , Cr on X such that

NE(X) = NE(X)KX+A+B≥0 +

r∑
i=1

R≥0[Ci].

By combining our results with previous ones [23, 20, 14], we obtain a weak version of the
minimal model program for three dimensional varieties:

T 1.8. – Let X be a Q-factorial terminal projective threefold defined over an
algebraically closed field of characteristic p > 5. Then there exists a KX -negative birational
contraction f : X 99K Y to a Q-factorial terminal projective threefold such that one of the
following is true:

1. if KX is pseudo-effective, then KY is nef;
2. if KX is not pseudo-effective, then there exist a KY -negative extremal ray R of NE(Y )

and a surjective morphism g : Y → Z to a normal projective variety Z such that
dimY > dimZ, g∗ OY = OZ and for every curve C in Y , g(C) is a point if and only
if [C] ∈ R.

Theorem 1.7 and Theorem 1.8 are proven in Subsection 6.1.

We also prove the following version of the base point free theorem in dimension three,
under some assumptions on the coefficients of the boundary:

T 1.9. – Let (X,B) be a projective three dimensional log canonical pair defined
over an algebraically closed field of characteristic p > 0, for some big Q-divisor B ≥ 0 such
that KX +B is nef. Assume that p > 2

a for any coefficient a of B.

1. If KX +B is not numerically trivial, then

κ(X,KX +B) = ν(X,KX +B) = n(X,KX +B).

2. If κ(X,KX +B) = 1 or 2, then KX +B is semiample.
3. If k = Fp, and all coefficients of B are strictly less than 1, then KX +B is semiample.

Note that if (X,B) is a three dimensional projective log pair such thatKX +B is big and
nef, then Keel proved a version of the base point free theorem which allows the target space
to be an algebraic space (cf. [20, Theorem 0.5]).

Besides using Theorem 1.4, the main tool used to prove Theorem 1.9 is a canonical bundle
formula for fibrations of relative dimension one. The proof is contained in Subsection 6.2.
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2. Preliminary results

2.1. Notation and conventions

We work over an algebraically closed field k of positive characteristic p. If K is a field,
we denote by K its algebraic closure. By abuse of notation, we will often write K instead
of SpecK.

A variety X is an integral scheme which is separated and of finite type over k. A curve is
a one dimensional variety. A curve C in a variety X is said to be movable if it is a member
of an algebraic family C/T = (Ct)t∈T parametrized by a variety T and such that C → X is
dominant.

When the ground field is uncountable, by a very general point x ∈ X, we mean a point x
which is in a subset U given by the complement of a countable union of proper subvarieties.
By a pair of very general points, we mean (x, y) ∈ U × U .

Let K ∈ {Q,R}. A K-line bundle L on a proper scheme X is an element of the group
Pic(X)⊗K. We will use the additive notation on this group. AK-line bundle L onX is said
to be nef (respectively strictly nef, numerically trivial) if L · C ≥ 0 (respectively > 0, = 0) for
all the curvesC inX. TheK-line bundle L is said to be of maximal nef dimension if L ·C > 0

for all the movable curves C in X.
If X is a normal variety, we denote by DivR(X) the vector space of R-Cartier R-divi-

sors of X, by N1(X) the vector space of 1-cycles on X up to numerical equivalence, and
by NE(X) ⊆ N1(X) the closure of the convex cone generated by the classes of effective
1-cycles in X. If L is an R-Cartier R-divisor on X, we denote by L⊥ ⊆ N1(X) the set
of 1-cycles C on X such that L · C = 0 and by NE(X)L≥0 the set of 1-cycles C ∈ NE(X)

such that L · C ≥ 0. Given any R-Cartier R-divisor D and an ample R-divisor H, we define
the nef threshold of D with respect to H to be

λ = min{t ≥ 0 | D + tH is nef}.

Given a Q-line bundleL on a proper varietyX, we denote by κ(X,L) its Iitaka dimension
and we define its volume as

vol(X,L) = lim sup
m→∞

n! h0(X,mL)

mn

where n is the dimension of X and m is taken to be sufficiently divisible (see [27, §2.2.C] for
more details). IfL is a nef R-line bundle, we denote by ν(X,L) the numerical dimension ofL,
i.e.,

ν(X,L) = max{m ≥ 0 | Lm 6≡ 0}

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1244 P. CASCINI, H. TANAKA AND C. XU

where we denote by Lm the m-th self intersection of L.
We refer to [26] for the classical definitions of singularities (e.g., klt, log canonical)

appearing in the minimal model program, except for the fact that in our definitions we
require the pairs to have effective boundaries. In addition, given a Q-divisor B on a normal
variety X such that KX + B is Q-Cartier, we say that the pair (X,B) is sub log canonical if
a(E,X,B) ≥ −1 for any geometric valuation E over X.

Given a variety X, we denote by F : X → X the absolute Frobenius morphism. We refer
to Definition 2.7 for the definition of a strongly F -regular pair and a sharply F -pure pair. If
Z is a closed subscheme of a projective variety X, then the scheme-theoretic inverse image

Z [e] := (F e)−1(Z)

is a closed subscheme of X defined by the ideal I [pe]
Z , so that if IZ is locally generated

by f1, . . . , fk then I [pe]
Z is locally defined by fp

e

1 , . . . , fp
e

k .

2.2. Preliminaries

We begin with the following well known results.

L 2.1. – A nef R-line bundle L on a projective variety X is strictly nef if and only if
L|V is not numerically trivial for any subvariety V ⊆ X with dim(V ) ≥ 1.

Proof. – Pick an ample divisor H on X. Assume that L is strictly nef and that V ⊆ X is
a subvariety. Then

L|V · (HdimV−1 · V ) > 0.

Thus, L|V is not numerically trivial. The converse is trivial.

L 2.2. – Assume that X is a projective variety defined over an uncountable alge-
braically closed field. Let L be an R-line bundle of maximal nef dimension on X.

Then, for a very general pointx ∈ X,L|V is not numerically trivial for any subvarietyV ⊆ X
such that dimV ≥ 1 and x ∈ V .

Proof. – Cutting by hyperplanes, it suffices to prove that for a very general point x and
for any irreducible curve C through x, the restriction L|C is not numerically trivial.

Let Univ1 → Chow1 be the universal family over the Chow variety parameterizing
1-dimensional cycles. Note that the set of non-movable curves C ⊆ X is parametrized by a
countable union of subvarieties W ⊆ Chow1 such that UnivW → X is not dominant. Let
x be a very general point which is not contained in the union of the closures of the image of
each component of UnivW .

Then, the lemma follows from the fact thatL is of maximal nef dimension and any curveC
through x is a movable curve.

We need the following ampleness criterion in Section 4:

L 2.3. – LetL be a strictly nef R-Cartier R-divisor on a normal projective varietyX.
Assume that for every closed point x ∈ X, we may write L ∼R Lx where Lx is an effective
R-divisor whose support does not contain x. Then L is ample.
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Proof. – By the Nakai-Moishezon theorem (forR-divisors, see [8]), we only need to check
for any subvariety Z of X, LdimZ · Z > 0. By induction on the dimension, we can assume
that for any proper subvariety Y ( X, if ν : Y → Y is the normalization of Y , then
LdimY · Y = (ν∗L|Y )dimY > 0.

By assumption, we can write L =
∑q
i=1 ciLi for some positive numbers c1, . . . , cq and

distinct prime divisors L1, . . . , Lq. Therefore,

Ln =

q∑
i=1

ci(L|Li)n−1 > 0,

and the claim follows.

Similarly, we need the following bigness criterion in Section 5:

L 2.4. – Let X be a normal projective variety, defined over an uncountable alge-
braically closed field. LetL be a nefR-CartierR-divisor. Assume that, for any very general points
x, y ∈ X, there exists an effective R-Cartier R-divisor Lx,y ∼R L such that x ∈ Supp Lx,y
and y 6∈ Supp Lx,y. Then L is big.

Proof. – It is sufficient to show that Ln > 0. Fix a very general point x ∈ X. Then we
can find an effective R-Cartier R-divisor L1 ∼R L containing x in its support. We may write
L1 = fF + G where F is a prime divisor such that x ∈ F , f is a positive number and G is
an effective R-divisor which does not contain F in its support. Note that, since x ∈ F , if
ν : F → F is the normalization, then ν∗(L|F ) satisfies the same properties as L. Thus, by
induction on the dimension, we obtain

Ln ≥ Ln−1 · fF = f(L|F )n−1 = f(ν∗L|F )n−1 > 0.

Thus, the claim follows.

2.3. The trace map of Frobenius

All the results in this section are essentially contained in the fundamental work [34]. We
include them for the reader’s convenience.

D-P 2.5. – LetX be a normal variety, letD be an effective divisor
on X and let e be a positive integer. Then we can define an OX -module homomorphism

TreX(D) : F e∗ ( OX(−(pe − 1)KX −D))→ OX

which satisfies the following commutative diagram of OX -modules

F e∗ ( OX(−(pe − 1)KX −D))
TreX(D) //

θ '
��

OX

'
��

Hom OX (F e∗ ( OX(D)), OX)
(F e(D))∗// Hom OX ( OX , OX).

The result above has appeared in the literature before (e.g., see [34, Section 2], [37, Sec-
tion 2]). We provide a proof here for the sake of completeness.
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1246 P. CASCINI, H. TANAKA AND C. XU

Proof. – Consider the composition map

F e(D) : OX
F e→ F e∗ OX ↪→ F e∗ ( OX(D)).

Apply the contravariant functor Hom OX (−, OX):

(F e(D))∗ : Hom OX (F e∗ ( OX(D)), OX)→ Hom OX (F e∗ OX , OX)→ Hom OX ( OX , OX).

We want to show that there exists an OX -module isomorphism:

Hom OX (F e∗ ( OX(D)), OX) ' F e∗ ( OX(−(pe − 1)KX −D)).

Note that both coherent sheaves are reflexive. Denote by i : Xsm ↪→ X the open embedding
of the smooth locus of X. We have

Hom OX (F e∗ ( OX(D)), OX) ∼= i∗ Hom OXsm (F e∗ OXsm(D|Xsm), OXsm)

and
F e∗ ( OX(−(pe − 1)KX −D)) ∼= i∗F

e
∗ ( OXsm(−(pe − 1)KXsm −D|Xsm)).

Therefore, replacingX by its smooth locus, we may assume thatX is smooth. By the duality
theorem for finite morphisms, we obtain the following OX -module isomorphism

θ : Hom OX (F e∗ ( OX(D)), OX) ' Hom OX (F e∗ ( OX(D)), ωX)⊗ (ωX)−1

' F e∗ Hom OX ( OX(D), ωX)⊗ (ωX)−1

' F e∗ Hom OX ( OX(D), OX((1− pe)KX))

' F e∗ ( OX(−(pe − 1)KX −D)).

Thus, the claim follows.

P 2.6. – Let X be a normal variety, and let D be an effective divisor on X.
Fix a positive integer e and a scheme-theoretic point x ∈ X. Then, the following assertions are
equivalent:

1. TreX(D) is surjective at x.
2. The OX,x-module homomorphism

(F e(D))x : OX,x
F e→ F e∗ OX,x ↪→ F e∗ ( OX,x(D))

splits.

Proof. – Assume (1). Then, there exists ϕ ∈ Hom OX,x(F e∗ ( OX,x(D)), OX,x) such that

(F e(D))∗(ϕ) = id OX,x .

Thus, ϕ gives the required splitting.
Assume (2). Then, there exists ϕ ∈ Hom OX,x(F e∗ ( OX,x(D)), OX,x) such that

(F e(D))∗(ϕ) = id OX,x . This implies the required surjectivity.

D 2.7. – Let X be a normal variety and let B be an effective R-divisor such
that KX +B is R-Cartier. Fix a closed point x ∈ X.

1. A pair (X,B) is strongly F -regular at x if, for every effective divisor E, there exists a
positive integer e such that TreX(p(pe − 1)Bq + E) is surjective at x.

2. A pair (X,B) is sharply F -pure at x if there exists a positive integer e such that
TreX(p(pe − 1)Bq) is surjective at x.
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R 2.8. – 1. By Proposition 2.6, if B is a Q-divisor, then the above definition
coincides with the one in [34, Definition 2.7].

2. If (X,B) is strongly F -regular andE is an effective divisor, then our definition implies
that there exists a Q-divisor B′ ≥ B, such that the map TreX(p(pe − 1)B′q + E) is
surjective. Thus for any effective Cartier divisorD, we chooseE in Definition 2.7 to be
a sufficiently large effective divisor whose support contains Supp(B′ +D)∪ Sing(X).
Applying [35, Theorem 3.9], we obtain that for a sufficiently small number ε > 0, we
have that (X,B′+εD) is strongly F -regular, which implies (X,B+εD) is also strongly
F -regular as well.

3. By abuse of notation, we will often denote TreX(D) simply by Tre.

2.4. Nef reduction map

We now recall the main result of [4], which allows us to study nef line bundles on a
projective variety which are not of maximal nef dimension.

T 2.9 (Nef reduction map). – Let X be a normal projective variety defined over
an uncountable algebraically closed field k, and L be a nef R-line bundle. Then there exist an
open set U ⊆ X and a proper morphism ϕ : U → V , such that L is numerically trivial on a very
general fibre F of ϕ and for a very general point x, we have that L · C = 0 if and only if C is
contained in the fibre of ϕ containing x.

Proof. – The theorem follows from the main result in [4]. Although the result there is
stated only for line bundles on complex projective varieties, the same proof works for R-line
bundles on any variety defined over an uncountable algebraically closed field.

It follows from the previous theorem that if L is a nef line bundle on a normal projective
varietyX defined over an algebraically closed field k, we can define the nef dimensionn(X,L)

as the dimension of the variety V in Theorem 2.9, after first possibly applying a base change
so that X is defined over an uncountable field K ⊇ k. It is clear that this definition does
not depend on the choice of K. Note that L is of maximal nef dimension if and only if
n(X,L) = dimX and in general we have the inequalities:

κ(X,L) ≤ ν(X,L) ≤ n(X,L) ≤ dimX

(see [4, Proposition 2.8]).

3. Creating isolated centers

In this section, we aim to develop the method of creating isolated centers. As we men-
tioned, our approach is different from the standard one, because instead of studying one
threshold, we track a sequence of thresholds. In Subsection 3.1, we study how to cut out
(d− 1)-dimensional centers from d-dimensional centers. In Subsection 3.2, we establish the
induction process for all d.
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3.1. Cutting subschemes

In this section, we always assume that X is a projective variety defined over an alge-
braically closed field of characteristic p > 0. Our goal is to construct zero-dimensional
subschemes of X from which we can lift sections. These methods were inspired by the proof
of the effective base point free theorem in characteristic zero, by Angehrn and Siu [3].

The following result will allow us to create isolated F -pure centers.

P 3.1. – Fix a ∈ N. Let X be a projective variety. Let A be an ample R-line
bundle onX and L a nef R-line bundle onX. Let x ∈ X be a closed point and letW be a proper
closed subscheme of X. Assume dimxW ≥ 1.

Then there exist a positive integer λ0 and an ample R-line bundle A′ on X such that

1. A−A′ is ample,
2. λ0L+A′ is a Q-line bundle, and
3. for any sufficiently divisible l > 0, there exists

t ∈ H0(X, l(λ0L+A′)⊗ (mal
x + IW ))

such that t|V 6= 0 for every irreducible component V of W red such that L|V is not
numerically trivial.

Before we proceed with the proof of Proposition 3.1, we first need some preliminary
results.

L 3.2. – Fix a ∈ N. Let X be a projective variety and let V be a closed subvariety
of X. Let A be an ample R-line bundle on X and L a nef R-line bundle on X such that L|V is
not numerically trivial. Let x ∈ V be a closed point and let W ′ be a proper closed subscheme
of V .

Then there exist a positive integer λ0, such that for any integer λ ≥ λ0 there exist an ample
R-line bundle Aλ on X and a positive integer qλ such that

1. A−Aλ is ample,
2. qλ(λL+Aλ) is a line bundle, and
3. for every positive integer l, we have

H0(V, lqλ(λL+Aλ)⊗ (malqλ
x ∩ IW ′)) 6= 0.

Proof. – For every positive integer λ, we can find an ample R-line bundle Aλ such that

• A−Aλ is ample,
• λL+Aλ is a Q-line bundle, and
• Aλ − 1

2A is ample.

Indeed, we can find such an R-line bundleAλ by perturbing 3
4A. Let r denote the dimension

of V . Fix a closed point x ∈ V . Let

Hx(l) = lengthx( Ox,V /ml+1
x ) (l� 0)

be the Hilbert-Samuel function (see [12, Section 12.1]). Then Hx(l) is of the form

Hx(l) =
ex · lr

r!
+ (lower terms),
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where ex is the multiplicity of x ∈ V . We have

lim
λ→∞

vol(V, λL+Aλ) = lim
λ→∞

(λL|V +Aλ|V )r

≥ lim
λ→∞

λrL|V · (Aλ|V )r−1

≥ lim
λ→∞

λrL|V · (
1

2
A|V )r−1

= ∞.

Hence we can find a sufficiently large integer λ0 such that

vol(V, λL+Aλ) > ex · ar

for every λ ≥ λ0.

Therefore, if λ ≥ λ0 and l is sufficiently divisible, we have

h0(V, l(λL+Aλ)⊗ (mal
x ∩ IW ′))

≥ h0(V, l(λL+Aλ))− h0(V, OV /(mal
x ∩ IW ′)⊗ l(λL+Aλ))

≥ h0(V, l(λL+Aλ))− h0(V, OV /mal
x ⊗ l(λL+Aλ))− h0(W ′, l(λL+Aλ))

=
lrvol(V, λL+Aλ)

r!
− ex · (al)r

r!
+ (lower terms)

=
vol(V, λL+Aλ)− ex · ar

r!
lr + (lower terms)

→ ∞ ( if l→∞ ).

Thus, the claim follows.

L 3.3. – Fix a ∈ N. Let X be a projective variety and let W be a reduced closed
subscheme of X. Let A be an ample R-line bundle on X and L a nef R-line bundle on X.
Let x ∈ W be a closed point. If dimxW ≥ 1, then there exist a positive integer λ0 and an
ample R-line bundle A′ on X such that

1. A−A′ is ample,
2. λ0L+A′ is a Q-line bundle, and
3. for any sufficiently divisible l > 0, there exists

s ∈ H0(W, l(λ0L+A′)⊗mal
x )

such that s|V 6= 0 for every irreducible componentV ofW such thatL|V is not numerically
trivial.

Proof. – Consider the decomposition

W = V1 ∪ · · · ∪ Vq ∪ Vq+1 ∪ · · · ∪ Vr,

where V1, . . . , Vr are distinct irreducible components of W , and assume that L|Vi 6≡ 0 for
1 ≤ i ≤ q and L|Vj ≡ 0 for q + 1 ≤ j ≤ r. We may assume q ≥ 1. Let W1 := V2 ∪ · · · ∪ Vr.
We claim that there exist a positive integer λ1 and, for any λ ≥ λ1, there exists an ample
R-line bundle A(1)

λ such that

• 1
4A−A

(1)
λ is ample,

• λL+A
(1)
λ is a Q-line bundle, and
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• H0(V1, l(λL+A
(1)
λ )⊗ (mal

x ∩ IV1∩W1
)) 6= 0 for any sufficiently divisible integer l > 0.

We may assume x ∈ V1 otherwise the result is obvious. Hence, Lemma 3.2 implies the claim.
Fix λ ≥ λ1. Then, for any sufficiently divisible l > 0, we can find a non-zero section

0 6= s1 ∈ H0(V1, l(λL+A
(1)
λ )⊗ (mal

x ∩ IV1∩W1)).

After possibly replacing l by its multiple, we can find t′1 ∈ H0(W, l(λL + A
(1)
λ )) such that

t′1|V1
= s1 and t′1|W1

= 0. In particular,

t′1 ∈ H0(W, l(λL+A
(1)
λ )⊗ (mal

x + IV1)).

Let B be an ample Q-line bundle such that 1
4A − B is ample. We may assume that l is

sufficiently large so that there exists

t′′1 ∈ H0(W, lB ⊗ IW1
)

such that t′′1 |V1
6= 0. Let t1 = t′1t

′′
1 . Then t1 ∈ H0(W, l(λL+A

(1)
λ +B)⊗mal

x ) is such that

t1|V1
6= 0 and t1|Vj = 0 for j 6= 1.

We defineD(1)
λ := A

(1)
λ +B.Note that the R-line bundlesD(1)

λ and 1
2A−D

(1)
λ are ample for

any λ ≥ λ1.
Similarly, we can find positive integers λ2, . . . , λq and sequences of ample R-line bundles

{D(2)
λ }λ≥λ2 , . . . , {D

(q)
λ }λ≥λq such that if λ0 := max{λi} then

• 1
2A−D

(i)
λ0

is ample,

• λ0L+D
(i)
λ0

is a Q-line bundle, and
• for any sufficiently divisible integer l > 0, there exists

ti ∈ H0(W, l(λ0L+D
(i)
λ0

)⊗mal
x )

such that
ti|Vi 6= 0 and ti|Vj = 0 for j 6= i.

We define an ample R-line bundle A′ such that

• A−A′ is ample,
• A′ − 1

2A is ample, and
• λ0L+A′ is a Q-line bundle.

Then,
A′ −D(i)

λ0
= (λ0L+A′)− (λ0L+D

(i)
λ0

)

is a Q-line bundle. Moreover,

A′ −D(i)
λ0

= (A′ − 1

2
A) + (

1

2
A−D(i)

λ0
)

is ample. Thus, for sufficiently divisible integer l > 0 and for any i = 1, . . . , q, there exists
ti ∈ H0(W, l(A′ −D(i)

λ0
)) such that ti|Vi 6= 0. Let

ui := titi ∈ H0(W, l(λ0L+A′)⊗mal
x ).

Then, ui satisfies
ui|Vi 6= 0 and ui|Vj = 0 for j 6= i.

We define s := u1 + · · ·+uq ∈ H0(W, l(λ0L+A′)⊗mal
x ). Then s|V 6= 0 for every irreducible

component V of W such that L|V is not numerically trivial.
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We can now proceed with the proof of Proposition 3.1.

Proof of Proposition 3.1. – By Lemma 3.3, there exist a positive integer λ0 and an ample
R-ample line bundle A′ on X such that A−A′ is ample, λ0L+A′ is a Q-line bundle and for
any sufficiently divisible l > 0, there exists

s′ ∈ H0(W red, l(λ0L+A′)|W red ⊗mal
x )

such that s′|V 6= 0 for every irreducible component V of W red such that L|V 6≡ 0.
By Serre’s vanishing theorem, if l is sufficiently large, then

H1(X, l(λ0L+A′)⊗ IW red) = 0,

thus there exists a section

s ∈ H0(X, l(λ0L+A′)⊗ (mal
x + IW red))

such that s|W red = s′.
Let e be a positive integer such that

(IW red)[pe] ⊆ IW .

Then, we have:

t := (F e)∗s ∈ H0(X, lpe(λ0L+A′)⊗ (mal
x + IW red)[pe])

= H0(X, lpe(λ0L+A′)⊗ ((mal
x )[pe] + I

[pe]

W red))

⊆ H0(X, lpe(λ0L+A′)⊗ (malpe

x + IW ))

and for every irreducible component V of W red such that L|V is not numerically trivial, we
have

t|V = ((F e)∗s)|V = ((F e)∗(s|V )) 6= 0.

Thus, the claim follows.

As corollaries of Proposition 3.1, we obtain the following two assertions.

P 3.4. – Fix a ∈ N. Let X be a projective variety. Let A be an ample R-line
bundle on X and L a strictly nef R-line bundle on X. Let x ∈ X be a closed point and let W be
a proper closed subscheme of X. If dimxW ≥ 1, then there exist a positive integer λ0 and an
ample R-line bundle A′ on X such that

1. A−A′ is ample,
2. λ0L+A′ is a Q-line bundle, and
3. for any sufficiently divisible l > 0, there exists

t ∈ H0(X, l(λ0L+A′)⊗ (mal
x + IW ))

such that t|V 6= 0 for every irreducible component V of W red.

Proof. – We write W red = W ′ ∪ W ′′, where W ′ consists of positive dimensional com-
ponents and W ′′ are the isolated points of W red. By assumption, x ∈ W ′. Therefore, it suf-
fices to verify the statements (1)-(3) for W ′. Since L is strictly nef, the claim follows from
Lemma 2.1 and Proposition 3.1.
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P 3.5. – Assume that X is a projective variety defined over an uncountable
algebraically closed field of characteristic p > 0. Fix a ∈ N. Let A be an ample R-line bundle
on X and L a nef R-line bundle of maximal nef dimension on X. Let x, y ∈ X be very general
points and let W be a proper closed subscheme of X such that dimxW ≥ 1 and dimyW ≥ 1.

Then, there exist a positive integer λ0 and an ample R-line bundle A′ on X such that

1. A−A′ is ample,
2. λ0L+A′ is a Q-line bundle, and
3. for any sufficiently divisible l > 0, one can find

t ∈ H0(X, l(λ0L+A′)⊗ (mal
x m

al
y + IW ))

such that t|V 6= 0 for every irreducible component V of W red such that x ∈ V or y ∈ V .

Proof. – Lemma 2.2 implies that L|V is not numerically trivial for every irreducible
component V of W red such that x ∈ V or y ∈ V . Thus, by Proposition 3.1, there exist a
positive integer λ0 and an ampleR-line bundleA′ onX such thatA−A′ is ample, λ0L+A′ is
a Q-line bundle and for any sufficiently divisible l > 0, we can find

t1 ∈ H0(X,
l

2
(λ0L+A′)⊗ (mal

x + IW ))

and

t2 ∈ H0(X,
l

2
(λ0L+A′)⊗ (mal

y + IW ))

such that ti|V 6= 0 for every irreducible component V of W red such that x ∈ V or y ∈ V .
Then, t := t1t2 is a required section.

3.2. Induction

In this subsection, we describe an inductive method to construct a zero-dimensional sub-
scheme from which we can lift sections. The subscheme is obtained by taking the intersection
of a sequence of suitable divisors.

N 3.6. – Through this section, we assume that X is a normal variety defined
over an algebraically closed field of characteristic p > 0. LetB be an effective Q-divisor such
that KX +B is a Q-Cartier Q-divisor whose index is not divisible by p. Assume that (X,B)

is sharply F -pure at a closed point x ∈ X.

Let M ⊆ N be the subset of positive integers e such that (pe − 1)(KX + B) is Cartier.
For any i = 1, . . . , r, let ti : M → Z≥0 be a function and let Di be an effective divisor on X.
LetM ′ ⊆M be an infinite subset. By abuse of notation, we say that the pair (X,B+

∑
tiDi)

is M ′-sharply F -pure at a point x ∈ X if the trace map

Tre : F e∗ ( OX(−(pe − 1)(KX +B)−
r∑
i=1

ti(e)Di))→ OX

is surjective locally around x for every e ∈M ′.
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Assume that the pair (X,B +
∑r
i=1 tiDi) is M ′-sharply F -pure at x ∈ X. Let Dr+1 be

an effective divisor on X such that x ∈ SuppDr+1. Then for any e ∈M ′, we denote by

νmxpe (X,B +

r∑
i=1

ti(e)Di;Dr+1)

the F -threshold function of (X,B +
∑r
i=1 ti(e)Di) at x with respect to Dr+1, which is the

maximum integer t ≥ 0 such that the trace map

Tre : F e∗ ( OX(−(pe − 1)(KX +B)−
r∑
i=1

ti(e)Di − tDr+1))→ OX

is surjective locally around x (see [32]).

Let (X,B) be an n-dimensional sharply F -pure projective pair such that B is an effective
Q-divisor. Assume that the index of KX +B is not divisible by p. Let M ⊆ N be the subset
of positive integers e such that (pe − 1)(KX + B) is Cartier. Let A be an ample R-Cartier
R-divisor on X and let L be a strictly nef R-Cartier R-divisor on X. Fix a ∈ N. Let

n0 := max{dimk(mx/m
2
x) | x is a closed point of X}

to be the maximal embedding dimension of x ∈ X. Pick a closed point x ∈ X. Fix an
integer 0 ≤ r < n.

We assume that we have quintuples (li, λi, ti, Di, Ai) for 0 ≤ i ≤ r where li and λi are
positive integers, ti : M → Z≥0 is a function, Di is an effective Cartier divisor on X and Ai
is an ample R-Cartier R-divisor. We assume that if i = 0 then

(l0, λ0, t0, D0, A0) := (0, 0, 0, 0, A),

and for i = 1, . . . , r, the quintuple (li, λi, ti, Di, Ai) satisfies the following properties:

(1)r A−Ai is ample for every 1 ≤ i ≤ r,
(2)r λiL + Ai is a Q-Cartier Q-divisor, li(λiL + Ai) is Cartier and li(λiL + Ai) ∼ Di for

every 1 ≤ i ≤ r,
(3)r (X,B +

∑r
i=1 tiDi) is M -sharply F -pure at x,

(4)r x ∈Wr where Wr :=
⋂r
i=1Di,

(5)r dimxWr = n− r,
(6)r 0 ≤ ti(e) < dn0p

e

ali
e for every 1 ≤ i ≤ r and e ∈M , and

(7)r assuming that Tre : F e∗ OX(−(pe − 1)(KX + B) −
∑r
i=1 ti(e)Di) → OX is the trace

map, we have

Tre(F e∗ ( OX(−(pe − 1)(KX +B)−
r∑
i=1

ti(e)Di) · IWr
)) ⊆ mx,

for any e ∈M .

We now want to construct a quintuple (lr+1, λr+1, tr+1, Dr+1, Ar+1), so that for
i = 1, . . . , r + 1, the quintuple (li, λi, ti, Di, Ai) satisfies the above properties (1)r+1-(7)r+1.

To this end, note that Proposition 3.4 implies that there exist a positive integer λr+1, an
ample R-Cartier R-divisor Ar+1 and a sufficiently divisible integer lr+1 > 0 such that

• A−Ar+1 is ample,
• λr+1L+Ar+1 is a Q-Cartier Q-divisor, lr+1(λr+1L+Ar+1) is Cartier, and
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• there exists

s ∈ H0(X, lr+1(λr+1L+Ar+1)⊗ (malr+1
x + IWr ))

such that s|V 6= 0 for every irreducible component V of W red
r .

Let Dr+1 be the effective Cartier divisor on X corresponding to s and for any e ∈M let

tr+1(e) := νmxpe (X,B +

r∑
i=1

ti(e)Di;Dr+1).

We now check that the properties (1)r+1-(7)r+1 hold. First note that (1)r+1-(5)r+1 hold
simply by the assumptions above. We now check (6)r+1. It is sufficient to show that for any
e ∈M the trace map

Tre : F e∗ ( OX(−(pe − 1)(KX +B)−
r∑
i=1

ti(e)Di − d
n0p

e

alr+1
eDr+1))→ OX

is not surjective locally around x. We take an affine open subset x ∈ SpecR ⊆ X such that
mx|SpecR is generated by at most n0 elements and that

OX(−Dr+1)|SpecR = fR.

By the definition of Dr+1, we can write f = µ + ν where µ ∈ malr+1
x and ν ∈ IWr

|SpecR.
Thus,

f
d n0p

e

alr+1
e

= µ
d n0p

e

alr+1
e

+ ν′,

with ν′ ∈ IWr
|SpecR. Then, we have

OX(−d n0p
e

alr+1
eDr+1)|SpecR = f

d n0p
e

alr+1
e
R

= (µ
d n0p

e

alr+1
e

+ ν′)R

⊆ m
alr+1d n0p

e

alr+1
e

x + IWr |SpecR

⊆ mn0p
e

x + IWr
|SpecR

⊆ m[pe]
x + IWr

|SpecR.

The last inclusion was obtained as a consequence of the fact that by assumption mx|SpecR

is generated by at most n0 elements. We claim that Tre(m
[pe]
x ) ⊆ mx. If f ∈ m

[pe]
x , then

V (f) ≥ peD for some effective divisor D in a neighborhood of x with x ∈ Supp(D), which
implies that V (Tre(f)) ≥ D. Thus, Tre(f) ∈ mx, as claimed. It follows that

Tre

(
F e∗

(
OX(−(pe − 1)(KX +B)−

r∑
i=1

ti(e)Di − d
n0p

e

alr+1
eDr+1

))

⊆ Tre

(
F e∗

(
OX(−(pe − 1)(KX +B)−

r∑
i=1

ti(e)Di)(m
[pe]
x + IWr

))

⊆ Tre(m[pe]
x ) + Tre

(
F e∗

(
OX(−(pe − 1)(KX +B)−

r∑
i=1

ti(e)Di)IWr

))
⊆ mx +mx = mx,
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where we just proved the first inclusion and the third inclusion follows from (7)r.

We now prove (7)r+1. By construction, we have IWr+1
= IWr

+ IDr+1
. By definition

of νmxpe (X,B +
∑r
i=1 ti(e)De;Dr+1), we have that

Tre(F e∗ OX(−(pe − 1)(KX +B)−
r+1∑
i=1

ti(e)Di −Dr+1)) ⊆ mx

for any e ∈M . Thus, the claim follows.

To summarize, we have obtained the following theorem.

T 3.7. – Let (X,B) be an n-dimensional projective sharply F -pure pair such that
the Cartier index of KX + B is not divisible by p. Fix a ∈ N. Assume that L is a strictly nef
R-Cartier R-divisor, A is an ample R-Cartier R-divisor and M ⊆ N is the subset of positive
integers e such that (1− pe)(KX +B) is Cartier. Let

n0 := max{dimk(mx/m
2
x) | x is a closed point of X}.

Fix a closed point x ∈ X.
Then, for any 1 ≤ i ≤ n, there are positive integers li and λi, an effective Cartier

divisor Di, an ample R-Cartier R-divisor Ai and a function ti : M → Z≥0 such that if we
write W =

⋂n
i=1Di, D(e) =

∑n
i=1 ti(e)Di and

L(e) = OX((1− pe)(KX +B)−D(e))

then

1. A−Ai is ample for every 1 ≤ i ≤ n,
2. λiL + Ai is a Q-Cartier Q-divisor, li(λiL + Ai) is Cartier and li(λiL + Ai) ∼ Di for

every 1 ≤ i ≤ n,
3. (X,B +

∑n
i=1 tiDi) is M -sharply F -pure at x,

4. x ∈W ,
5. dimxW = 0,
6. 0 ≤ ti(e) < n0p

e

lia
, for every 1 ≤ i ≤ n, and

7. for any e ∈M , we have Tre(F e∗ ( L(e) · IW )) ⊆ mx and there is an exact sequence

0 // F e∗ ( L(e) ⊗ IW ) // F e∗ ( L(e)) // F e∗ ( L(e) ⊗ OW ) // 0.

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We begin with the following:

L 4.1. – Let (X,B) be a projective strongly F -regular pair such thatB is an effective
R-divisor. Let A be an ample R-Cartier R-divisor. Let L := KX +A+B. Then, there exist an
effective Q-divisor B′ and an ample R-Cartier R-divisor A′ such that

1. (X,B′) is strongly F -regular,
2. KX +B′ is a Q-Cartier divisor whose index is not divisible by p, and
3. L = KX +A′ +B′.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1256 P. CASCINI, H. TANAKA AND C. XU

Proof. – Let E ≥ 0 be a divisor such that E −KX is Cartier and let H = Supp(E +B).
Let ε > 0 be a sufficiently small number such that for any effective Q-Cartier Q-divisor
D ≤ εH we have that A − D is ample and (X,B + D) is strongly F -regular (cf. (1) of
Remark 2.8).

By [14, Lemma 2.13], there exists an effective Q-Cartier Q-divisor D such that the
Q-Cartier index of KX + B + D is not divisible by p. Thus, if we define B′ = B + D and
A′ = A−D, then the claim follows.

We can now proceed with the proof of our main theorem.

Proof of Theorem 1.1. – Let L := KX + A + B. Thus, L is a strictly nef R-Cartier
R-divisor. By Lemma 4.1, we may assume that B is a Q-divisor and that the Cartier index
ofKX+B is not divisible by p. Let n = dimX. We fix a positive integer a such that a ≥ nn0,
where

n0 := sup{dimk(mx/m
2
x) | x is a closed point of X}.

Fix a closed point x ∈ X. We claim that

L ∼R

q∑
j=1

cjLj

where cj ∈ R≥0 and each Lj is an effective Cartier divisor such that x 6∈ SuppLi. By
Lemma 2.3, the claim implies the theorem.

We apply Theorem 3.7. Then, for any 1 ≤ i ≤ n, we obtain positive integers li and λi, an
effective Cartier divisor Di, an ample R-Cartier R-divisor Ai and a function ti : M → Z≥0

such that if we write W =
⋂n
i=1Di, D(e) =

∑n
i=1 ti(e)Di,

L(e) = (1− pe)(KX +B)−D(e)

and L(e) = OX(L(e)), then

1. 1
2A−Ai is ample for every 1 ≤ i ≤ n,

2. λiL + Ai is a Q-Cartier Q-divisor, li(λiL + Ai) is Cartier and li(λiL + Ai) ∼ Di for
every 1 ≤ i ≤ n,

3. (X,B +
∑n
i=1 tiDi) is M -sharply F -pure at x,

4. x ∈W ,
5. dimxW = 0,
6. 0 ≤ ti(e) < n0p

e

lia
, for every 1 ≤ i ≤ n and e ∈M , and

7. Tre(F e∗ ( L(e) · IW )) ⊆ mx, for every e ∈M .

In particular, we have that D(e) =
∑n
i=1 ti(e)Di ∼

∑n
i=1 ti(e)li(λiL+Ai).

We can write L =
∑r
i=1 αiEi where αi ∈ R and Ei are Cartier divisors, for i = 1, . . . , r.

Let V ⊆ DivR(X) be the vector space spanned by E1, . . . , Er. We denote by ‖ · ‖ the sup
norm with respect to this basis. Let ε > 0 be a sufficiently small rational number such that
1
2A − Γ is ample for any Γ ∈ V such that ‖Γ‖ < ε. By Diophantine approximation (e.g.,
see [5, Lemma 3.7.7]), there exist Q-divisors C ′j ∈ V with j = 1, . . . , q and positive integers
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mj > 1 +
∑n
i=1

n0λi
a such that L =

∑q
j=1 rjC

′
j for some real numbers 0 ≤ rj ≤ 1 with∑q

j=1 rj = 1, the divisor Cj := mjC
′
j is Cartier and

‖L− C ′j‖ ≤
ε

mj
for any j = 1, . . . , q.

Let Γj := mjL− Cj for j = 1, . . . , q. Then, we obtain

– L =
∑q
j=1

rj
mj

(mjL− Γj),

– 1
2A− Γj is ample,

– Cj = mjL− Γj is Cartier, and
– mj > 1 +

∑n
i=1

n0λi
a .

We want to show that x is not a base point of the linear system |Cj | for j = 1, . . . , q. Fix
1 ≤ j ≤ q. For all e ∈M , we have the following diagram:

0 // F e∗ ( L(e) ⊗ IW ) //

��

F e∗ ( L(e)) //

Tre

��

F e∗ ( L(e) ⊗ OW ) //

ϕe

��

0

0 // mx
// OX // kx // 0,

where the first vertical arrow is the inclusion given by (7) above and the third vertical arrow
is the natural map obtained by diagram chasing.

Since (X,B +
∑n
i=1 tiDi) is M -sharply F -pure at x, it follows that

ϕe : F e∗ ( L(e) ⊗ OW )→ kx

is surjective in a neighborhood of x for all e ∈ M . Tensoring by OX(Cj) and taking
cohomology, we obtain

H0(X,F e∗ ( L(e))⊗ OX(Cj)) //

��

H0(W,F e∗ ( L(e))⊗ OW (Cj))

H0(ϕe)

��
H0(X, OX(Cj))

ρ // H0(x, OX(Cj)⊗ kx).

Since dimxW = 0, the map H0(ϕe) is surjective. Thus, to show that ρ is surjective, it is
enough to prove H1(X, L(e) ⊗ OX(peCj)⊗ IW ) = 0. We have

L(e) + peCj = (1− pe)(KX +B)−
n∑
i=1

ti(e)Di + pemjL− peΓj

∼ (1− pe)(KX +B)−
n∑
i=1

ti(e)li(λiL+Ai) + pemjL− peΓj

= KX +B + peA−
n∑
i=1

ti(e)liAi − peΓj + (pemj − pe −
n∑
i=1

ti(e)liλi)L

= KX +B + (pe − 1

2

n∑
i=1

ti(e)li −
1

2
pe)A

+

n∑
i=1

ti(e)li(
1

2
A−Ai) + pe(

1

2
A− Γj) + (pemj − pe −

n∑
i=1

ti(e)liλi)L.
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As a ≥ nn0, it follows

pe − 1

2

n∑
i=1

ti(e)li −
pe

2
≥ pe

2
− 1

2

n∑
i=1

n0p
e

a
≥ pe

2
− pe

2
= 0.

Since mj > 1 +
∑n
i=1

n0λi
a , we have

pemj − pe −
n∑
i=1

ti(e)liλi ≥ pemj − pe −
n∑
i=1

n0p
e

a
λi > 0.

Since 1
2A − Ai and 1

2A − Γj are ample, the Fujita vanishing theorem implies that if e ∈ M
is sufficiently large then

H1(X, L(e) ⊗ OX(peCj)⊗ IW ) = 0.

Thus, the claim follows.

Proof of Corollary 1.2. – SinceKX+∆ is big, we can writeKX+∆ ∼R A+B whereA is
an ample effective R-Cartier R-divisor and B is effective. Replacing ∆ by ∆′ = ∆ + tB, and
choosing t to be a sufficiently small positive number such that (X,∆′) is strongly F -regular,
then the assertion follows from Theorem 1.1.

As an immediate consequence of Theorem 1.1 we obtain the rationality theorem:

Proof of Theorem 1.3. – Since KX + B is not nef, we have that λ > 0. By the defini-
tion of λ it follows that KX + λA+B is nef but not ample. Thus, Theorem 1.1 implies that
KX + λA + B is not strictly nef. In particular, there exists a curve C such that
(KX + λA+B) · C = 0, i.e.,

λ =
−(KX +B) · C

A · C
.

Thus, λ is rational.

5. Proof of Theorem 1.4

We now proceed with the proof of Theorem 1.4. We use the same methods we developed
in the last section, but this time we cut at two points at the same time.

Proof of Theorem 1.4. – Since it suffices to prove the statement of the theorem after any
base change of the ground field, we may assume the ground field is uncountable. Fix two
very general points x, y ∈ X as in Lemma 2.2. In addition, we assume that x and y are not
contained in the singular locus of X, nor in the support of B. In particular, mx and my are
generated by n elements.

By using the same argument as in the proof of Lemma 4.1, we may assume that B is an
effectiveQ-divisor such that the Cartier index ofKX+B is not divisible by p. Let n = dimX.
We fix an integer a > 2n2. Let M0 ⊆ N be the subset of positive integers e such that
(pe − 1)(KX +B) is Cartier and letL := KX+A+B. By assumption, (X,B) isM0-sharply
F -pure at x and y. By Lemma 2.4, it is sufficient to show that L ∼R

∑q
j=1 cjEj where
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cj ∈ R>0 and Ej is an effective Cartier divisor such that SuppEj contains x but not y for
every 1 ≤ j ≤ q.

We start with the seven-tuple

(l0, λ0, t0, D0, A0,M0,W0) := (0, 0, 0, 0, A,M0, X).

Fix 0 ≤ r < n. Let us assume we have constructed a seven-tuple (li, λi, ti, Di, Ai,Mi,Wi)

for 0 ≤ i ≤ rwhere li andλi are positive integers,Mi ⊆ N is an infinite subset, ti : Mi → Z≥0

is a function,Di is an effective Cartier divisor onX,Ai is an ampleR-CartierR-divisor onX,
and Wi is a closed subscheme of X which satisfy either the following properties:

(1)′r
1
2A−Ai is ample for every 1 ≤ i ≤ r,

(2)′r λiL + Ai is a Q-Cartier Q-divisor, li(λiL + Ai) is Cartier and li(λiL + Ai) ∼ Di for
every 1 ≤ i ≤ r.

(3)′r (X,B +
∑r
i=1 tiDi) is Mr-sharply F -pure at x and y,

(4)′r x, y ∈Wr where Wr =
⋂r
i=1Di,

(5)′r dimxWr = dimyWr = n− r,
(6)′r 0 ≤ ti(e) < dnp

e

ali
e for every 1 ≤ i ≤ r, and

(7)′r assuming that Tre : F e∗ ( OX(−(pe − 1)(KX +B)−
∑r
i=1 ti(e)Di))→ OX is the trace

map, we have

Tre : F e∗ ( OX(−(pe − 1)(KX +B)−
r∑
i=1

ti(e)Di) · IWr
) ⊆ mx ∩my.

or the following properties:

(1)′′r
1
2A−Ai is ample for every 1 ≤ i ≤ r,

(2)′′r λiL + Ai is a Q-Cartier Q-divisor, li(λiL + Ai) is Cartier and li(λiL + Ai) ∼ Di for
every 1 ≤ i ≤ r,

(3)′′r (X,B +
∑r
i=1 tiDi) is Mr-sharply F -pure at x and (X,B +

∑r
i=1 ti(e)Di) is not

Mr-sharply F -pure at y for every e ∈Mr,
(4)′′r x ∈Wr where Wr =

⋂r
i=1Di,

(5)′′r dimxWr = n− r,
(6)′′r 0 ≤ ti(e) < dnp

e

ali
e for every 1 ≤ i ≤ r, and

(7)′′r assuming that Tre : F e∗ ( OX(−(pe − 1)(KX +B)−
∑r
i=1 ti(e)Di))→ OX is the trace

map, we have

Tre : F e∗ ( OX(−(pe − 1)(KX +B)−
r∑
i=1

ti(e)Di) · IWr ) ⊆ mx ∩my.

We claim that after possibly switching x and y, we can find a seven-tuple

(lr+1, λr+1, tr+1, Dr+1, Ar+1,Mr+1,Wr+1)

such that either (1)′r+1 − (7)′r+1 or (1)′′r+1 − (7)′′r+1 hold.
Let us prove the claim. Assume first that the properties (1)′r − (7)′r hold. Then, by

Proposition 3.5, there exist positive integers lr+1 and λr+1 and an ample R-Cartier R-divisor
Ar+1 on X such that

• 1
2A−Ar+1 is ample,

• λr+1L+Ar+1 is a Q-Cartier Q-divisor,
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• lr+1(λr+1L+Ar+1) is Cartier, and
• there exists a section

s ∈ H0(X, lr+1(λr+1L+Ar+1)⊗ (malr+1
x malr+1

y + IWr
))

such that s|V 6= 0 for every irreducible component V ofW red
r such that x ∈ V or y ∈ V.

LetDr+1 be the effective divisor onX corresponding to s. We defineWr+1 = Wr∩Dr+1.
Let

txr+1(e) := νmxpe (X,B +

r∑
i=1

ti(e)Di;Dr+1)

and

tyr+1(e) := ν
my
pe (X,B +

r∑
i=1

ti(e)Di;Dr+1)).

We consider the sets

• M>
r := {e ∈Mr | txr+1(e) > tyr+1(e)},

• M<
r := {e ∈Mr | txr+1(e) < tyr+1(e)}, and

• M=
r := {e ∈Mr | txr+1(e) = tyr+1(e)}.

If M=
r is an infinite set, then we choose Mr+1 = M=

r and tr+1(e) = txr+1(e). As in
the proof of Theorem 1.1, it follows that the seven-tuples (li, λi, ti, Di, Ai,Mi,Wi), with
i = 1, . . . , r + 1, satisfy (1)′r+1 − (7)′r+1.

If M=
r is not an infinite set, then one of the sets M>

r and M<
r , say M>

r , is infinite. We
chooseMr+1 = M>

r , and tr+1(e) = txr+1(e) and, as above, we easily see that the seven-tuples
(li, λi, ti, Di, Ai,Mi,Wi), with i = 1, . . . , r + 1, satisfy (1)′′r+1 − (7)′′r+1.

Now let us assume that (1)′′r − (7)′′r hold. Then we ignore y and just do the same con-
struction as in the proof of Theorem 1.1 for x, where we choose Wr+1 with the methods
described above. To proceed with the induction, note that Proposition 3.4 implies that there
exist a positive integer λr+1, a sufficiently large and divisible integer lr+1 and a section

0 6= s ∈ H0(X, lr+1(λr+1L+Ar+1)⊗ (malr+1
x + IWr

))

such that s|V 6= 0 for every irreducible component V of W red
r such that x ∈ V . Thus, we

let Dr+1 be the corresponding effective divisor on X and

tr+1(e) = νmxpe (X,B +

r∑
i=1

ti(e)Di;Dr+1).

In particular,Mr+1 = Mr. Then it is easy to see that (1)′′r+1−(7)′′r+1 hold for the seven-tuples
(li, λi, ti, Di,Mi,Wi), with i = 1, . . . , r + 1. Thus, we have proven the claim.

We now apply the same argument as in Theorem 3.7. For any 1 ≤ i ≤ n, we obtain a quin-
tuple (li(x), λi(x), Di(x), Ai(x), ti(x)) where li(x) and λi(x) are positive integers, Di(x) is
an effective Cartier divisor, Ai(x) is an ample R-Cartier R-divisor, and ti(x) : M0 → Z≥0 is
a function such that if we write W (x) =

⋂n
i=1Di(x), De(x) =

∑n
i=1 ti(x)(e)Di(x) and

Le(x) = OX((1− pe)(KX +B)−De(x))

then

(1)x
1
2A−Ai(x) is ample for every 1 ≤ i ≤ n,
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(2)x λi(x)L + Ai(x) is a Q-Cartier Q-divisor, li(x)(λi(x)L + Ai(x)) is Cartier and
li(x)(λi(x)L+Ai(x)) ∼ Di(x) for every 1 ≤ i ≤ n,

(3)x (X,B +
∑n
i=1 ti(x)Di(x)) is M -sharply F -pure at x,

(4)x x ∈W (x),
(5)x dimxW (x) = 0,
(6)x 0 ≤ ti(x)(e) < npe

ali(x) , for every 1 ≤ i ≤ n, and
(7)x Tre(F e∗ ( Le(x) · IW (x))) ⊆ mx.

We define a quintuple (li(y), λi(y), Di(y), Ai(y), ti(y)) in the same way.

By Diophantine approximation (see the proof of Theorem 1.1), there exist R-Cartier
R-divisors Γ1, . . . ,Γq positive integersmj and positive real numbers rj for j = 1, . . . , q such
that

(a) L =
∑q
j=1

rj
mj

(mjL− Γj),

(b) 1
2A− Γj is ample,

(c) Cj := mjL− Γj is Cartier, and
(d) mj > 1 + max{

∑n
i=1

nλi
a ,
∑n
i=1

nλi(x)
a ,

∑n
i=1

nλi(y)
a }.

It is sufficient to show that the linear system |Cj | separates x and y for every j = 1, . . . , q.
Thus, we want to prove that there exist sections s, t ∈ H0(X,Cj) such that s|x 6= 0 but
s|y = 0 and t|x = 0 but t|y 6= 0. For any e ∈Mn, let

D(e) =

n∑
i=1

ti(e)Di and L(e) = OX((1− pe)(KX +B)−De).

We first assume that (1)′n− (7)′n is true. Then, as in the proof of Theorem 1.1, we know that
for any e ∈Mn there is a diagram

0 // F e∗ ( L(e) ⊗ IW ) //

��

F e∗ ( L(e)) //

Tre

��

F e∗ ( L(e) ⊗ OW ) //

ϕe

��

0

0 // mx ∩my
// OX // kx ⊕ ky // 0.

By (2)′r, ϕ
e is surjective for any e ∈ Mn. Thus, as in the proof of Theorem 1.1, after

tensoring by Cj , the diagram induces a surjection

H0(X,Cj)→ H0(x,Cj)⊕H0(y, Cj).

On the other hand, if (1)′′n− (7)′′n holds, the same diagram as above holds, but by (2)′′r , the
map

ϕe : F e∗ ( L(e) ⊗ OWn
)→ kx ⊕ ky

factors through a map

F e∗ ( L(e) ⊗ OWn)→ kx ⊕ 0→ kx ⊕ ky
for every e ∈ Mn. Thus, there is a section s ∈ H0(X,Cj) such that s|x 6= 0 but s|y = 0.
Thanks to (1)y − (7)y and (a)− (d), by the same argument as in Theorem 3.7, we can show
that y is not a base point of the linear system |Cj |. Then, we can find a section s′ such that
s′|y 6= 0. Hence, using a linear combination of s and s′, we can find a section which vanishes
at x but not at y.
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Therefore, we can apply Lemma 2.4 to conclude that L is big.

Corollary 1.5 follows immediately from the following lemma.

L 5.1. – Let X be a normal projective variety, defined over an algebraically closed
field k of characteristic p > 0. Assume thatA is an ample R-divisor,B ≥ 0 is an R-divisor such
that L = KX +A+B is nef but not big. Then X is covered by rational curves R such that

L ·R = 0 and (KX +B) ·R ≥ −2 dimX.

Proof. – Let K ⊇ k be an uncountable algebraically closed field. Since
NE(X) = NE(XK), if there are rational curves in the class [R] ∈ NE(XK) cover-
ing XK , then there is a component V of RatCurven(XK) parameterizing moving curves
which are in [R] (see [24, Definition - Proposition II.2.11]). By [24, II.2.15], and since the
construction of Hilbert schemes commutes with base change, it follows that

RatCurven(XK) = RatCurven(X)×k K.

Thus, there exist rational curves in R which cover X. Therefore, we may assume that the
ground field is uncountable.

Since L is not big, Theorem 1.4 implies that L is not of maximal nef dimension.
Let f : X 99K Z be the nef reduction map associated to L and whose existence is guar-
anteed by Theorem 2.9. Let X ′ be the normalization of the graph Γ(f) ⊆ X ×Z. Note that
the induced morphism p1 : X ′ → X is an isomorphism over an open set V = f−1(U) for
some nonempty open set U ⊆ Z.

Theorem 2.9 implies that p∗1L is numerically trivial on any fibre of p2 : X ′ → Z, i.e.,
−p∗1(KX +B) is p2-ample. Therefore, we can take a sufficiently ample divisor H on Z such
that H ′ = −p∗1(KX +B) + p∗2H is ample. Furthermore, we can assume that for any curve C
on X ′ which is not contained in fibres of p2, we have C ·H ′ > 2 dimX.

Let x be a very general point of X ′ and let C be a curve passing through x and which is
contained in a fibre F of f . We may assume thatC does not intersect the singular locus ofX ′

and it is not contained in p−1
1 (SuppB). In particular, it follows that H ′ · C ≤ −KX′ · C. By

Theorem 2.9, we have that L · C = 0. Applying Miyaoka-Mori’s bend and break (see [30],
[24, Theorem II.5.8]), it follows that there is a rational curve R′ passing though x such that

H ′ ·R′ ≤ 2 dimX
H ′ · C
−KX′ · C

≤ 2 dimX.

Therefore, R′ is contained in a fibre over Z. In particular, we can assume p1 : X ′ → X is an
isomorphism on a neighborhood of the curveR′ and if we denote byR the image ofR′ inX
then we have R · L = 0. In addition, we have

−(KX +B) ·R = H ′ ·R′ ≤ 2 dimX

and the claim follows.
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6. Three dimensional MMP

In this section, we focus on the study of three dimensional varieties defined over an
algebraically closed field of positive characteristic. In Subsection 6.1, using results from
[23, 20, 14], we show that a weak version of the minimal model program holds for terminal
threefolds. In Subsection 6.2, we prove, under some restrictions on the coefficients of the
boundary, that the base point free theorem holds for three dimensional log canonical pairs
with intermediate Kodaira dimension.

6.1. A weak cone theorem and running the MMP

The aim of this section is to prove Theorem 1.7 and Theorem 1.8.

We begin with the following:

L 6.1. – LetX be aQ-factorial projective variety defined over an algebraically closed
field. Let B be an effective R-divisor on X, let λH be the nef threshold of KX +B with respect
to an ample R-divisor H and let

S = {C ∈ N1(X) | −(KX +B) · C ≥ 0 and (KX +B + λHH) · C ≥ 0 for all ample H}.

Then

NE (X) = S ∪NE (X)KX+B≥0.

Proof. – Clearly the left hand side is contained in the right hand side.

Assume that there exists ξ in the interior of S such that ξ /∈ NE (X). Then there exists an
hyperplane which separates ξ from NE (X), i.e., there exists a divisor L such that L · ξ < 0

and L ·C > 0 for all C ∈ NE (X) \ {0}. In particular L is ample. Since ξ is contained in the
interior of S it follows that

(KX +B + λLL) · ξ > 0.

Thus

(KX +B) · ξ > −λLL · ξ ≥ 0,

which is a contradiction, since ξ ∈ S.

L 6.2. – LetX be aQ-factorial projective variety defined over an algebraically closed
field. LetA be an ample R-divisor onX and letB be an effective R-divisor onX. For any ample
R-divisor H, let aH be the nef threshold of KX + 1

2A+B with respect to H.

Assume that there exist finitely many extremal rays of NE(X) spanned by the classes of
curves R1, . . . , Rm, such that for any ample R-divisor H on X, we have that

NE(X) ∩ (KX +
1

2
A+B + aHH)⊥

contains Ri for some i. Then

NE(X) = NE (X)KX+A+B≥0 +
∑
i

R≥0Ri.
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Proof. – First we prove the left hand side is equal to the closure of the right hand side. If
not, there exist C ∈ NE(X) and a divisor L such that L · ξ > 0 for any ξ 6= 0 in the closure
of the right hand side but L · C < 0. We can assume C is in the boundary of NE(X). In
particular, L ·Ri > 0 for i = 1, . . . ,m.

For any ample R-divisorH, let bH be the nef threshold ofKX +A+B with respect toH.
By Lemma 6.1, we can assume that there exists a sequence of ample divisors Hj with j ≥ 1

such that

(KX +A+B + bHjHj) · C <
1

j
.

Fix a sufficiently small positive number a such that 1
2A+aL is ample. Fix a sufficiently large

positive integer j, so that

(KX +A+B + bHjHj) · C <
1

j
< −aL · C

and letH ′ = 1
2A+bHjHj+aL. Then, by assumption, the nef threshold aH′ ofKX+B+ 1

2A

with respect to H ′ is larger than 1. But for any i = 1, . . . ,m, since KX +A+B + bHjHj is
nef, we have

(KX +
1

2
A+B + aH′H

′) ·Ri = (KX +A+B + bHjHj + aL+ (aH′ − 1)H ′) ·Ri

> aL ·Ri > 0,

which contradicts our assumption.

It remains to show that P = NE (X)KX+A+B≥0 +
∑
i R≥0Ri is closed. We use a

standard argument for this. Let zj ∈ P be a sequence of points, with j ≥ 1 such that
limj zj = z ∈ NE(X). Then, for any j ≥ 1, we may write zj = vj +

∑m
i=1 aijRi for

some vj ∈ NE (X)KX+A+B≥0 and aij ∈ R≥0. Let H be an ample divisor on X. Then
intersecting withH, we have that if j is sufficiently large,H ·zj ≤ z ·H+1 and in particular it
follows that the coefficients aij are bounded by a fixed constant. Thus, after passing through
a subsequence, we can assume that for each i = 1, . . . ,m, the sequence aij has a limit, say ai.
Then

z −
m∑
i=1

aiRi = lim
i

(zi −
m∑
i=1

aijRi) ∈ NE(X)KX+A+B≥0.

Thus, z ∈ P.

We now proceed with the proof of Theorem 1.7.

Proof of Theorem 1.7. – For any ample R-divisor H, let λH be the nef threshold of
KX +B with respect to H.

We first assume that there exists an ample R-divisor H such that KX +B + λHH is big.
Let t be a rational number such that 0 < t < λH and KX + B + tH is big. Then, by
perturbing tH, we can find an ample Q-divisor A such that KX +B +A is big and not nef.
Then, the result follows from [20, Proposition 0.6].

Thus, we may assume that KX + B + λHH is not big for all ample R-divisors H.
Pick any ample R-divisor A such that KX + A + B is not pseudo-effective. Thus, for any
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ample R-divisor H, if aH is the nef threshold of KX + 1
2A + B with respect to H, then

KX + 1
2A+B + aHH is not big. By Lemma 5.1, there exists a rational curve R such that

(KX +
1

2
A+B + aHH) ·R = 0, −(KX +B) ·R < 6,

which implies A · R < 12. In particular, R is parametrized by finitely many components
of the Chow variety Chow1(X) and we may assume that there exist finitely many curves
R1, . . . , Rm such that if H is an ample R-divisor, then (KX + 1

2A + B + aHH) · Ri = 0

for some i ∈ {1, . . . ,m}. Thus, the result follows from Lemma 6.2.

We now proceed with the proof of Theorem 1.8. Case (1) of Theorem 1.8 is proven in [14].
Thus, we only need to consider the case when KX is not pseudo-effective. In this case, our
result follows directly from a combination of Theorem 1.7 and Kollár’s contraction theorem
[23, Section 4].

Proof of Theorem 1.8. – If KX is not nef, then Theorem 1.7 implies that there exist an
extremal ray R of NE(X) and an ample Q-divisor H, such that KX +H is nef and

(KX +H)⊥ ∩NE(X) = R.

IfKX +H is not big, then Lemma 5.1 implies thatR is spanned by a movable rational curve.
Thus, by [23, Theorem 4.10], we get the contraction as described in Case (2).

If KX +H is big, then we proceed with a step of a generalized minimal model program,
given by a KX -negative map X 99K X1 as described in [14], and we can replace X by X1. It
follows from termination of generalized flips (see [14, Section 5]) that the above process must
terminate with one of the two cases of Theorem 1.8.

6.2. On the base point free theorem

The main aim of this section is to prove Theorem 1.9. To this end, our main tool is the
following result:

P 6.3. – If (X,B) is a log canonical threefold, where KX + B is nef and
Char k = p > 2

a where a is the minimal nonzero coefficient of B. Assume X has a dense
open set U which admits a dominant proper morphism U → V where dim(V ) = 2. Assume
also thatKX +B is numerically trivial over the generic point of V . ThenKX +B is semiample.

Proof. – By the existence of resolution of singularities for curves and surfaces, we may
assume that ϕ induces a rational map X 99K Z where Z is a smooth projective variety of
dimension n(L). Let ψ : Y → X be a birational morphism which resolves the singularities
of X 99K Z, and whose existence is guaranteed by the main results in [1, 11, 9, 10]. Thus, if
we write ψ∗(KX +B) = KY +BY , then (Y,BY ) is a sub log canonical pair. Let f : Y → Z

be the induced map. We can assume

1. f∗( OY ) = OZ , and
2. f factors through an equidimensional morphism Y ∗ → Z (see [13, Theorem 5.2.2]),

where Y ∗ yields a morphism to X.

We begin with the following lemma.
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L 6.4. – If C is a normal complete curve defined over a field η such that ωC is anti-
ample andH0(C, OC) = η, thenCη̄ is a conic in P2

η̄. In particular, if char η > 2, thenCη̄ ∼= P1
η̄.

Proof. – We have H0(C,ωC) = 0 as ω−1
C is ample. So the arithmetic genus of C and Cη̄

satisfies
a(C) = a(Cη̄) = 0.

We know thatCη̄ is irreducible. LetCred
η̄ ⊆ Cη̄ be the reduced part and let I be its ideal sheaf.

Then
a(Cred

η̄ ) ≤ a(Cη̄) = 0,

which implies that Cred
η̄ is a smooth rational curve. Since for j = 0, 1, we have

Hj(Cη̄, OCη̄ ) = Hj(Cred
η̄ , OCred

η̄
) = Hj(C ′, OC′)

for any Cred
η̄ ⊆ C ′ ⊆ Cη̄, we conclude that Hj(Cred

η̄ , Ii/Ii+1) = 0, and in particular
Ii/Ii+1 = OP1(−1) for any i ≤ n, where n is the maximal non-negative integer such that
In 6= 0. But then

ωCη̄ |Cred
η̄

∼= OP1(n− 2).

Thus n < 2, which implies that Cη̄ is a conic in P2
η̄, i.e., Cη̄ is either a smooth rational curve

or a planar double line and the latter case can happen only if char η = 2.

The lemma implies that if η ∈ V is the general point then Xη̄
∼= P1

η̄. Note that if η is
the general point of Z, then Yη is isomorphic to Xη. Denote by BYη the restriction BY |Yη .
Since by assumption p > 2

a , where a is the minimal non-zero coefficient of B and since
KYη +BYη ∼Q 0, it follows that if E is a horizontal components of Supp BY , then

E · Yη ≤
1

a
B · Yη =

2

a
< p.

In particular, (Yη̄, BYη̄ ) is log canonical. Moreover, if E → E′
gE−→ Z is the Stein factoriza-

tion of the morphism E → Z, it follows that deg gE < p.

We now define the Q-divisor Db on Z as the boundary part of Kawamata subadjunction
formula for (Y,BY ) over Z. More precisely, for any prime divisor W of Z, we define

cW = sup{t | (Y,BY + tf∗W ) is log canonical over the generic point of W}.

Then Db :=
∑
W (1 − cW )W is a Q-divisor on Z. After possibly taking a log resolu-

tion, we may assume that (Z,SuppDb) is simple normal crossing [33, Remark 7.7]. Write
Db = D+

b −D
−
b where D+

b and D−b are effective divisors and do not have common compo-
nents. We fix a divisor Γ ≥ Db, such that (Z,Γ) is log canonical and the support of Γ −Db

is contained in the negative part Supp D−b of Db.

We now follow closely the arguments in [33, Section 8]. We denote by M0,n the mod-
uli space of n-pointed stable curves of genus 0 and we consider the universal family
U0,n → M0,n. The varieties M0,n and U0,n are both smooth and projective. We refer
to [19] for a construction and some basic properties of these varieties. In particular, the
morphism gn : U0,n → M0,n factors through a smooth projective variety U0,n such that
the induced morphism σ : U0,n → U0,n is a sequence of blow-ups with smooth centers and
gn : U0,n → M0,n is a P1-bundle over M0,n.
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By taking a base change, we can assume that there is a diagram

U0,n

gn

��

Y 2oo //

f2

��

Y 1 h //

��

Y

f

��
M0,n Z2oo µ // Z1 g // Z

such that:

1. g is the composition of the morphisms gE defined above, for any horizontal compo-
nent E of Supp BY . Note that deg gE < p. Let Y 1 be the normalization of the main
component of Y ×ZZ1. In particular, if we define BY 1 by KY 1 +BY 1 = h∗(KY +BY ),
then the horizontal components E1, . . . En of Supp BY 1 correspond to rational sec-
tions of Z1,

2. Over the generic point η1 ofZ1, we have that (Y 1,Supp h−1(B))|η1
∈ M0,n(η1), which

yields a map Z1 99K M0,n, and
3. µ : Z2 → Z1 is a birational morphism from a smooth surface Z2 which resolves

the singularities of the map Z1 99K M0,n and such that there exists a morphism
f2 : Y 2 → Z2 which yields the morphisms Y 2 → Y 1 and Y 2 → U0,n ×M0,n

Z2.

Denote by ρ : Y 2 → X the induced map. From the construction above, we easily get the
following lemma.

L 6.5. – Under the same assumptions as above, we have:

1. Define the Q-divisor BY 2 on Y 2 by ρ∗(KX +B) = KY 2 +BY 2 . Then (Y 2, BY 2) is sub
log canonical.

2. Let D2
b be the boundary part of the Kawamata subadjunction formula for (Y 2, BY 2)

overZ2. Then (g◦µ)∗(KZ+Db) = KZ2 +D2
b . Furthermore, (Z,Db) is sub log canonical

if and only if (Z2, D2
b ) is sub log canonical.

Proof. – Since g : Z1 → Z is the composition of maps of degree less than p, it follows
that the morphism µ : Z2 → Z is tamely ramified. Thus, we can apply the same arguments
as in [26, Proposition 5.20].

We have the following canonical bundle formula:

L 6.6. – Under the same assumptions as above, (Z2, D2
b ) is sub log canonical and

there is a semiample divisor D2
m such that

(f2)∗(KZ2 +D2
b +D2

m) ∼Q KY 2 +BY 2 .

Proof. – Note that [17, Theorem 2] (see also [33, Theorem 8.5] and [21, Section 3])
holds over any algebraically closed field, without any change in the proof. In particular, if
P1, . . . , Pn are the sections of gn : U0,n → M0,n corresponding to the marked points, and
d1, . . . , dn are the coefficients of BY 1 along E1, . . . , En respectively, then

K Un
+ σ∗ D = g∗n(KM0,n

+ L),

where D =
∑n
i=1 di Pi and L is a semiample Q-divisor on M0,n.
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It follows from the proof of [33, Theorem 8.1 ] that there is a birational morphism

j : Y 2 → Ỹ 2 := U0,n ×M0,n
Z2

such that h : Ỹ 2 → Z2 is a P1-bundle over Z2. Furthermore, if we denote by D2
m the pull-

back of L on Z2, then
h∗(KZ2 +D2

m) = KỸ 2 +Bh
Ỹ 2 ,

where BỸ 2 = h∗(BY 2) and BhY 2 is the horizontal part of BY 2 over Z2.

We claim that j∗(KỸ 2 +BỸ 2) = KY 2 +BY 2 . Assuming the claim, D2
b can be computed

on (Ỹ 2, BỸ 2) by
h∗D2

b = Bv
Ỹ 2 = BỸ 2 −BhỸ 2 ,

where Bv
Ỹ 2 denotes the vertical part of BY 2 over Z2. Thus, the lemma easily follows.

We now proceed with the proof of the claim. By the negativity lemma (cf. [25, Lemma 1.17]),
we have

j∗(KỸ 2 +BỸ 2)−KY 2 −BY 2 = E ≥ 0.

Since KỸ 2 +BỸ 2 is the pull-back of a Q-divisor on Z, we know that −E is also nef over Z.
But Supp E is exceptional over Z, i.e., for any codimension 1 point P on Z contained
in f(SuppE), we have that SuppE does not contain f−1(P ). This implies thatE = 0. Thus,
the claim follows.

R 6.7. – In general, in terms of the singularities, the canonical bundle formula
in positive characteristic does not behave as well as in characteristic zero even for elliptic
fibrations, due to the existence of fibrations with wild fibres (e.g., see [6]).

We can pick an effective Q-divisorH2 ∼Q D
2
m and defineDm to be 1

deg(g) (µ∗g∗H
2), such

that SuppDm does not have common components with Supp(Γ). In particular, (Z,Γ+Dm)

is a log pair and KY +BY ∼Q f
∗(KZ +Db +Dm).

L 6.8. – Under the same assumptions as above, ifm is a sufficiently divisible positive
integer, then

H0(Z,m(KZ + Γ +Dm)) = H0(Z,m(KZ +Db +Dm)).

Proof. – We may write BY = B+
Y − B

−
Y + B∗Y , where B∗Y is the part of B consisting of

exactly all the components ofBY which are exceptional over Y ∗, and the Q-divisorsB+
Y and

B−Y are effective and do not have common components.

Let G be the sum of all the prime divisors on Y which are exceptional over Y ∗ and let

B′Y = B+
Y + Supp B−Y + tG

for some t � 0. Then since B−Y and B∗Y are both exceptional over X, we have that for any
sufficiently divisible positive integer m

H0(Y,m(KY +BY )) = H0(X,m(KX +B)) = H0(Y,m(KY +B′Y )).

By the definition of the boundary part, for any sufficiently large t, we also have

f∗(KZ + Γ +Dm) ≤ KY +B′Y .
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We conclude that, for sufficiently divisible positive integer m

H0(Y,m(KY +B′Y )) ⊇ H0(Z,m(KZ + Γ +Dm))

⊇ H0(Z,m(KZ +Db +Dm))

= H0(Y,m(KY +BY )).

Thus, the claim follows.

SinceZ is smooth and the coefficients of any prime divisor in Γ+Dm is less than 1, by [36],
we can run an MMP for (Z,Γ +Dm), which ends with a good minimal model π : Z → Zm.
Let F = π∗(Γ + Dm). It follows from Lemma 6.8 and the fact that KZ + Db + Dm is nef
that

π∗(KZm + F ) = KZ +Db +Dm.

This implies that KY + BY ∼Q f∗(KZ + Db + Dm) is semiample. Thus we conclude that
KX +B is semiample.

Proof of Theorem 1.9. – We first prove (1) and (2). Since it is sufficient to prove the
statement of the theorem after any base change of the ground field, we may assume that the
ground field is uncountable. By Theorem 1.4, we can assume that n(KX +B) ≤ 2. Thus, we
only need to prove that if n(KX +B) = 1 or 2, then KX +B is semiample.

Let ϕ : U → V be the nef reduction morphism of KX +B defined in Theorem 2.9 where
U is an open subset of X. We distinguish two cases:

Case 1: n(KX +B) = 2. – This case follows directly from Proposition 6.3 and the fact that
the restriction (KX +B)|Uη on the generic fibre of ϕ is numerically trivial.

Case 2:n(KX+B) = 1. – We may assume thatϕ induces a rational mapX 99K Z whereZ is
a smooth curve. Since X is normal and dimZ = 1, the map X 99K Z is in fact a morphism
which we denote byh : X → Z. It suffices to show thatKX+B ∼Q h

∗G for someQ-divisorG
on Z. Indeed, by Theorem 2.9, we have that degG > 0 and the theorem follows.

Consider the Albanese morphism aX : X → AlbX , and denote by φ : X → S the Stein
factorization of the morphism (h, aX) : X → Z × AlbX . Denote by i : S → Z × AlbX
the induced morphism. Since the fibres of Z are covered by rational curves, which are also
mapped to points in AlbX , we know that dim(S) ≤ 2. If dim(S) = 1, then there is an
isomorphism ρ : Z → S such that ρ ◦ h = φ.

We claim there exists a Q-divisor H on Z such that KX + B is numerically equivalent
to h∗H. In fact, by the construction of the nef reduction map, we know that (KX +B)|K(Z)

is numerically trivial, where K(Z) is the generic point of Z. Thus, there exist a Q-divisor H
on Z and an effective Q-divisor E on X such that

KX +B − h∗H ≡ E

where the support of E is contained in a union of fibres of h but Supp(E) does not contain
any fibre. Since KX +B is nef, it follows from Zariski’s lemma that E = 0, as claimed.

Thus, if n is a sufficiently large integer, we have

n(KX +B − h∗H) ∈ (Pic0
X/k)red = Pic0(AlbX)
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(see [22, Remark 9.5.25 and Theorem 9.6.3]). Thus, we can find a divisor M on AlbX such
that if π : Z × AlbX → AlbX denotes the projection and M ′ = (π ◦ i)∗M then degM ′ = 0

and

n(KX +B − h∗H) ∼Q h
∗(ρ∗M ′),

which implies KX +B ∼Q h
∗(H + 1

nρ
∗M ′), as claimed.

If dimS = 2, then it follows directly from Proposition 6.3 that KX +B is semiample.

We now proceed with the proof of (3). If κ(X,KX +B) = 3, then the result follows from
[20, Theorem 0.5]. Thus, by (1) and (2), it is enough to consider the case n(X,KX +B) = 0,
which implies that KX +B is numerically trivial. Therefore, KX +B is Q-linear equivalent
to 0 as this is true for any numerically trivial Q-Cartier divisor on an algebraic variety defined
over Fp.
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