A homological study of Green polynomials*
[Une étude homologique des polynômes de Green]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1035-1074.

La relation d'orthogonalité des polynômes de Kostka émanant des groupes de réflexions complexes ([51, 52] et [35]) est interprétée en termes d'algèbre homologique. Ceci nous conduit à la notion de système Kostka, qui peut être considérée comme une contrepartie catégorique des polynômes de Kostka. Puis, nous démontrons que chaque correspondance de Springer généralisée ([34]) dans une bonne caractéristique engendre un système de Kostka. Nous pouvons ainsi observer la propriété de génération du premier terme de l'homologie (tordue) des fibres de Springer généralisées, ainsi que la formule de transition de polynômes de Kostka entre deux correspondances de Springer généralisées de type 𝖡𝖢. Cette dernière fournit un algorithme inductif de calcul des polynômes de Kostka par la mise à niveau de [16] §3 à sa version graduée. Dans les annexes, nous apportons les preuves algébriques que les systèmes de Kostka existent pour les cas de type 𝖠 et de type 𝖡𝖢 asymptotique. Aussi, il est possible d'omettre de lire les sections géométriques 3 à 5 et pour entrevoir les idées-clés et parcourir des exemples/techniques de base.

We interpret the orthogonality relation of Kostka polynomials arising from complex reflection groups ([51, 52] and [35]) in terms of homological algebra. This leads us to the notion of Kostka system, which can be seen as a categorical counterpart of Kostka polynomials. Then, we show that every generalized Springer correspondence ([34]) in a good characteristic gives rise to a Kostka system. This enables us to see the top-term generation property of the (twisted) homology of generalized Springer fibers, and the transition formula of Kostka polynomials between two generalized Springer correspondences of type 𝖡𝖢. The latter provides an inductive algorithm to compute Kostka polynomials by upgrading [16] §3 to its graded version. In the appendices, we present purely algebraic proofs that Kostka systems exist for type 𝖠 and asymptotic type 𝖡𝖢 cases, and therefore one can skip geometric sections §3–5 to see the key ideas and basic examples/techniques.

Publié le :
DOI : 10.24033/asens.2265
Classification : 20G99, 33D52.
Keywords: Generalized Springer correspondences, Kostka polynomials, the Lusztig-Shoji algorithm, $\mathrm {Ext}$-orthogonal collections, Kostka systems.
Mot clés : Correspondances de Springer généralisées, polynômes de Kostka, l'algorithme Lusztig-Shoji, ensembles $\mathrm {Ext}$-orthogonales, systèmes de Kostka.
@article{ASENS_2015__48_5_1035_0,
     author = {Kato, Syu},
     title = {A homological study  of {Green} polynomials*},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1035--1074},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {5},
     year = {2015},
     doi = {10.24033/asens.2265},
     mrnumber = {3429475},
     zbl = {1367.20038},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2265/}
}
TY  - JOUR
AU  - Kato, Syu
TI  - A homological study  of Green polynomials*
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1035
EP  - 1074
VL  - 48
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2265/
DO  - 10.24033/asens.2265
LA  - en
ID  - ASENS_2015__48_5_1035_0
ER  - 
%0 Journal Article
%A Kato, Syu
%T A homological study  of Green polynomials*
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1035-1074
%V 48
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2265/
%R 10.24033/asens.2265
%G en
%F ASENS_2015__48_5_1035_0
Kato, Syu. A homological study  of Green polynomials*. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1035-1074. doi : 10.24033/asens.2265. http://www.numdam.org/articles/10.24033/asens.2265/

Achar, P. N. An implementation of the generalized Lusztig-Shoji algorithm, GAP package (2008) ( https://www.math.lsu.edu/~pramod/resources.html )

Achar, P. N. Springer theory for complex reflection groups, RIMS Kôkyûroku, Volume 1647 (2009), pp. 97-112

Achar, P. N. Green functions via hyperbolic localization, Doc. Math., Volume 16 (2011), pp. 869-884 (ISSN: 1431-0635) | DOI | MR | Zbl

Arthur, J. On elliptic tempered characters, Acta Math., Volume 171 (1993), pp. 73-138 (ISSN: 0001-5962) | DOI | MR | Zbl

Beĭlinson, A. A.; Bernstein, J.; Deligne, P., Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, Paris, 1982 | MR | Zbl

Bezrukavnikov, R. Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math., Volume 170 (2009), pp. 185-206 (ISSN: 0021-2172) | DOI | MR | Zbl

Bernstein, J.; Lunts, V., Lecture Notes in Math., 1578, Springer, Berlin, 1994, 139 pages (ISBN: 3-540-58071-9) | MR | Zbl

Bezrukavnikov, R.; Mirković, I. Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution, Ann. of Math., Volume 178 (2013), pp. 835-919 (ISSN: 0003-486X) | DOI | MR | Zbl

Borho, W.; MacPherson, R. Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math., Volume 292 (1981), pp. 707-710 (ISSN: 0151-0509) | MR | Zbl

Broué, M.; Malle, G.; Michel, J. Towards spetses. I, Transform. Groups, Volume 4 (1999), pp. 157-218 (ISSN: 1083-4362) | DOI | MR | Zbl

Bezrukavnikov, R.; Mirković, I.; Rumynin, D. Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math., Volume 167 (2008), pp. 945-991 (ISSN: 0003-486X) | DOI | MR | Zbl

Beynon, W. M.; Spaltenstein, N. Green functions of finite Chevalley groups of type En (n=6,7,8) , J. Algebra, Volume 88 (1984), pp. 584-614 (ISSN: 0021-8693) | DOI | MR | Zbl

Carter, R. W., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985, 544 pages (ISBN: 0-471-90554-2) | MR | Zbl

Chriss, N.; Ginzburg, V., Birkhäuser, 1997, 495 pages (ISBN: 0-8176-3792-3) | MR

Ciubotaru, D. M.; Kato, S. Tempered modules in exotic Deligne-Langlands correspondence, Adv. Math., Volume 226 (2011), pp. 1538-1590 (ISSN: 0001-8708) | DOI | MR | Zbl

Ciubotaru, D. M.; Kato, M.; Kato, S. On characters and formal degrees of discrete series of affine Hecke algebras of classical types, Invent. Math., Volume 187 (2012), pp. 589-635 (ISSN: 0020-9910) | DOI | MR | Zbl

Collingwood, D. H.; McGovern, W. M., Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993, 186 pages (ISBN: 0-534-18834-6) | MR | Zbl

Ciubotaru, D. M.; Trapa, P. E. Characters of Springer representations on elliptic conjugacy classes, Duke Math. J., Volume 162 (2013), pp. 201-223 (ISSN: 0012-7094) | DOI | MR | Zbl

De Concini, C.; Procesi, C. Symmetric functions, conjugacy classes and the flag variety, Invent. Math., Volume 64 (1981), pp. 203-219 (ISSN: 0020-9910) | DOI | MR | Zbl

Deligne, P.; Lusztig, G. Representations of reductive groups over finite fields, Ann. of Math., Volume 103 (1976), pp. 103-161 (ISSN: 0003-486X) | DOI | MR | Zbl

Evens, S.; Mirković, I. Fourier transform and the Iwahori-Matsumoto involution, Duke Math. J., Volume 86 (1997), pp. 435-464 (ISSN: 0012-7094) | DOI | MR | Zbl

The GAP Group, GAP – Groups, Algorithms, and Programming, v. 4.4.12 (2008) ( http://www.gap-system.org )

Ginzburg, V. Deligne-Langlands conjecture and representations of affine Hecke algebras (1985) (preprint)

Ginzburg, V. Geometrical aspects of representation theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI (1987), pp. 840-848 | MR | Zbl

Goresky, M.; MacPherson, R. On the spectrum of the equivariant cohomology ring, Canad. J. Math., Volume 62 (2010), pp. 262-283 (ISSN: 0008-414X) | DOI | MR | Zbl

Geck, M.; Malle, G. On special pieces in the unipotent variety, Experiment. Math., Volume 8 (1999), pp. 281-290 http://projecteuclid.org/euclid.em/1047262408 (ISSN: 1058-6458) | DOI | MR | Zbl

Garsia, A. M.; Procesi, C. On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math., Volume 94 (1992), pp. 82-138 (ISSN: 0001-8708) | DOI | MR | Zbl

Green, J. A. The characters of the finite general linear groups, Trans. Amer. Math. Soc., Volume 80 (1955), pp. 402-447 (ISSN: 0002-9947) | DOI | MR | Zbl

Heiermann, V. Opérateurs d'entrelacement et algèbres de Hecke avec paramètres d'un groupe réductif p-adique: le cas des groupes classiques, Selecta Math. (N.S.), Volume 17 (2011), pp. 713-756 (ISSN: 1022-1824) | DOI | MR | Zbl

Kato, S. An algebraic study of extension algebras (preprint arXiv:1207.4640 ) | MR

Kato, S. An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J., Volume 148 (2009), pp. 305-371 (ISSN: 0012-7094) | DOI | MR | Zbl

Kumar, S.; Procesi, C. An algebro-geometric realization of equivariant cohomology of some Springer fibers, J. Algebra, Volume 368 (2012), pp. 70-74 (ISSN: 0021-8693) | DOI | MR | Zbl

Letellier, E., Lecture Notes in Math., 1859, Springer, Berlin, 2005, 165 pages (ISBN: 3-540-24020-9) | MR | Zbl

Lusztig, G.; Spaltenstein, N., Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Adv. Stud. Pure Math.), Volume 6, North-Holland, Amsterdam, 1985, pp. 289-316 | DOI | MR | Zbl

Lusztig, G. Cuspidal local systems and graded Hecke algebras. III, Represent. Theory, Volume 6 (2002), pp. 202-242 (ISSN: 1088-4165) | DOI | MR | Zbl

Lusztig, G. Intersection cohomology complexes on a reductive group, Invent. Math., Volume 75 (1984), pp. 205-272 (ISSN: 0020-9910) | DOI | MR | Zbl

Lusztig, G. Character sheaves. V, Adv. Math., Volume 61 (1986), pp. 103-155 (ISSN: 0001-8708) | DOI | MR | Zbl

Lusztig, G. Cuspidal local systems and graded Hecke algebras. I, Publ. Math. IHÉS, Volume 67 (1988), pp. 145-202 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Lusztig, G. Affine Hecke algebras and their graded version, J. Amer. Math. Soc., Volume 2 (1989), pp. 599-635 (ISSN: 0894-0347) | DOI | MR | Zbl

Lusztig, G. Green functions and character sheaves, Ann. of Math., Volume 131 (1990), pp. 355-408 (ISSN: 0003-486X) | DOI | MR | Zbl

Lusztig, G. Classification of unipotent representations of simple p-adic groups, Int. Math. Res. Not., Volume 1995 (1995), pp. 517-589 (ISSN: 1073-7928) | DOI | MR | Zbl

Lusztig, G., Representations of groups (Banff, AB, 1994) (CMS Conf. Proc.), Volume 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217-275 | MR | Zbl

Macdonald, I. G., Oxford Mathematical Monographs, The Clarendon Press, Oxford Univ. Press, New York, 1995, 475 pages (ISBN: 0-19-853489-2) | MR | Zbl

Malle, G. Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra, Volume 177 (1995), pp. 768-826 (ISSN: 0021-8693) | DOI | MR | Zbl

Mirković, I. Character sheaves on reductive Lie algebras, Mosc. Math. J., Volume 4 (2004), p. 897-910, 981 (ISSN: 1609-3321) | DOI | MR | Zbl

McConnell, J. C.; Robson, J. C., Graduate Studies in Math., 30, Amer. Math. Soc., Providence, RI, 2001, 636 pages (ISBN: 0-8218-2169-5) | DOI | MR | Zbl

Opdam, E. M. On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 531-648 (ISSN: 1474-7480) | DOI | MR | Zbl

Opdam, E. M.; Solleveld, M. Discrete series characters for affine Hecke algebras and their formal degrees, Acta Math., Volume 205 (2010), pp. 105-187 (ISSN: 0001-5962) | DOI | MR | Zbl

Ostrik, V. A remark on cuspidal local systems, Adv. Math., Volume 192 (2005), pp. 218-224 (ISSN: 0001-8708) | DOI | MR | Zbl

Reeder, M. Formal degrees and L-packets of unipotent discrete series representations of exceptional p-adic groups, J. reine angew. Math., Volume 520 (2000), pp. 37-93 (ISSN: 0075-4102) | DOI | MR | Zbl

Shoji, T. Green functions associated to complex reflection groups, J. Algebra, Volume 245 (2001), pp. 650-694 (ISSN: 0021-8693) | DOI | MR | Zbl

Shoji, T. Green functions associated to complex reflection groups. II, J. Algebra, Volume 258 (2002), pp. 563-598 (ISSN: 0021-8693) | DOI | MR | Zbl

Shoji, T. Generalized Green functions and unipotent classes for finite reductive groups. I, Nagoya Math. J., Volume 184 (2006), pp. 155-198 http://projecteuclid.org/euclid.nmj/1167159344 (ISSN: 0027-7630) | MR | Zbl

Shoji, T. On the Green polynomials of classical groups, Invent. Math., Volume 74 (1983), pp. 239-267 (ISSN: 0020-9910) | DOI | MR | Zbl

Slooten, K. A combinatorial generalization of the Springer correspondence for classical type (2003) | MR | Zbl

Slooten, K. Induced discrete series representations for Hecke algebras of types Bn aff and Cn aff , Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | DOI | MR | Zbl

Springer, T. A. Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 (ISSN: 0020-9910) | DOI | MR | Zbl

Springer, T. A. A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978), pp. 279-293 (ISSN: 0020-9910) | DOI | MR | Zbl

Stanley, R. P. Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc., Volume 1 (1979), pp. 475-511 (ISSN: 0273-0979) | DOI | MR | Zbl

Tanisaki, T. Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tôhoku Math. J., Volume 34 (1982), pp. 575-585 (ISSN: 0040-8735) | DOI | MR | Zbl

Tokuyama, T. On the decomposition rules of tensor products of the representations of the classical Weyl groups, J. Algebra, Volume 88 (1984), pp. 380-394 (ISSN: 0021-8693) | DOI | MR | Zbl

Tanisaki, T.; Xi, N. Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra, Nagoya Math. J., Volume 182 (2006), pp. 285-311 http://projecteuclid.org/euclid.nmj/1150810010 (ISSN: 0027-7630) | DOI | MR | Zbl

Xi, N. Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra, II, J. Eur. Math. Soc. (JEMS), Volume 13 (2011), pp. 207-217 (ISSN: 1435-9855) | DOI | MR | Zbl

Xue, T. Combinatorics of the Springer correspondence for classical Lie algebras and their duals in characteristic 2, Adv. Math., Volume 230 (2012), pp. 229-262 (ISSN: 0001-8708) | DOI | MR | Zbl

Cité par Sources :