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A HOMOLOGICAL STUDY
OF GREEN POLYNOMIALS*

 S KATO

A. – We interpret the orthogonality relation of Kostka polynomials arising from complex
reflection groups ([51, 52] and [35]) in terms of homological algebra. This leads us to the notion of
Kostka system, which can be seen as a categorical counterpart of Kostka polynomials. Then, we
show that every generalized Springer correspondence ([34]) in a good characteristic gives rise to a
Kostka system. This enables us to see the top-term generation property of the (twisted) homology of
generalized Springer fibers, and the transition formula of Kostka polynomials between two generalized
Springer correspondences of type BC. The latter provides an inductive algorithm to compute Kostka
polynomials by upgrading [16] §3 to its graded version. In the appendices, we present purely algebraic
proofs that Kostka systems exist for type A and asymptotic type BC cases, and therefore one can skip
geometric sections §3–5 to see the key ideas and basic examples/techniques.

R. – La relation d’orthogonalité des polynômes de Kostka émanant des groupes de ré-
flexions complexes ([51, 52] et [35]) est interprétée en termes d’algèbre homologique. Ceci nous conduit
à la notion de système Kostka, qui peut être considérée comme une contrepartie catégorique des po-
lynômes de Kostka. Puis, nous démontrons que chaque correspondance de Springer généralisée ([34])
dans une bonne caractéristique engendre un système de Kostka. Nous pouvons ainsi observer la pro-
priété de génération du premier terme de l’homologie (tordue) des fibres de Springer généralisées, ainsi
que la formule de transition de polynômes de Kostka entre deux correspondances de Springer géné-
ralisées de type BC. Cette dernière fournit un algorithme inductif de calcul des polynômes de Kostka
par la mise à niveau de [16] §3 à sa version graduée. Dans les annexes, nous apportons les preuves algé-
briques que les systèmes de Kostka existent pour les cas de type A et de type BC asymptotique. Aussi, il
est possible d’omettre de lire les sections géométriques 3 à 5 et pour entrevoir les idées-clés et parcourir
des exemples/techniques de base.

* The word “green” means ‘midori’ in Japanese.
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1036 S. KATO

Introduction

Green polynomials attached to a connected reductive group over a finite field is a family of
polynomials indexed by two conjugacy classes of their (little) Weyl groups(1), depending on a
variable t that corresponds to (some twist of) the cardinality of the base field. Introduced by
Green [28] for GL(n,Fq) and by Deligne-Lusztig [21] in general, they play a central role in
the representation theory of finite groups of Lie types, affine Hecke algebras, p-adic groups,
and so on. Equivalent to Green polynomials are Kostka polynomials ([28, 38]), which are
t-analogues of Kostka numbers (Kostka-Foulkes polynomials) in the case of GL(n) (cf. [43]
Chapter III). Hence, they appear almost everywhere in representation theory attached to root
data.

Despite their natural appearance, not much is known about Kostka polynomials except
for type A. One major reason seems to be the fact that the set of Kostka polynomials
admits integral parameters, which actually yield different collections of polynomials even
if they arise from character sheaves of Chevalley groups over finite fields ([34, 35, 38]).
In such representation theoretic situation, Lusztig [34] introduced the notion of symbols,
which govern the combinatorial data to determine Kostka polynomials by means of their
orthogonality relation ([51, 35]). It is generalized by Malle [44] and Shoji [52, 53] to include
the case of complex reflection groups, in which the orthogonality relation is employed as their
definition.

In [5], Arthur initiated now so-called elliptic representation theory, that is the “cuspidal
quotient” of (usual) representation theory. Green polynomials, in the guise of characters of
discrete series representations, also appear in the context of elliptic representation theory
([50, 18]). In particular, the study of formal degrees of affine Hecke algebras/p-adic groups
([47, 48, 16]) revealed the transition pattern of Kostka polynomials evaluated at t = 1.
This supplies connections among representation theories of infinitely many p-adic groups
(of different types).

The goal of the present paper is two-fold: One is to afford an algebraic framework of the
study of Green/Kostka polynomials of complex reflection groups. The other is to exhibit how
the classical results on Kostka polynomials of Weyl groups and the above transition pattern
unveil their finer versions in our framework. From these, we expect that our framework
is suited to study global structures of families of (the sets of) Kostka polynomials, and
to study their connections with elliptic/usual representation theory of reductive groups or
“spetses” ([13]).

For more detailed explanation, we need notations: Let W be a complex reflection group,
and let IrrW denote the set of isomorphism classes of irreducible W -modules. For each
χ ∈ IrrW , we denote by χ∨ its dual representation. Let h be a reflection representation ofW .
Form a graded algebra AW := CW nC[h∗] with degw = 0 (w ∈W ) and deg x = 2 (x ∈ h).
Let AW -gmod be the category of finitely generated Z-graded AW -modules. For E,F ∈ AW -gmod,
we define

〈E,F 〉gEP :=
∑
i≥0

(−1)igdim extiAW (E,F ) ∈ Z((t1/2)),

(1) The subgroup of the Weyl group that preserves the cuspidal datum (cf. §3). In case the nilpotent orbit in the
cuspidal datum is {0}, then it coincides with the whole Weyl group.
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A HOMOLOGICAL STUDY OF GREEN POLYNOMIALS 1037

where ext means the graded extension (defined so that forgetting graded vector space struc-
ture yields the usual extension; see §1.1), and gdim means the graded dimension (which sends
a Z-graded vector space V = ⊕j�−∞Vj to

∑
j t
j/2 dimVj). For each χ ∈ IrrW , we denote

by Lχ the irreducible graded AW -module sitting at degree 0 that is isomorphic to χ as a
W -module.

D A ( .= Definition 2.13). – Let < be a total pre-order on IrrW . Then, a
Kostka system {K±χ }χ ⊂ AW -gmod is a collection such that

1. Each K±χ is an indecomposable AW -module with simple head Lχ;
2. For each χ, η ∈ IrrW , we have equalities

[K+
χ ] = [Lχ] +

∑
η>χ

K+
χ,η[Lη] with K+

χ,η ∈ tN[t] and

[K−χ∨ ] = [Lχ∨ ] +
∑
η>χ

K−χ,η[Lη∨ ] with K−χ,η ∈ tN[t]

in the Grothendieck group of AW -gmod;
3. We have

〈
K+
χ , (K

−
η )∗

〉
gEP

= 0 for χ 6∼ η∨, where (K−η )∗ is the graded dual of K−η .

If W is a real reflection group, then we have K+
χ = K−χ by (the genuine) definition, and we

denote them by Kχ.

This definition is slightly weaker than the one presented in the main body of the paper (for
simplicity). For Weyl groups, the classical preorders on IrrW reflect the geometry of nilpotent
cones and the Springer correspondences.

T B (= Theorem 2.17). – For a Kostka system {K±χ }χ, its graded character mul-
tiplicities K±χ,η satisfy the orthogonality relation of Kostka polynomials in the sense of [51, 35,
52]. In particular, a Kostka system is an enhancement of Kostka polynomials.

There are a number of (conjectural) cases where Kostka polynomials of complex reflection
groups satisfy the positivity of their coefficients ([44, 52, 53]). Theorem B supplies a possible
framework in which such Kostka polynomials might obtain mathematical reality.

This possibility is supported by the following results that most of the Kostka polynomials
in representation theory of reductive groups give rise to Kostka systems by giving graded
categorifications of many of their properties:

T C (= part of Theorem 3.5 and Corollary 3.9). – Every set of Kostka polyno-
mials arising from character sheaves of a connected reductive group over a finite field F admits
a realization as a Kostka system whenever charF is good. In addition, such Kostka systems are
semi-orthogonal in the sense

(0.1) ext•AW (Kχ,Kη) = {0} if χ < η.

R D. – Note that for a Weyl group of type An, the set of Kostka polynomials is
unique up to tensoring sgn, while for a Weyl group of type BCn, we have at least 4(n− 1) dif-
ferent sets of Kostka polynomials.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1038 S. KATO

By a parameter-deformation argument (cf. [40, 54, 30]) and the semi-continuity principle,
(0.1) implies the corresponding Ext-vanishing of the standard modules of a graded Hecke
algebra in the sense of [36] §8 (cf. [40] §8 and [15] §8). Thanks to [37], we deduce that the
Ext-groups of finite dimensional representations of graded Hecke algebras and (correspond-
ing) affine Hecke algebras are in common. As the endomorphism rings of projective genera-
tors of many Bernstein blocks of p-adic groups are identified with affine Hecke algebras (cf.
[39, 29]), (0.1) also supplies semi-orthogonal collections of such Bernstein blocks.

Since Kostka polynomials in Theorem C are coming from generalized Springer corre-
spondences ([34]), we conclude:

C E (= part of Theorem 3.5). – Every twisted total homology group of a gen-
eralized Springer fiber ([34, 35]) is generated by its top-term by hyperplane sections.

Corollary E does not hold for the usual cohomologies in general, and it has been regarded
as a mysterious aspect of Springer fibers (cf. [20, 60, 14, 27, 32]). Hence, our framework
provides one reasonable answer to this mystery. Thanks to [11, 10], Corollary E also imposes
non-trivial constraints on the structure of modular representation theory of semi-simple Lie
algebras and quantum groups.

In [16], we analyzed tempered representations of graded Hecke algebras H n,s/2 of type
BCn with the parameter ratio s/2 ∈ R>0. By [41], such tempered representations at 2s ∈ Z
are realized as generalized Springer representations of classical groups (of parameter s; see
Lemma 4.6). Hence, we have a Kostka system {Ks

χ}χ for 2s ∈ Z by Theorem C, which is
a graded analogue of the set of tempered representations of H n,s/2. We provide a graded
version of [16] §3, that is tightly connected with elliptic representation theory (loc. cit. §4):

T F ( .= part of Theorem 5.5 + Corollary 5.7). – For s ∈ Z>0, we have

– each of Ks+ 1
2

χ is written as some extensions of Ks
χ by Ks

η (η > χ);

– each of Ks+ 1
2

χ is written as some extensions of Ks+1
χ by Ks+1

η (η < χ),

where the preorder < depends on the value of s. In addition, {Ks+ 1
2

χ }χ yields a Kostka system
with respect to all total preorders attached to the region (s, s+ 1).

Here the expression of Theorem F is obscure, but we determine exactly which one appears
with which grading shift in terms of the notion of strong similarity class (Definition 4.4)
and distance (§1.2). In addition, we have an explicit description of {Ks

χ}χ in the asymptotic
region (s � 0) in terms of those of type A (combine Proposition 5.4, Lemma B.3, and
Fact A.1 1)). Therefore, Theorem F gives an algorithm to compute Kostka polynomials
{Ks

χ}χ,s of type BC (that is independent of the orthogonality relations).

E G. – Let W be the Weyl group of type B2 and consider the total preorders
coming from the Lusztig-Slooten symbols with positive parameter range (see §4 for detail,
but here we warn that our symbols slightly differ from that in [42]). There are five irreducible
representations of W

sgn,Ssgn, Lsgn, ref, triv,

and the modulesKs
sgn andKs

triv are constant. The transition pattern of the graded characters
of the other modules in Kostka systems is:
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s gchKs
Lsgn gchKs

Ssgn gchKs
ref

s ∈ (0, 1) [Lsgn] [Ssgn] + t[ref] + t2[triv] [ref] + t[triv] + t[Lsgn]

s = 1 [Lsgn] [Ssgn] + t[ref] + t2[triv] [ref] + t[triv]

s ∈ (1, 2) [Lsgn] + t[ref] + t2[triv] [Ssgn] + t[ref] + t2[triv] [ref] + t[triv]

s = 2 [Lsgn] + t[ref] + t2[triv] [Ssgn] [ref] + t[triv]

s > 2 [Lsgn] + t[ref] + t2[triv] [Ssgn] [ref] + t[triv] + t[Ssgn]

The organization of this paper is as follows: The first section is for preliminaries. In §2,
we define Kostka systems (for complex reflection groups) and present some of their general
results. This section is entirely algebraic. In §3, we combine the results in §2 with Lusztig
[34, 40] and Beilinson-Bernstein-Deligne [6] to prove that every generalized Springer corre-
spondence gives rise to a Kostka system (Theorem 3.5). In §4, we recall how the description
of generalized Springer fibers (of classical types) and symbol combinatorics are related (this
part is just a reformulation of known results). In addition, we unify the results of Lusztig [41]
and Opdam-Solleveld [48] into Slooten’s combinatorics ([56]) by utilizing our previous results
([17, 16]) and some results from the previous sections. Finally, we present the transition pat-
tern (Theorem 5.5) between generalized Springer correspondences of type BC by utilizing the
results from all the previous sections. In the appendices, we provide algebraic proofs that the
dual of De Concini-Procesi-Tanisaki [20, 60] yields a Kostka system for W = Sn, and there
exists a Kostka system for W = Sn n (Z/2Z)n. Thanks to Garsia-Procesi [23], this means
that there is a completely algebraic path to study Kostka systems in some cases.

One natural problem arising from this paper is to abstract the arguments so that it include
some important non-geometric cases like the Geck-Malle conjecture ([24]). The author hopes
to get back to this problem later.

Acknowledgments. – The author is very grateful to Masaki Kashiwara, Toshiaki Shoji, and
Seidai Yasuda for valuable discussions on some technically deep points. The author also
thanks Dan Ciubotaru for the collaboration works which leads him to the present paper,
and Noriyuki Abe, Pramod Achar, Yoshiyuki Kimura, George Lusztig, Toshio Oshima,
Arun Ram, and Laura Rider for helpful conversations and correspondences. We have utilized
the output of [2, 1] during this research. This research is supported in part by Max-Planck
Institute für Mathematik in Bonn, JSPS Grant-in-Aid for Young Scientists (B) 23-740014,
and JSPS Grant-in-Aid for Scientific Research (B) 26-287004.

1. Preliminaries

1.1. Overall notation

Let (W,S) be a complex reflection group with a set of simple reflections and let h be
its reflection representation (for W = Sn, we might add an additional copy of trivial
representation). We form a graded algebra

AW := CW nC[h∗]

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1040 S. KATO

by setting degw ≡ 0 for every w ∈ W and deg β = 2 for every β ∈ h ⊂ C[h∗]. We
set JW := ker

(
C[h∗]W → C

)
, where the map is the evaluation at 0 ∈ h∗. For a subgroup

W ′ ⊂W , we define AW,W ′ := CW ′ nC[h∗] ⊂ AW .
Let IrrW be the set of isomorphism classes of simple W -modules, and let Lχ and eχ be

a realization and a minimal idempotent of W corresponding to χ ∈ IrrW , respectively. We
denote the dual representation of χ by χ∨.

In this paper, every grading should be understood as a Z-grading. Let vec be the cate-
gory of graded vector spaces. Let AW -gmod be the category of finitely-generated graded
AW -modules. For each M in AW -gmod or vec, we denote by Mi its degree i part. We
set M〈d〉 to be the grading shift of M of degree d (i.e., (M〈d〉)i = Mi−d for each i ∈ Z).
ForE,F ∈ AW -gmod andR = AW ,C[h∗], orW , we define homR(E,F ) to be the direct sum
of the space of gradedR-module homomorphisms homR(E,F )j = HomR-gmod(E 〈j〉 , F ) of
degree j. We employ the same notation for extensions (i.e., extiR(E,F ) =

⊕
j∈Z extiR(E,F )j

and extiR(E,F )j = ExtiR-gmod(E 〈j〉 , F )). For a graded subspace J ⊂ AW , we set 〈J〉 to be
the (graded) ideal generated by J .

In addition, for M ∈ AW -gmod, we define (M∗)−d := HomC(Md,C) and M∗ :=
⊕

d(M
∗)d.

This is a graded Aop
W -module that is not necessarily finitely generated. We have an isomor-

phism AW ∼= Aop
W induced by sending w ∈W to w−1 ∈W (and is identity on C[h∗]). Using

this, we may also regard M∗ as a (graded) AW -module.
Let Sdh be the d-th symmetric power of h, which is naturally a W -module. In case

the reflection representation h of W admits a natural basis ε1, . . . , εn (as in the case of
W = Sn n (Z/eZ)n for e ≥ 2), we set ∧d+h ⊂ Sdh to be the span of all the monomials
εm1
1 εm2

2 · · · εmnn with 0 ≤ mi ≤ 1 for every i. Notice that ∧d+h ⊂ Sdh is a W -submodule.

For Q(t1/2) ∈ Q(t1/2), we set Q(t1/2) := Q(t−1/2).

1.2. Convention on partitions

Let λ = (λ1, λ2, . . . , λk, . . .) be a non-negative integer sequence such that (1)
∑
i λi = n,

and (2) λ1 ≥ λ2 ≥ · · · ≥ 0. We refer λ as a partition of n, and n = |λ| as the size of λ.
For a partition λ, we define its transpose partition tλ as (tλ)i = #{j | λj ≥ i}. We define
λ≤k :=

∑
i≤k λi for each k ∈ Z>0.

We define a partial order on the set of partitions as λ ≥ µ if and only if we have λ≤k ≥ µ
≤
k

for every k (for each pair of partitions λ and µ). We define the a-function of a partition λ

by a(λ) :=
∑
i≥1

(
(tλ)i

2

)
. The partial order < is weaker than the partial order given in

accordance with the values of the a-function (in an opposite way).
For a partition λ of n, we denote by Sλ the natural subgroup

Sλ1 ×Sλ2 × · · · ⊂ Sn.

In addition, we have a unique irreducible Sn-module Lλ (up to isomorphism) such that

HomStλ
(sgn, Lλ) ∼= C, and HomSλ(triv, Lλ) ∼= C.

A pair of partitions λ = (λ(0), λ(1)) is called a bi-partition, and it is called a bi-partition
of n if n = |λ(0)| + |λ(1)| in addition. We denote by P(n) the set of bi-partitions of n. The
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A HOMOLOGICAL STUDY OF GREEN POLYNOMIALS 1041

transpose tλ of a bi-partition λ = (λ(0), λ(1)) is defined as (tλ(1), tλ(0)). We define the
b-function of a bi-partition λ as:

b(λ) := |λ(0)|+ 2a(λ(0)) + 2a(λ(1)),

where we employed the a-function of partitions in the RHS.
For a pair of two bi-partitions λ = (λ(0), λ(1)),µ = (µ(0), µ(1)) of n, we define λ

.
= µ

when there exists a unique pair (i, j) so that λ(0)
i = µ

(0)
i ± 1, λ(1)

j = µ
(1)
j ∓ 1, and

λ
(0)
k = µ

(0)
k , λ

(1)
k = µ

(1)
k otherwise.

For two bi-partitions λ and µ, we define their distance dλ,µ as:

dλ,µ := min{d | λ = λ0
.
= ∃λ1

.
= · · · .= ∃λd−1

.
= λd = µ}.

2. Kostka systems

Keep the setting of the previous section.

L 2.1. – For each M ∈ AW -gmod, the following two series belong to Z((t1/2))IrrW

and Z((t1/2)), respectively:

gchM :=
∑

χ∈IrrW

∑
i∈Z

ti/2[Lχ] dim HomW (Lχ,Mi) and gdimM :=
∑
i∈Z

ti/2 dimMi.

Proof. – We have dim (AW 〈d〉)i = #W · dim Si−dh <∞ for each i and d. In addition,
we have dim (AW 〈d〉)i = 0 if i < d. Thus, the assertions hold when M = AW 〈d〉. In
general, M is a graded quotient of

⊕
j∈J AW 〈dj〉 (for a finite set J and dj ∈ Z). Therefore,

we conclude the assertions by the comparison of their graded pieces.

Note that Lχ can be regarded as an irreducible AW -module sitting at degree 0, and we
freely use this identification in the below. For each χ ∈ IrrW , we set Pχ := AW eχ and
P

(0)
χ := Pχ/ 〈JW 〉Pχ.

L 2.2. – The graded AW -module Pχ is the indecomposable projective cover of Lχ.
In addition, all finitely generated indecomposable graded projective modules of AW are of this
type up to grading shifts.

Proof. – As a direct summand ofAW , eachPχ is projective. In addition, we have a natural
surjection Pχ → Lχ with its kernel hPχ. It follows that Pχ is indecomposable, and hence
it is a projective cover of Lχ. The graded semisimple quotient of AW is AW,0 = CW .
Hence we have an identification of IrrW with the set of isomorphism classes of simple graded
AW -modules up to grading shifts. Therefore, {Pχ}χ exhausts the set of isomorphism classes
of indecomposable graded projective modules up to grading shifts.

C 2.3. – The set {gchPχ}χ∈IrrW is a Z((t1/2))-basis of Z((t1/2))IrrW .

Proof. – For each χ ∈ IrrW , we have gchPχ = [Lχ] mod t1/2. Hence, the linear inde-
pendence is clear. Every element ofZ((t1/2))IrrW admits an iterative expansion by {gchPχ}χ
which removes the lowest (non-zero) graded piece repeatedly. This expansion has finite coef-
ficients at each degree by Lemma 2.1 as required.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1042 S. KATO

P 2.4. – The category AW -gmod has finite projective dimension.

Proof. – See McConnell-Robson-Small [45] 7.5.6.

Let K(AW ) be the Grothendieck group of AW -gmod. We define the graded Euler-
Poincaré pairing K(AW )×K(AW )→ Z((t1/2)) as

〈E,F 〉gEP :=
∑
i≥0

(−1)igdim extiAW (E,F ).

For each M ∈ AW -gmod and χ ∈ IrrW , we set

[M : Lχ] := gdim homAW (Pχ,M) = gdim homW (Lχ,M)

and (M : Pχ) ∈ Z((t1/2)) to be

gchM =
∑

χ∈IrrW

(M : Pχ) gchPχ.

L 2.5. – For a finite-dimensional graded AW -module M and χ ∈ IrrW , we have

[M : Lχ] = [M∗ : Lχ∨ ].

Proof. – By the finite-dimensionality, we have M∗ ∈ AW -gmod. The grading of M∗ is
opposite toM . Therefore, it suffices to prove (Lχ)∗ ∼= Lχ∨ . To this end, it is enough to chase
the action of W . The naive dual HomC(Lχ,C) is isomorphic to Lχ∨ as a W -module. This
W -action factors through W ⊂ AW ∼= Aop

W . Therefore, we conclude the result.

D 2.6 (Phyla). – An ordered subdivision

(2.1) IrrW = O1 t O2 t · · · t Om

is called a phyla P = { Oi}mi=1 of W , and each individual Oi is called a phylum. The total
preorder < P on IrrW defined as

χ < P η (or χ ∼ P η) ⇔ χ ∈ Oi1 , η ∈ Oi2 with i1 < i2 (or i1 = i2)

is called the order associated to the phyla P. If a phyla P is fixed, we might drop the
subscript P from the notation. We define the conjugate phyla P of P by conjugating all
irreducible W -representations in (2.1). We call P being of Malle type if χ ∈ Oi implies
χ∨ ∈ Oi, and call P a singleton phyla if every phylum is a singleton.

R 2.7. – (1) If P is of Malle type, then we have P = P. (2) IfW is a real reflection
group, then every phyla is of Malle type since χ ∼= χ∨. (3) For background about phyla, we
refer to Achar [3].

Let ∆ := gdimC[h∗]W . We name Ctriv := P
(0)
triv .

L 2.8. – For each χ ∈ IrrW , we have gchPχ = ∆ · gchP
(0)
χ . In addition, we have

dim P
(0)
χ <∞.
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Proof. – Since W is a complex reflection group, we have dim Ctriv = #W < ∞ by
Stanley [59] 4.10. In addition, loc. cit. 3.1 and 4.1 yields an isomorphism

C[h∗] ∼= Ctriv ⊗ C[h∗]W

as a graded W -module. Taking gch of both sides and taking into account the fact that
C[h∗]W is a direct sum of (infinitely many copies of) triv, we conclude

gchPtriv = ∆ · gchCtriv.

Since Pχ ∼= C[h∗]⊗ Lχ and P (0)
χ
∼= Ctriv ⊗ Lχ as graded W -modules, we deduce

gchPχ = ∆ ·
∑

η∈IrrW

[Lη] gdim homW (Lη, Ctriv ⊗ Lχ) = ∆ · gchP (0)
χ ,

which is the first assertion. This also implies dim P
(0)
χ <∞ as required.

We define the matrix Ω with its entries

Ωχ,η := gdim homW (Lχ ⊗ Lη∨ , Ctriv) for each χ, η ∈ IrrW.

C 2.9. – For each χ, η ∈ IrrW , we have 〈Pχ, Pη〉gEP = ∆ · Ωχ,η.

Proof. – We have

〈Pχ, Pη〉gEP = gdim homAW (Pχ, Pη)

= gdim homW (Lχ, Pη) = gdim homW (Lχ, Lη ⊗ Ptriv)

= ∆ · gdim homW (Lχ ⊗ Lη∨ , Ctriv).

The last term coincides with ∆ · Ωχ,η by definition.

T 2.10 (Shoji [51, 52], Lusztig [35]). – Let (W, P) be a pair of a complex reflec-
tion group and its phyla. Assume thatK± = (K±χ,η)χ,η∈IrrW are unknown Q((t))-valued matri-
ces such that

K+
χ,η =

{
1 (χ = η)

0 (χ & η 6= χ)
, and K−χ,η =

{
1 (χ = η)

0 (χ∨ & η∨ 6= χ∨)
.(2.2)

Let Λ = (Λχ,η)χ,η∈IrrW be also a(n unknown) Q((t))-valued matrix such that

Λχ,η 6= 0 only if χ ∼ η.

Let Kσ be the permutation of K by means of (χ, η) 7→ (χ∨, η∨). Then, the matrix equation
tK+ · Λ · (K−)σ = Ω(2.3)

has a unique solution.

Proof. – We explain how to deduce this from the usual version of the Lusztig-Shoji algo-
rithm ([51, 35, 52, 3, 4]) in the case that P is of Malle type (for the sake of simplicity, and in
fact otherwise the explanation in the middle does not make sense). We denoteK±χ,η byKχ,η.
Our K is the transpose of the usual convention since our matrix K is designed to represent
“the homology of Springer fibers (cf. [57, 58, 34])” (while usually the matrix K represents
the dimensions of the stalks of character sheaves; cf. [12]). Set ω(t) := gchCtriv ∈ Z[t]IrrW .
We have tN

∗
ω(t) = gch (sgn⊗ Ctriv), where N∗ is the total number of complex reflections
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of W . It implies that our Kχ,η are the (unmodified) Kostka polynomials up to normaliza-
tions. (Note that [52] §5 implies thatKχ,η are rational functions for any choice of P.) Finally,
setting Kχ,χ = 1 is achieved by twisting the diagonal matrices (with block-wise same eigen-
values) to Kσ,K, and Λ, and is a harmless normalization.

D 2.11. – For a phyla P andχ ∈ IrrW , we define the P-tracePχ, P ofPχ (with
respect to P) as

Pχ, P := Pχ/(
∑

η.χ,f∈homAW
(Pη,Pχ)>0

Imf ).

R 2.12. – (1) By the condition deg f > 0, we conclude that (Pχ, P)0 = Lχ.

(2) Since the surjectionPχ → Pχ, P factors throughP (0)
χ , we deduce thatPχ, P is always finite-

dimensional. In particular, we have P ∗χ, P ∈ AW -gmod.

D 2.13 (Kostka systems). – Let (W, P) be a pair of a complex reflection group
and its phyla. A collection of modules K := {K±χ }χ∈IrrW ⊂ AW -gmod is called a Kostka
system (adapted to P) if it satisfies the following two conditions:

(1) Each K+
χ is a P-trace of Pχ and each K−χ is a P-trace of Pχ.

(2) We have
〈
K+
χ , (K

−
η )∗

〉
gEP
6= 0 only if χ ∼ η∨.

In case P is of Malle type, we haveK+
χ = K−χ for eachχ ∈ IrrW , and we denote them byKχ.

P 2.14. – Does a Kostka system adapted to a (nice) phyla P satisfy the orthog-
onality condition

(3) ext•AW (K±χ ,K
±
η ) ≡ 0 if χ < η ?

Conversely, does a collection of objects in Db(AW -gmod) with (3) and the conditions of
Lemma 2.15 give rise to a Kostka system whenever their graded characters are positive?

For more background of Problem 2.14, see Corollary 3.9 and Proposition 2.16 in the
below.

L 2.15. – Let {K+
χ }χ and {K−χ }χ be complete collections of P-traces and P-traces,

respectively.

1. We have [K±χ : Lη] ≡ δχ,η mod t;
2. We have [K+

χ : Lη] 6= 0 or [K−χ∨ : Lη∨ ] 6= 0 only if χ . P η;
3. We have [K+

χ : Lη] ≡ 0 ≡ [K−χ∨ : Lη∨ ] if χ ∼ η but χ 6= η.

Proof. – Immediate from the definition of a P-trace. Notice that we take modulo t in the
first assertion instead of t1/2 since [K±χ : Lη] ∈ Q[[t]].

P 2.16 (Problem 2.14 and Kostka systems). – Let (W, P) be a complex
reflection group and its phyla. If we have a collection of gradedAW -modules K = {K±χ }χ∈IrrW

satisfying the condition of Definition 2.13 1) and

(3)+ ext•AW (K+
χ ,K

+
η ) = {0} for every χ < P η;

(3)− ext•AW (K−χ ,K
−
η ) = {0} for every χ∨ < P η

∨,
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then we have

ext•AW (K+
χ , (K

−
η )∗) = {0} = ext•AW (K−η , (K

+
χ )∗) except for the case χ ∼ η∨.

In particular, K gives rise to a Kostka system.

Proof. – By Lemma 2.15 and the condition (3)+, a repeated use of long exact sequences
implies

ext•AW (K+
χ , Lη) = {0} for every χ < P η.

Again by Lemma 2.15 and a repeated use of long exact sequences, we deduce

ext•AW (K+
χ , (K

−
η )∗) = {0} for every χ < P η

∨.

We have a functorial isomorphism (defined through AW ∼= Aop
W )

homAW (M,N) ∼= homAW (N∗,M∗)

for every finite-dimensional graded AW -modules N,M . Since ∗ is an exact functor, and
ext•AW (M, •) and ext•AW (•∗,M∗) are universal δ-functors on the category of finite dimen-
sional graded AW -modules, this implies

ext•AW (K−η , (K
+
χ )∗) ∼= ext•AW (K+

χ , (K
−
η )∗) = {0} for every χ < P η

∨.

By swapping the roles of K+ and K− by utilizing the condition (3)−, we conclude the
first assertion. By taking the graded Euler-Poincaré characteristic, we deduce the second
assertion.

T 2.17. – Assume that we have a Kostka system K adapted to P. Then, the
collection {K±χ }χ∈IrrW gives rise to the solution of (2.3) as:

K±χ,η = [K±χ : Lη] for every χ, η ∈ IrrW.

Proof. – We define a matrix P with its entries Pχ,η := [Pχ : Lη] ∈ Z[[t]]. We have
Pχ,η ≡ δχ,η mod t. Therefore, the matrix P is invertible. In addition, we can also regard
Pχ,η ∈ Q(t) by Lemma 2.8. By Lemma 2.15 and Remark 2.12 2), the same is true for K±.
Hence, we can calculate as:〈

K+
η , (K

−
χ∨)∗

〉
gEP

=
∑
κ,ν

K+
η,κK

−
χ∨,ν 〈Lκ, Lν∨〉gEP

=
∑
κ,ν,ξ

K+
η,κK

−
χ∨,ν(P−1)κ,ξ 〈Pξ, Lν∨〉gEP

=
∑
κ,ν

K+
η,κK

−
χ∨,ν(P−1)κ,ν∨

= (K+ · P−1 · t(K−)σ)η,χ.

We have Pχ,η = 〈Pη, Pχ〉gEP = ∆ · Ωη,χ. Therefore, Definition 2.13 2) yields

t(K+ · P−1 · t(K−)σ) = ∆−1((K−)σ · Ω−1 · tK+) = ∆−1Λ−1 in (2.3),

as required.

C 2.18 (of the proof of Theorem 2.17). – If we have a collection of AW -mod-
ules {K±χ }χ∈IrrW so that its graded characters satisfy the equation (2.3) with respect to a phyla,
then Definition 2.13 2) is satisfied for that phyla. �
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L 2.19 (Abe). – For a Kostka system K adapted to P, we have

(K+
χ : Pη) = 0 and (K−χ∨ : Pη∨) = 0 if χ < P η.

Proof. – By the linearity of the graded Euler-Poincaré pairing, we have〈
K+
χ , (K

−
η∨)∗

〉
gEP

=
∑
κ

(K+
χ : Pκ)

〈
Pκ, (K

−
η∨)∗

〉
gEP

=
∑
κ

(K+
χ : Pκ)[(K−η∨)∗ : Lκ] 6= 0 only if χ ∼ η.

Here the matrix ([(K−η∨)∗ : Lκ]) is invertible and blockwise upper-triangular (with respect

to P) by Lemma 2.15 1), and the matrix (
〈
K+
χ , (K

−
η∨)∗

〉
gEP

) is block-diagonal by Defini-

tion 2.13 2). Therefore, we conclude the result for K+
χ . The case of K−χ is similar.

P 2.20. – Let (W, P) be a complex reflection group and its phyla. Let {K+
χ }χ

be a complete collection of P-traces and let {K−χ }χ be a complete collection of P-traces. Then
we have

extiAW (K+
χ , Lη) ∼= extiAW (K−η∨ , Lχ∨) i = 0, 1

for every χ ∼ P η.

Proof. – Since χ ∼ P η if and only if χ∨ ∼ P η
∨, the assertion for i = 0 is an immediate

consequence of the definition of P-traces.
We prove the case i = 1. The first two terms of the minimal projective resolution of K+

χ

goes as: ⊕
χ′∈IrrW,d>0

Pχ′ 〈d〉
⊕
mχ′,d −→ Pχ −→ K+

χ → 0.

Since K+
χ is a P-trace, we need χ′ . χ in order that mχ′,d 6= 0.

Fix an arbitrary d > 0. We set Γdχ :=
∑
f∈Ξdχ

Imf ⊂ Pχ and Γdη∨ :=
∑
f∈Ξd

η∨
Imf ⊂ Pη∨ ,

where

Ξdχ =
⊕

χ′.χ,0<d′<d

homAW (Pχ′ , Pχ)d′ , and Ξdη∨ =
⊕

η′.η,0<d′<d

homAW (P(η′)∨ , Pη∨)d′

(here the orderings are taken with respect to the phyla P). If mη,d 6= 0, then there exists a
W -submodule Lη ⊂ Pχ,d that is not contained in Γdχ. We identify the dual space P ∗χ with
C[h]⊗ Lχ∨ . We have a natural non-degenerate pairing

(•, •) : Pχ ⊗ P ∗χ −→ C

induced by a W -invariant map Lχ ⊗ Lχ∨ → C and the natural pairing

S•h× S•h∗ 3 (P, f) 7→ (Pf)(0) ∈ C,

where we regard S•h ∼= C[h∗] as differentials arising from the natural pairing h∗×h→ C. In
particular, the above pairing equip P ∗χ a graded AW -module structure, where h acts on C[h]

by derivations.
Let L be the Lη-isotypic part of Pχ,d, and let L∗ be the Lη∨ -isotypic part of P ∗χ,−d. The

natural pairing (•, •) : Pχ×P ∗χ → C induces a non-degenerate pairing (•, •) : L×L∗ → C.
Further, if we write L ∼= L+ � Lη and L∗ ∼= L− � Lη∨ to single out the multiplicity space,
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then we obtain a non-degenerate pairing L+ × L− → C induced by Lη ⊗ Lη∨ → C, which
we denote by (•, •)0.

For each element u ∈ L ∩ Γdχ, we have a non-trivial decomposition

u = h1u1 + · · ·+ hmum (finite sum),

where hi ∈ C[h∗] is a homogeneous element of degree (d − di) and ui ∈ fi(Lχi) with
fi ∈ homAW (Pχi , Pχ)di ⊂ Ξdχ (with χi - χ) for each 1 ≤ i ≤ m. There exists u′ ∈ L∗

with (u, u′) 6= 0. It follows that

0 6=
m∑
i=1

(hiui, u
′) =

m∑
i=1

(ui, hiu
′),

and hence (ui0 , hi0u
′) 6= 0 for some i0. Set d0 := di0 and χ0 := χi0 . It follows that

CWhi0u
′ contains a W -isotypic component Lχ∨0 . In particular, we have u′0 ∈ P ∗χ,−d0 so that

(ui0 , u
′
0) 6= 0 and CWu′0

∼= Lχ∨0 by the W -invariance of (•, •). We have a decomposition

ui0 = h′1v1 + · · ·+ h′m′vm′ (finite sum),

where vi ∈ Lχ = Pχ,0 and h′i ∈ C[h∗] are degree d0 elements for all 1 ≤ i ≤ m′. By a similar
argument as above, there exists 1 ≤ i1 ≤ m′ so that (vi1 , h

′
i1
u′0) 6= 0.

Let σu′ : Pη∨ 〈−d〉 → P ∗χ be a map determined by u′ (i.e., u′ ∈ Imσu′ ). Let
gu′0 : Pχ∨0 〈−d0〉 → Pη∨ 〈−d〉 be a map obtained by lifting u′0 to Pη∨ 〈−d〉 (and require
u′0 ∈ Imgu′0 ). Then the above argument says that for every u ∈ L ∩ Γdχ and every u′ ∈ L∗

with (u, u′) 6= 0, there exists

gu′0(h′i1 ⊗ u
′
0) ∈ Γdη∨ 〈−d〉 ⊂ Pη∨ 〈−d〉

so that σu′(gu′0(h′i1 ⊗u
′
0)) 6= 0. Notice that the space L′�Lχ∨ of Lχ∨ -isotypic part of Pη∨,d

is isomorphic to L+ � Lχ∨ since

L+ ∼= homW (Lη, Pχ)d ∼= homAW (Pη, Pχ)d ∼= homAW (P ∗χ , P
∗
η )d

∼= homW (Sdh∗ ⊗ Lχ∨ , Lη∨) ∼= homW (Lχ∨ , S
dh⊗ Lη∨) ∼= L′.

Here we have an isomorphism

L− ∼= homW (Lη∨ 〈−d〉 , P ∗χ)0
∼= homAW (Pη∨ 〈−d〉 , P ∗χ)0.

From these, we deduce that for each u ∈ L ∩ Γdχ and u′ ∈ L− so that (u, u′ � L∨η ) 6≡ 0,
we have some u1 � v ∈ (L+ � Lχ∨ ∩ Γdη∨) so that (u′, u1)0 6= 0. By taking contraposition,
if u′ ∈ L− satisfies (u′, u1)0 = 0 for every u1 � v ∈ (L+ � Lχ∨ ∩ Γdη∨), then we have
(u, u′ � Lη∨) ≡ 0 for every u ∈ L ∩ Γdχ.

Therefore, we conclude

homW ((L ∩ Γdχ), Lη) ⊂ homW ((L′ � Lχ∨ ∩ Γdη∨), Lχ∨),

which is equivalent to a surjective map

ext1
AW (K+

χ , Lη)−d −→→ ext1
AW (K−η∨ , Lχ∨)−d.

By the symmetry of the condition, we deduce that this map is actually an isomorphism for
each d > 0 as desired.
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C 2.21. – Keep the setting of Proposition 2.20. Let P ′ be another phyla whose
total preorder < P′ is refined by < P . If we have

[K+
χ : Lη] = 0 = [K−χ∨ : Lη∨ ] for every χ ∼ P′ η but χ 6∼ P η,

then {K+
χ }χ is a complete collection of P ′-traces and {K−χ }χ is a complete collection

of P ′-traces. In addition, we have

ext1
AW (K+

χ , Lη) = {0} = ext1
AW (K−χ∨ , Lη∨) for every χ ∼ P′ η but χ 6∼ P η.

Conversely, let P ′′ be a phyla whose total preorder < P′′ refines < P and

ext1
AW (K+

χ , Lη) = {0} = ext1
AW (K−χ∨ , Lη∨) for every χ ∼ P η but χ 6∼ P′′ η.

Then {K+
χ }χ is a complete collection of P ′′-traces and {K−χ }χ is a complete collection

of P ′′-traces.

Proof. – Observe that the assumption implies

(2.4) [K+
χ : Lη] ≡ δχ,η ≡ [K−χ∨ : Lη∨ ] if χ ∼ P′ η.

Let {K ′χ}χ be the (complete) collection of P ′-traces. Each K ′χ is a quotient of K+
χ by the

images of positive degree map Pχ′ → K+
χ for some χ ∼ P′ χ

′, which cannot exist by (2.4). It

follows that {K+
χ }χ = {K ′χ}χ. The same is true for the collection of P ′-traces and {K−χ }χ.

In case χ ∼ P′ η but χ 6∼ P η, we have either χ < P η or η < P χ. We need to consider
only the first case by symmetry. Then, since K+

χ is a P-trace, non-trivial extension of K+
χ

by Lη is prohibited. In other words, we have ext1
AW

(K+
χ , Lη) = {0}. Similarly, we have

ext1
AW

(K−χ∨ , Lη∨) = {0}. By Proposition 2.20, we also have ext1
AW

(K+
η , Lχ) = {0} and

ext1
AW

(K−η∨ , Lχ∨) = {0}. Therefore, we conclude the first assertion. The second assertion is
straightforward.

C 2.22. – Keep the setting of Corollary 2.21. If {K±χ }χ is a Kostka system
adapted to P, then it is a Kostka system adapted to P ′. In addition, if {K±χ }χ is a Kostka
system adapted to P and〈

K+
χ , (K

−
η )∗

〉
gEP

= 0 for every χ ∼ P η
∨ but χ 6∼ P′′ η

∨,

then it is a Kostka system adapted to P ′′. �

The following proposition is applied to graded Hecke algebras [38] in a later section.

P 2.23. – Let A be a C[z]-algebra with the following properties:

1. We have an algebra embedding CW ⊂ A, and A is a flat C[z]-module;
2. Specialization to z = 0 yields an isomorphism C0 ⊗C[z] A ∼= AW , which identifies

subalgebras CW in both sides;
3. There exists a C×-action r• on A with raz = az (a ∈ C×) which induces:

– an isomorphism r∗z1/z0 : Cz0 ⊗C[z] A
∼=−→ Cz1 ⊗C[z] A for z0 6= 0 6= z1;

– a dilation action on AW = C0 ⊗C[z] A with respect to the grading.
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Let M be a finite-dimensional irreducible A-module for which z acts by a nonzero scalar and
Lχ appears inM with multiplicity one (as aW -module). Then, there exists an indecomposable
gradedAW -moduleM0 (canonical up to grading shifts and isomorphisms) so thatM|W∼= M0|W
and Pχ surjects onto M0.

In addition, if we have a C×-equivariant A-module M which is flat over C[z] and
M ∼= C1⊗C[z] M, then we have a submodule M[ ⊂ M so thatC[z±1]⊗C[z] M

[ ∼= C[z±1]⊗C[z] M
and M0

∼= C0 ⊗C[z] M[.

Proof. – Suppose that z act by z0 onM . By utilizing the C×-action,M can be transferred
to an A-module M◦ that is flat over C[z±1] and Cz1⊗C[z±1] M◦ ∼= r∗z1/z0M for each z1 ∈ C×.

Let P̃χ := Aeχ be a direct summand of A. This is a non-zero projective A-module. By the
multiplicity-free assumption and irreducibility, we have a unique (up to scalar multiplications
and z±1-twists) map P̃χ → M◦ which becomes surjection after localizing toC[z±1]. Let K be
the kernel of this map, which is an A-submodule of P̃χ by definition. Here K must be a
torsion-free C[z]-module since P̃χ is so. Here C[z] is PID, so K is flat as a C[z]-module.
Therefore, we have inclusions of A-modules

K ⊂ K ′ := C[z±1]⊗C[z] K ∩ P̃χ ⊂ C[z±1]⊗C[z] P̃χ.

By the maximality of this module and again by fact that C[z] is PID, we conclude that
P̃χ/K ′ is flat as a C[z]-module. In addition, M◦ and P̃χ/K ′ are naturally isomorphic if we
invert z. By the rigidity of (finite-dimensional) W -modules, we conclude that
M0 := C0 ⊗C[z] (P̃χ/K ′) has the same W -module structure as that of M . In addition,
it admits a surjection from Pχ ∼= C0⊗C[z] P̃χ. Now we utilize the C×-action to deduceM0 is
graded.

For the latter assertion, we set M[ := (P̃χ/K ′). We rearrange the above map by twisting
some power of z if necessary to obtain a homomorphism P̃χ −→ M, whose image contains
C[z]Weχ ∼= C[z]Lχ. By the above construction, it gives rise to a submodule M[ ⊂ M as
desired.

3. Kostka systems arising from reductive groups

We use the setting of the previous section. In this section, we prove the existence of a
Kostka system corresponding to a generalized Springer correspondence by utilizing Lusztig’s
construction of generalized Springer correspondence/graded Hecke algebra.

In this section (and only in this section), we work over a field of positive characteristic in
order to apply the machinery of [6]. We fix two distinct primes p and `, set F to be a finite
extension of Fp, and set k to be the algebraic closure of F. We define Fr to be the geometric
Frobenius morphism such that X(k)Fr = X(F) for a variety X over F. For sheaves, we
usually work in the derived category, and hence we understand that all functors are derived
unless stated otherwise. We utilize some identification Q` ∼= C to pass the results to the other
cases.

A generalized Springer correspondence is determined by the following data ([34]): a split
connected reductive group G over F, its split Levi subgroup L, a cuspidal Q`-local system L
on a nilpotent orbit Oc of L, and its Frobenius linearization φ : Fr∗ L

∼=−→ L (which is a
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descent data from k to F) defined over Oc ⊗F k. We call c := (G,L, Oc, L, φ) a cuspidal
datum.

We assume that the characteristic of F is good forG. For an algebraic group, we denote its
Lie algebra by its small gothic letter. Let N G ⊂ g denote the nilpotent cone ofG. Let P ⊂ G
be a parabolic subgroup ofG, with a choice of its Levi decompositionP = LU . The nilpotent
cone N L = N G ∩ l of L contains the L-orbit Oc. Form a collapsing map

µ : G×P ( Oc ⊕ u) −→ N G.

We denote the domain of µ by Ñ , and the image of µ by N . Note that µ is proper and N is
closed in N G. Let j : Oc → Oc be the natural inclusion map and let pr : ( Oc ⊕ u) → Oc be
the projection map. They are L-and P -equivariant, respectively. By the cleanness property
of cuspidal local systems (Ostrik [49]), we have j! L ∼= j∗ L, and hence pr∗j! L defines a
(shifted) P -equivariant perverse sheaf on ( Oc⊕ u). By taking the G-translation, we obtain a
(shifted) G-equivariant perverse sheaf L̇ on G ×P ( Oc ⊕ u). Let W = Wc := NG(L)/L be
the Weyl group attached to c. Let H◦ be the identity component of an algebraic group H.
For x ∈ N (F), let ZG(x) be the G-stabilizer of x and set Ax := ZG(x)/ZG(x)◦.

The following Theorem 3.1 is (logically) buried in Lusztig [34, 35, 36, 40] (which lies on
the results of many mathematicians, including those of Borho-MacPherson [12], Ginzburg
[25, 15], Shoji [51], Beynon-Spaltenstein [8], and Evens-Mirković [22]). Some part of its Lie
algebra version is presented in Letellier [33] §5 (which serves a good point to begin with) and
Mirković [46]. Hence, all the assertions in Theorem 3.1 are known to experts, and the author
is claiming no originality for Theorem 3.1 itself. Nevertheless, we provide explanations on
how to deduce the present form for the sake of completeness.

T 3.1 (Lusztig’s generalized Springer correspondence). – We have the following
results over k:

1. The sheaf µ∗ L̇[dim Ñ ] is perverse, and is a direct sum of simple perverse sheaves (with
respect to the self-dual perversity).

2. We haveAW ∼= Ext•G(µ∗ L̇, µ∗ L̇) as graded algebras, where the extension is taken in the
G-equivariant derived category Db

G( N ).
3. (generalized Springer correspondence) For each χ ∈ IrrW , there exists a simple

(G-equivariant) perverse sheaf IC(χ) on N so that:

(3.1) µ∗ L̇[dim Ñ ] ∼=
⊕

χ∈IrrW

Lχ � IC(χ).

In addition, we have IC(χ) ∼= IC(χ′) if and only if Lχ ∼= Lχ′ as W -modules.
4. For each i ∈ Z, the Frobenius action (arising from φ) of ExtiG(µ∗ L̇, µ∗ L̇) is pure of

weight i. More precisely, φ induces a vector space automorphism with the absolute values
of all of its eigenvalues equal to qi/2.

5. For each x ∈ N (F), we setBx := µ−1(x) and ıx : {x} ↪→ N . Then, the graded vector
space

(3.2) H•(Bx, L̇) := H•(ı!xµ∗ L̇[2 dim N − 2 dimBx])

admits a structure of a graded AW -module which commutes with the Ax-action.
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6. Let x ∈ N (F). For each ξ ∈ IrrAx, we define

Kc,gen
(x,ξ) = H•(Bx, L̇)ξ := HomAx(ξ,H•(Bx, L̇))

and call it the generalized Springer representation. The graded module Kc,gen
(x,ξ) is concen-

trated in non-negative even degrees.
7. Fix x ∈ N (F) and let ξ ∈ IrrAx. For every χ′ ∈ IrrW , we have

[Kc,gen
(x,ξ) : Lχ′ ] = tdimBx− 1

2 dim N gdim HomAx(ξ,H•(i!xIC(χ′))).

8. Each x ∈ N (F) and ξ ∈ IrrAx gives rise to aG-equivariant simple perverse sheaf IC(x, ξ)

via the minimal extension of the local system on G.x corresponding to ξ. If this IC(x, ξ)

is not of the form IC(χ) for some χ ∈ IrrW , then Kc,gen
(x,ξ) = {0}.

9. IfKc,gen
(x,ξ) 6= {0}, then (Kc,gen

(x,ξ) )0 is irreducible as aW -module. In addition, the Frobenius
action on Kc,gen

(x,ξ) is pure.
10. The graded W -module Kc,gen

(x,ξ) is isomorphic to the one defined by using varieties over C.

R 3.2. – (1) For the sake of simplicity, our homologies substantially differ from
the usual convention (e.g., their degrees are cohomological). In particular, the i-th homology
of a smooth irreducible variety X (in this paper) is Hi−2 dimX(X,DX), where DX is the
dualizing sheaf of X. (2) There are other Springer correspondences (see e.g., Xue [64]). It
might be interesting to see whether they give rise to Kostka systems, and how they are related
with those in this paper.

Sketch of the proof of Theorem 3.1. – Here we use the good characteristic assumption in
several ways: One is to utilize the Springer isomorphism between the unipotent variety and
the nilpotent cone of G. Another is to assume the set of nilpotent orbits, its dimensions, its
stabilizers at points, and its closure relations are in common between over F and over C (see
e.g., [19]). The other is that [34, 35] sometimes requires the good characteristic assumption.

(1) follows from [34] 6.5c. Since H in [40] 8.11 is free over H•Gm(pt), the forgetful map
must be surjective by the Serre spectral sequence. We have AW ∼= H/(r) in the notation of
[40] §8. Therefore, (2) follows from the positive characteristic analogue of [40] 8.11. For its
proof ([40], or the combination of [36] and [15] §8.6) to work in our setting (and to justify the
proof of (4)), it suffices to have a model ofEG defined over F which yields the mixed version
Db
G,m( N ) of Db

G( N ).
In [36, 40], the space EG is replaced by a smooth irreducible variety Γ (depending on j)

with a free G-action and Hm(Γ) = {0} for 0 < m ≤ j (to compute the j-th G-equivariant
cohomology). The weight structure of Hj(BG) = Hj(G\Γ) is independent of the choice of
such Γ.

Hence, the Borel approximation model ofEG (cf. [36] 1.1) yields the (well-defined) notion
of weights in G-equivariant cohomologies. This implies the existence of Db

G,m( N ). Thus,
(2) follows by [40], or by [36] and [15]. See Shoji [54] §2 for more detailed justification (which
covers [36]).

The sheaf L̇ is of geometric origin ([6] 6.2.4) by the classification of cuspidal pairs in [34].
Since µ is proper, it follows that µ∗ L̇ is a direct sum of simple perverse sheaves ([6] 5.4.6). The
presentation ofAW,0 implies Q`W ∼= HomG(µ∗ L̇, µ∗ L̇). Therefore, the rest of the assertions
in (3) follows.
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The vector space Q`W = AW,0 is pure of weight 0 (since W arises as automorphisms
of µ∗ L̇ in Db

G( N ), and is defined over F). The φ-action on H2
L( Oc) is pure of weight 2

(actually φ induces qid, since we have H2
L( Oc) ∼= H2

Z(L)◦(pt) by [34] 2.8 and the groups L

and Z(L)◦ are F-split by assumption). Since AW is generated by Q`W and H2
L( Oc) (by [36]

4.1, 5.1 and [40] 8.11), we deduce (4).

With (1) and (2) in hands, (5) follows by [36] 8.1, 8.2 (base change is applicable by the
cleanness property of L). The non-negativity assertion of (6) follows by the vanishing costalk
condition in the definition of perverse sheaves applied to (1) and the fact that µ is semi-small
by [34] 1.2. The evenness assertion of (6) follows by [35] 24.8a and the fact that every nilpotent
orbit has even dimension (see e.g., [15] 1.1.5 and 3.2.15).

TheW -module structure ofKc,gen
(x,ξ) arises fromAW,0 (cf. [36] 8.1). Therefore, (3.1) implies

that the Lχ′ -isotypic part of H•(Bx, L̇) given by H•(i!x(Lχ′ � IC(χ′))[dim N − 2 dimBx]).
This yields (7).

In view of (1) and (5), [35] 24.8c implies (8). The first part of (9) follows by (3.1) and
the vanishing costalk condition of simple perverse sheaves. The latter half of (9) follows
by [35] 24.6.

We explain (10). By [35] 24.8b, we deduce that the dimensions of the stalks ofG-equivari-
ant perverse sheaves are in common between all good characteristics. We utilize [6] (6.1.10.1)
to conclude that they are also in common with that over C. In addition, µ∗ L̇ is of geomet-
ric origin. In particular, simple perverse sheaves appearing in µ∗ L̇ are in common between
over F (provided the characteristic is large enough) and over C ([6] 6.2.2–6.2.7). These are
enough to deduce the assertion from the definition (3.2).

We denote the degree zero part of Kc,gen
(x,ξ) (if non-zero) by L(x,ξ). If L(x,ξ)

∼= Lχ as a
W -module, then we call (x, ξ) the Springer correspondent of χ with respect to c. This is
equivalent to IC(x, ξ) ∼= IC(χ). For each χ ∈ IrrW with its Springer correspondent (x, ξ),
we set Oχ := G.x ⊂ N . We have Supp IC(χ) = Oχ, and the closure ordering of G-orbits
of N ⊂ N G induces a preorder on IrrW (depending on c).

T 3.3. – Fix a phyla P that is a refinement of the closure ordering of the generalized
Springer correspondence attached to c. Then, Kc,gen

(x,ξ) is the P-trace of L(x,ξ).

Proof. – Fix χ ∈ IrrW so that (x, ξ) is the Springer correspondent of χ. We denote Oχ
by O for the sake of simplicity. Let ı : O ↪→ N be the inclusion. We set d := dim Ñ = dim N .
We set L̈ := µ∗ L̇[d](d2 ). Here (d2 ) is the Tate twist which makes L̈ perverse and pure of
weight 0 (cf. [6] 5.1.8, 5.4.5, and 5.4.9. Note that here we interpret that the Tate twist has
an effect on the data φ which we omitted from the notation).

By Theorem 3.1 2) and (3.1), we have

Pχ = AW eχ ∼= Ext•G(IC(χ), L̈).
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We set E := ı∗IC(χ) and write E! := ı! E. Let ıy : {y} ↪→ N be the inclusion of y ∈ N (F).
The AW -module Ext•G( E!, L̈) is rewritten as:

Ext•G( E!, L̈) ∼= Ext•G( E, ı! L̈) ∼= Ext•ZG(x)(ξ, ı
!
x L̈) (adjunction and [7] 2.6.2)

∼= Ext•Ax(ξ,Ext•ZG(x)◦(Q`, ı!x L̈)) ∼= H
ZG(x)◦

• (Bx, L̇)ξ

=
⊕

ζ∈IrrAx

HomAx(ξ,H•ZG(x)◦({x})⊗H•(Bx, L̇)ζ),(3.3)

where we utilized the fact that Ext•Ax(Q`, •) = Ext•DbAx (Spec k)(Q`, •) is the functor taking

the Ax-fixed part of (a complex of) vector spaces. We set

Λ := {η ∈ IrrW | Oη ⊂ O\ O}.

We denote by pH• and τ• the perverse cohomology functor and the truncation functor
ofDb

G( N ) with respect to its (self-dual) perverse t-structure. Then, the right t-exactness of ı!
implies

pHi( E!) 6= {0} only if i ≤ 0.

Thanks to Theorem 3.1 2), we deduce an isomorphism

Extodd
G (IC(χ′), IC(χ′′)) = {0} for every χ′, χ′′ ∈ IrrW.

In order to apply the formalism of weights, we sometimes descend from k to F by means
of a Frobenius linearization. In particular, we understand that if a sheaf F is defined over k,
then F 0 is the corresponding sheaf defined over F by utilizing the Frobenius linearization
(coming from φ in c). Thanks to the edge exact sequence

0→ HomG(IC(χ′), IC(χ′′))Fr → Ext1
G(IC(χ′)0, IC(χ′′)0)→ Ext1

G(IC(χ′), IC(χ′′))Fr → 0,

(3.4)

we conclude that each pHi( E!)0 is a direct sum of simpleG-equivariant perverse sheaves (up
to extensions between Tate twists of isomorphic modules) provided all the constituents are
of the form IC(χ′)0 for some χ′ ∈ IrrW .

We have a surjection
pH0( E!)0 −→→ IC(χ)0

in the category of perverse sheaves, which is a unique simple quotient.

C A. – We have pH0( E!)0 = IC(χ)0.

C B. – For each i < 0, a direct summand of pHi( E!)0 is of the form Vη � IC(η)0 for
some η ∈ Λ and some continuous Gal(k/F)-module Vη. In addition, it is mixed of weight < i.

Proof of Claims A and B. – We prove the assertions by induction. For each k ≥ 0, we
denote by jk : Ok ↪→ N the embedding of the union of all G-orbits of dimension
≥ dim O − k. We set O′k := Ok\Ok−1. We define k : Ok−1 ↪→ Ok. It is clear that jk and
k are open embeddings for each k ≥ 0. We prove the assertions by induction on k.

We suppose that the assertions are true when restricted to Ok−1. Notice that O ⊂ O0 is a
closed subset and hence the assertion holds when restricted to O0. We need to show that the
assertions hold when restricted to Ok.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1054 S. KATO

By induction hypothesis, we have

pHi(j!
k−1 E!)0 =

{
{0} (i > 0)

j!
k−1IC(χ)0 (i = 0)

and each direct summand of pHi(j!
k−1 E!)0 (i < 0) is of the form Vη � j!

k−1IC(η)0 =

Vη � j∗k−1IC(χ)0 for some η ∈ Λ with its weight < i.
We consider the distinguished triangle

→ ( K i)0 → (k)!
pHi(j!

k−1 E!)0[−i]→ (k)!∗
pHi(j!

k−1 E!)0[−i] +1−→,

where (k)!∗ denote the minimal extension. The stalk of (k)!
pHi(j!

k−1 E!)0 is zero along O′k
(by definition). For each y ∈ O′k(F), we deduce that

(3.5) ı∗yH
m((k)!∗

pHi(j!
k−1 E!)0[−i]) ∼= ı∗yH

m+1(( K i)0) for each m.

This implies that the pointwise weight of ( K i)0 is exactly one less than that of
(k)!∗

pHi(j!
k−1 E!)0[−i] along O′k(F). Therefore, all simple perverse sheaves supported

on O′k appearing in pHm((k)!
pHi(j!

k−1 E!))0 must have weight < (m + i − 1) (m + i < 0)
or weight < 0 (i = 0 = m). Utilizing [6] 5.4.1 (and the argument just after that), we
deduce that pHi(j!

k E!)0 has weight < i for each i < 0. Now each pHm( K i)0 acquires
only the sheaves of the form j!

kIC(η)0 for η ∈ Λ (up to Tate twists) by the compari-
son of the stalks by using Theorem 3.1 8) and the induction hypothesis. This implies
pH0(j!

k E!)0
∼= pH0((k)!

pH0(j!
k−1 E!))0

∼= j!
kIC(χ)0 and every Jordan-Hölder constituent

of pHi(j!
k E!) (i < 0) is of the form j!

kIC(η) for some η ∈ Λ. Therefore, the induction proceeds
and we conclude the results.

We return to the proof of Theorem 3.3. Each direct summand IC(η) ⊂ pHi( E!) yields an
isomorphism

Ext−i+mG (IC(η)[−i], L̈) ∼=

{
Pη,m (m is even)

{0} (m is odd).

By taking HomG(•, L̈), we obtain a (part of an) exact sequence

0→ Ext−i+2m
G (τ>i E

!, L̈)→ Ext−i+2m
G (τ≥i E

!, L̈)→ Ext−i+2m
G (pHi( E!)[−i], L̈)

→ Ext1−i+2m
G (τ>i E

!, L̈)→ Ext1−i+2m
G (τ≥i E

!, L̈)→ 0
(3.6)

for each m ∈ Z. This exact sequence admits a weight filtration with respect to the Frobenius
action (by utilizing φ and its induced linearizations).

For a mixedG-equivariant sheaf F 0 (which is equivalent to F ∈ Db
G( N ) with a Frobenius

linearization φ F : Fr∗ F ∼= F ), we denote GrW
k ExtmG ( F , L̈) the weight k part of ExtmG ( F , L̈)

for each m, k ∈ Z (after constructing its associated graded). Then, Claim B implies that

GrW
−i+m+kExt−i+mG (pHi( E!)[−i], L̈) = {0} for all i < 0, k ≤ 0, and all m ∈ Z.

Applying this to (3.6), we conclude that the sequence

GrW
1−i+2mExt−i+2m

G (τ≥i E
!, L̈)→ GrW

1−i+2mExt−i+2m
G (pHi( E!)[−i], L̈)

→ GrW
1−i+2mExt1−i+2m

G (τ>i E
!, L̈)

→ GrW
1−i+2mExt1−i+2m

G (τ≥i E
!, L̈)→ 0
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must be exact and

GrW
−i+2mExt−i+2m

G (τ>i E
!, L̈) ∼= GrW

−i+2mExt−i+2m
G (τ≥i E

!, L̈) for all m ∈ Z.

In particular, if we write GrW
i−1

pHi( E!)0 by
⊕

η∈Λ V
i
η,−1�IC(η), then the above short exact

sequence turns into a short exact sequence

(3.7)
⊕
η∈Λ

V iη,−1 � Pη →
⊕
m≥0

GrW
mExtmG (τ>i E

!, L̈)→
⊕
m≥0

GrW
mExtmG (τ≥i E

!, L̈)→ 0

for each i < 0 and m ∈ Z.

Thanks to the AW -module structure of
⊕

m≥0 Gr
W
mExtmG (•, L̈) arising from the Yoneda

composition, we deduce the surjectivities of

Pχ −→→
⊕
m≥0

GrW
mExtmG (τ>i E

!, L̈) −→→ Pχ, P

for every i ≤ −1 by using (3.7) repeatedly. Here the middle term is Pχ in the i = −1 case,

while it is the pure-part of HZG(x)◦

• (Bx, L̇)ξ in the i � 0 case. Since Hodd(Bx, L̇)ξ = {0}
by Theorem 3.1 6), the Serre spectral sequence

E2(χ) := H•ZG(x)◦({x})⊗H•(Bx, L̇)⇒ H
ZG(x)◦

• (Bx, L̇)

is E2-degenerate. By Theorem 3.1 9), we conclude that HZG(x)◦

• (Bx, L̇)ξ is pure. This

implies that HZG(x)◦

• (Bx, L̇)ξ is a quotient of Pχ. The H•ZG(x)◦({x})-action commutes with
the AW -action (as the H•ZG(x)({x})-module structure is obtained as a scalar extension of
the H•G(pt)-module structure of AW ; cf. [36] 8.13, 8.14). By the degeneracy of E2(χ), the
forgetful map

φ : H
ZG(x)◦

• (Bx, L̇)ξ −→ H•(Bx, L̇)ξ ∼= Kc,gen
(x,ξ)

must be surjective. Thus, ker φ is isomorphic to

HomAx(ξ,H>0
ZG(x)◦({x})⊗H•(Bx, L̇)ξ ⊕

⊕
ζ 6=ξ

H•ZG(x)◦({x})⊗H•(Bx, L̇)ζ).

The surjectivity of φ implies that H•(Bx, L̇)ξ is generated by its degree 0-part. So it is
the same for every η ∈ IrrW . Therefore, a generator set of ker φ is contained in
H•ZG(x)◦({x}) ⊗ H0(Bx, L̇). By Theorem 3.1 8) and 9), all the W -isotypic constituents
of the latter space is of type Lη with Oη = Oχ. As a consequence, we have a sequence of
surjective maps of graded AW -modules

Pχ −→→ Ext•G( E!, L̈) −→→ Kc,gen
(x,ξ) −→→ Pχ, P .

In particular, Kc,gen
(x,ξ) is a quotient of Pχ. By Theorem 3.1 7), we deduce that [Kc,gen

(x,ξ) : Lχ′ ] 6= 0

only if Oχ ⊂ Oχ′ \ Oχ′ or χ = χ′. Hence, Kc,gen
(x,ξ) must be a quotient of Pχ, P . This implies

Kc,gen
(x,ξ)

∼= Pχ, P as desired.

D 3.4. – Let c be a cuspidal datum. A phyla P is called an admissible phyla
of c if each phylum is an equi-orbit class of the Springer correspondents with respect to c

and a phylum has a smaller index if the dimension of an orbit is smaller.
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T 3.5. – Let c be a cuspidal datum. For each χ ∈ IrrW with its Springer
correspondent (x, ξ) (with respect to c), we define Kc

χ := Kc,gen
(x,ξ) .

Then, the collection {Kc
χ}χ∈IrrW gives rise to a Kostka system adapted to every admissible

phyla P of c.

Proof. – By [35] 24.8b, the matrix ([Kc
χ : Lη]) satisfies (2.3) for every refinement of the

closure ordering. Hence, Theorem 3.3 implies that {Kc
χ}χ is a Kostka system adapted to

every admissible phyla P of c as required.

C 3.6. – Keep the setting of Theorem 3.5. For each χ ∈ IrrW , we define

K̃c
χ := Pχ/(

∑
χ′<χ,f∈homAW

(Pχ′ ,Pχ)

Imf),

where the ordering of IrrW is determined by an admissible phyla of c. Then, K̃c
χ admits a

separable decreasing AW -module filtration whose successive quotients are of the form {Kc
χ′}χ′∼χ

up to grading shifts.

Proof. – We employ the setting in the proof of Theorem 3.3. The AW -module
H
ZG(x)◦

• ( Bx)ξ is a quotient of Pχ. It surjects onto K̃χ by a repeated use of (3.7). Since

the H•ZG(x)◦(pt)-action commutes with the W -action, HZG(x)◦

• ( Bx)ξ does not contain a

W -type Lχ′ with χ′ < χ by Theorem 3.1 7). Therefore, we have HZG(x)◦

• ( Bx)ξ ∼= K̃χ. For
each k ∈ Z, the subspace⊕

ζ∈IrrAx

HomAx(ξ,H≥2k
ZG(x)◦(pt)⊗H•(Bx)ζ) ⊂ K̃χ

is an AW -submodule. Its associated graded is a direct sum of AW -modules of the form
{H•(Bx)ζ}ζ (up to grading shifts), and hence we conclude the result.

C 3.7. – Keep the setting of Corollary 3.6. DefineRx := H•ZG(x)◦(pt) to be the
graded algebra equipped with an Ax-action. We have

gch K̃c
χ =

∑
(x,ζ)∼(x,ξ)

(gdim HomAx(ξ ⊗ ζ∨, Rx)) · gchKc,gen
(x,ζ) .

In particular, we have K̃c
χ = Kc

χ if ZG(x)◦ is unipotent.

Proof. – Compare the presentation of K̃χ in (3.3) and Corollary 3.6.

C 3.8. – We use the setting of Theorem 3.5 and borrow the notation K̃χ andRx
from Corollaries 3.6 and 3.7. We define

Ξx := {ζ ∈ IrrAx | (x, ζ) is a Springer correspondent with respect to c}.

We identify Ξx with a subset of IrrW . Form a graded algebra

A↑W := AW /(
∑
χ′<χ

AW eχ′AW ) and set

Rc
x :=

⊕
ξ,ζ∈Ξx

HomAx(ξ ⊗ ζ∨, Rx), K :=
⊕
χ∈Ξx

K̃χ.
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Then, we have an essentially surjective functor

A↑W -gmod 3M 7→ homAW (K,M) ∈ Rc
x-gmod

which annihilates precisely the module which does not contain Lχ with χ ∈ Ξx.

Proof. – By construction, each K̃c
χ is a projective object in A↑W -gmod. We have

homAW (K, Lχ′) = 0 for every χ′ > Ξx. Thanks to Corollaries 3.6 and 3.7, we deduce

homAW (K, K) ∼= Rc
x,

which is enough to see the assertion.

C 3.9. – Keep the setting of Theorem 3.5. We have:

1. ext•AW (K̃c
χ,K

c
χ′) 6= {0} only if χ > χ′ or χ = χ′;

2. ext•AW (Kc
χ,K

c
χ′) 6= {0} only if χ & χ′.

R 3.10. – Corollary 3.9 resembles the structure of the Ginzburg conjecture for
affine Hecke algebras ([26, 9, 61, 63]).

Proof of Corollary 3.9. – Thanks to Corollaries 3.6 and 3.8, (2) follows from (1). We
borrow the notation from the proof of Theorem 3.3.

We prove (1). Thanks to [31] 2.5, Claims A and B (in the proof of Theorem 3.3) imply that
for each a ∈ Z, we have a distinguished triangle

→ gra E! → F≥a E! → F>a E! +1−→

so thatF≥a E! ∼= E! for a� 0, gra E! is a mixed sheaf of pure weight a,F≥a E! has weight≥ a,
and F>a E! has weight > a. In addition, each direct summand of gra E! is isomorphic to a
degree shift of {IC(χ′)}χ′∈Λ if a < 0, isomorphic to IC(χ) if a = 0, and {0} if a > 0.

For each a ∈ Z, we set

Qa(χ) := Ext•G(gra E!, L̈).

This is a graded projectiveA-module. Each direct summand ofQa(χ) is a grading shift ofPχ′
(χ′ ∈ Λ) for a < 0, and we have Q0(χ) ∼= Pχ. Therefore, [31] 2.7 and 2.8 yields a projective
resolution:

→ Q−2(χ)
d−2−→ Q−1(χ)

d−1−→ Q0(χ)
d0−→ K̃c

χ → 0.

(Note that our AW is a subalgebra of the algebra A in [31]. However, what is used in the
proofs of [31] 2.7 and 2.8 are the facts that (a) each Qa(χ) is pure of weight −a, and
(b) each Qa(χ) is a direct sum of {Pη 〈m〉}η≺χ,m∈Z. (a) follows from Theorem 3.1 4) and
(b) is proved in the above. Therefore, we can apply them here.) This implies

ext•A(K̃c
χ, Lη) 6= {0} only if η ∈ Λ or η = χ.

Combined with Lemma 2.15, we deduce (1) as desired.
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4. Lusztig-Slooten symbols of type BC

We use the setting of §2. In this section, we consider the caseW = Snn(Z/2Z)n. Most of
the assertions here are essentially not new. Nevertheless, we put explanations/proofs to each
statement since we need to reinterpret them in order to make them fit into our framework.

Let Γ := (Z/2Z)n ⊂ W denote the normal subgroup of W so that W = Sn n Γ.
Let SΓ be the set of reflections (ofW ) in Γ. We fix Lsgn (resp. Ssgn) to be the one-dimensional
representation ofW so thatSn acts trivially and each element of SΓ acts by−1 (resp.Sn acts
by sgn and Γ acts trivially).

For a bi-partition λ = (λ(0), λ(1)) of n, we define

Wλ :=
∏
i≥1

(
W
λ

(0)
i
×W

λ
(1)
i

)
⊂W,

where Wk is the Weyl group of type BCk. Let miλ be the one-dimensional representation
of Wλ on which W

λ
(0)
i

acts by Ssgn and W
λ

(1)
i

acts by sgn. We also define

Wλ := W|λ(0)| ×W|λ(1)| ⊂W .

F 4.1. – There exists a bijection between IrrW and P(n) so that:

1. For each partition λ, let Lλ denote the W -representation obtained as the pullback
by W →→ Sn. For each λ = (λ(0), λ(1)) ∈ P(n), we have

Lλ ∼= IndWWλ ((Lλ(0) ⊗ Lsgn)� Lλ(1)) .

Exactly |λ(0)| elements of SΓ act by −1 on each SΓ-eigenspace of Lλ.
2. For each λ = (λ(0), λ(1)) ∈ P(n), we have

HomWtλ
(mitλ, Lλ) ∼= C.

3. For each λ ∈ P(n), we have

dim homAW (Pλ, P
∗
triv 〈2b(λ)〉)i =

{
1 (i = 0)

0 (i > 0)
;

4. Let Kex
λ be the image of a non-zero map in (3). Then, we have

dim homW (Lµ,K
ex
λ ) 6= 0 only if b(λ) ≥ b(µ).

In addition, we have

gdim homW (triv,Kex
λ ) = tb(λ) and gdim homW (Lλ,K

ex
λ ) = 1.

5. For each λ = (λ(0), λ(1)) ∈ P(n), we have

Ltλ
∼= Lλ ⊗ sgn and L(λ(0),λ(1))

∼= L(λ(1),λ(0)) ⊗ Lsgn.

6. For each λ ∈ P(n), we have

h⊗ Lλ ∼=
⊕
λ
.
=µ

Lµ.

Proof. – (1)–(5) can be read-off from Carter [14] §11. (6) is Tokuyama [62] Example 2.9.
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D 4.2 (Symbols). – Let r > 0 and s be real numbers. Fix an integer m � n

and form two sequences:

rm ≥ r(m− 1) ≥ · · · ≥ r ≥ 0

rm+ s ≥ r(m− 1) + s ≥ · · · ≥ r + s ≥ s.

We call this pair of sequences Λ0. For a bipartition (λ(0), λ(1)) of n, we define a pair of two
sequences Λ(λ(0), λ(1)) as:

λ
(0)
1 + rm ≥ λ(0)

2 + r(m− 1) ≥ · · · ≥ λ(0)
m + r ≥ 0

λ
(1)
1 + rm+ s ≥ λ(1)

2 + r(m− 1) + s ≥ · · · ≥ λ(1)
m + r + s ≥ s.

We call Λ(λ(0), λ(1)) the symbol (or the (r, s)-symbol) of a bi-partition (λ(0), λ(1)).
Let Zr,sn be the set of (r, s)-symbols obtained in this way (withm fixed). We have a canonical

identification Ψr,s : P(n)
∼=−→ Zr,sn , by which we identify bi-partitions with symbols.

R 4.3. – (1) Adding r uniformly to the sequences and add an additional last
terms 0 and s, we have a canonical identification of Zr,sn obtained by two different choices
of m. We call this identification the shift equivalence. (2) If we use Λ ∈ Zr,sn and Λ0 ∈ Zr,s0

simultaneously, then the value of m is in common.

D 4.4 (a-functions, ordering, and similarity). – For each Λ ∈ Zr,sn , we con-
sider Λ0 ∈ Zr,s0 and define

a(Λ) = as(Λ) :=
∑
a,b∈Λ

min(a, b)−
∑

a,b∈Λ0

min(a, b).

We might replace Λ with Ψ−1
r,s(Λ) if the meaning is clear from the context.

Two symbols Λ,Λ′ ∈ Zr,sn are said to be similar if the entries of Λ and Λ′ are in common
(counted with multiplicities), and we denote it by Λ ∼ Λ′. They are said to be strongly similar
if Λ′ is obtained from Λ by swapping several pairs of type (k, k + 1) or (k + 1, k) (for some
k ∈ Z) from the first and second sequences, and we denote it by Λ ≈ Λ′.

For Λ,Λ′ ∈ Zr,sn , we define Λ > Λ′ if a(Λ) < a(Λ′). We refer this partial ordering as the
a-function ordering. We define a phylum associated to Zr,sn as a similarity class, and a phyla
associated to Zr,sn as the set of all similarity classes, ordered in an arbitrary compatible way
as the a-function ordering.

R 4.5. – It is easy to see that the similarity classes and the strong similarity classes
ofZr,sn are independent of the choice ofm, and the a-function depends only on the similarity
class only on the similarity class when m ≥ n. In particular, the a-function does not depend
on the choice of m� n (cf. Shoji [52] 1.2).

In the below, we assume r = 2 as in [34, 55] unless otherwise stated.

L 4.6 (Lusztig [34], Slooten [55]). – Let s, n ∈ Z>0. If s is odd, then the similarity
classes and the a-function of Z2,s

n coincide with the orbits and the half of the orbit codimensions
(inside the subvariety N ⊂ N G defined in §3) of a generalized Springer correspondence of a
symplectic group.
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Similarly, if s ≡ 2 mod 4, then they coincide with those of a generalized Springer correspon-
dence of an odd orthogonal group. If s ≡ 0 mod 4, then the same is true for an even orthogonal
group.

R 4.7. – (1) Thanks to Lemma 4.6, a phyla associated to Z2,s
n (for s ∈ Z>0) is

an admissible phyla of a generalized Springer correspondence. (2) In the symbol notation,
swapping the first and second sequences correspond to tensoring Lsgn, which gives an equiv-
alent but different system. The W -module structures we employ are those coming from the
sgn-twists of irreducible tempered modules of affine Hecke algebras as in [41, 55, 17, 16].

Proof of Lemma 4.6. – By rearranging m if necessary, we can assume that the last
s-entries of each sequence of λ ∈ Z2,s

n have effect neither on a similarity class nor on the
a-function. Then, the bijection of [34] (12.2.2)–(12.2.3) can be seen as setting s := 1 − 2d,
where d is the defect of the symbols (loc. cit. p. 256, l. −8). Here d is a priori an odd integer,
and hence we realize s ≡ 3 mod 4. For s ≡ 1 mod 4, we can swap the role of the first and
second sequences whenever d > 0 to deduce the symbol combinatorics on similarity classes.
This, together with loc. cit. Corollary 12.4c, implies that a similarity class of Z2,s

n is the same
as an equi-orbit class of some generalized Springer correspondence of a symplectic group.
Since the constant local system on a nilpotent orbit gives rise to a Springer representation
(original one, d = 1, s = −1 case), we conclude that the a-function on Z2,s

n calculate the
half of the codimensions of orbits again by loc. cit. 12.4c and the normalization condition
as(∅, (n)) = 0 for s > 0. The case of even s is similar (loc.cit. §13).

C 4.8. – Keep the setting of Lemma 4.6. For each positive integer s, every phyla
associated to Z2,s

n gives rise to the same solution of (2.3).

Proof. – A direct consequence of Theorem 3.5 and Lemma 4.6.

In the below, if the (complete collection of) P-traces P = {Pλ, P}λ∈P(n) with respect to a
phyla associated to Zr,sn also gives the set of P-traces with respect to every phyla associated
to Zr,sn , then we call P the set of P-traces adapted to Zr,sn .

In particular, we refer a Kostka system K adapted to every phyla associated to Zr,sn as a
Kostka system adapted toZr,sn . We denote by {Ks

λ}λ∈P(n) the Kostka system adapted toZ2,s
n

for each s ∈ Z>0 (which exists by Theorem 3.5).

L 4.9 (Slooten [55]). – For s 6∈ Z, a phyla associated to Z2,s
n is a singleton.

Proof. – An entry of the first row of a symbol of Z2,s
n is always an integer, while an entry

of the second row of a symbol ofZ2,s
n is always not an integer. Hence, they cannot mix up.

P 4.10 (Slooten [55] 4.2.8). – Let s ∈ Z≥0. Let λ = (λ(0), λ(1)) ∈ P(n − k)

for some integer k. We define

Xs(k,λ) := {µ ∈ P(n) | [IndWSk×Wn−k
(triv � Lλ) : Lµ] 6= 0}

Ys(k,λ) := {µ ∈ Xs(k,λ) | as(µ) ≥ as(γ) for every γ ∈ Xs(k,λ)}.

Then, µ = (µ(0), µ(1)) ∈ Ys(k,λ) satisfies:

– There exists a subdivision k = k0 + k1 so that we have {µ(j)
i }i = {λ(j)

i }i ∪ {kj}
for j = 0, 1, where we allow repetitions in both sets.
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– We can choose p, q so that µ(0)
p = k0, µ(1)

q = k1, and

k0 + 2q − s = k1 + 2p± 1 or k1 + 2p.

In addition, the set Ys(k,λ) is either a singleton or a pair of strongly similar symbols of Z2,s
n .

Proof. – This is exactly the same as [55] 4.2.8. For the compatibility with our choice of
symbols, see [55] 4.5.2.

L 4.11 (Slooten [55] §4.5). – For each strong similarity class S ofZ2,s
n , we have a set

E( S) of entries of Λ ∈ S with the following properties:

– The assignment

S 3 Λ 7→ σsΛ := (E( S) ∩ {entries of the second row of Λ}) ∈ 2E( S)

sets up a bijection between S and 2E( S).
– For Λ,Λ′ ∈ S, we have as+ε(Λ) > as+ε(Λ

′) if σsΛ ) σsΛ′ .
– For Λ,Λ′ ∈ S, we have as−ε(Λ) > as−ε(Λ

′) if σsΛ ( σsΛ′ .

Here 0 < ε� 1 is a real number.

Proof. – Each sequence of a symbol cannot contain a consecutive sequence of integers
(since r = 2). Let I = {p, p+ 1, . . . , q} be a consecutive sequence of integers appearing in Λ

so that (p−1), (q+1) 6∈ Λ. Then, its division I+ := {p, p+2, . . .} and I− := {p+1, p+3, . . .}
must belong to distinct sequences. If #I ≥ 2, then none of the elements of I appears twice
in Λ. Hence, we can swap I+ and I− simultaneously (if #I+ = #I−), but not individually.
Therefore, a symbol is characterized (inside its strong similarity class) by the behavior of such
sequences with even length. As a consequence, the set E( S) consisting of minimal entries
(p in the above) of such sequences I satisfies the first assertion. We write qp the length of the
sequence I 3 p ∈ E( S). Then, for each Λ,Λ′ ∈ S and |κ| � 1, we have

as+κ(Λ)− as+κ(Λ′) = κ(
∑
p∈σsΛ

qp −
∑

p′∈σs
Λ′

qp′)

by inspection. This is enough to prove the other two assertions.

T 4.12 (Slooten [56], Ciubotaru-Kato [17], Ciubotaru-Kato-Kato [16])

For each s ∈ Z>0 and 0 < ε < 1, we have a collection {Ks+ε
λ }λ∈P(n) of indecomposable

AW -modules with the following properties:

1. The module Ks+ε
λ is a quotient of Pλ, and we have [Ks+ε

λ : Lλ] = 1.
2. Let S ⊂ Z2,s

n be the strong similarity class which contains λ. We have

gchKs+ε
λ ≡

∑
γ∈ S, σsγ⊂σsλ

gchKs
γ mod (t− 1).

3. Let S ⊂ Z2,s+1
n be the strong similarity class which contains λ. We have

gchKs+ε
λ ≡

∑
γ∈ S, σs+1

γ ⊃σs+1
λ

gchKs+1
γ mod (t− 1).
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Proof. – First, we observe that the integer s corresponds to the graded Hecke algebra
parameter ratio s/2 by Lemma 4.6 (and its proof) and Lusztig [36] 2.13 (cf. [55] 3.6.1). We
have the set of (isomorphism classes of) irreducible tempered modules {Ms+ε

λ }λ of a graded
Hecke algebra H of type BC (see [17] §1.2 for the definition) with real central characters
whose parameter ratio is (s + ε)/2. The set {Ms+ε

λ }λ is known to be in bijection with the
set of irreducible representations of W by Lusztig [41] 1.21 (cf. [40] 10.13 and [34]) when
ε ∈ {0, 1

2 , 1}, and by [17] Theorem C and §4.3 for 0 < ε < 1.

Thanks to Opdam [47] and Slooten [56] (cf. [17] Theorem C), we know that Ms+ε
λ is

written as a unique irreducible induction from a discrete series representation. In addition,
its W -module structure is

(4.1) Ms+ε
λ
∼= IndW(S

λA×W(n−k))
C�Ms+ε

λC ,

where λA is a partition of k, λC is a bi-partition of (n − k), and Ms+ε
λC is a discrete series

representation of graded Hecke algebra H ′ of type BC with the same parameter ratio (s+ ε)/2,
but has rank (n− k).

C C (Slooten [55]). – The module Lλ in (4.1) is the W -irreducible constituent
of IndW(S

λA×W(n−k))
C � LλC whose label attains the maximal as+ε-function value (which

is in fact unique). Moreover, it defines a unique bijection between the set of tempered modules
of H with real central characters and IrrW so that Lλ ⊂Ms+ε

λ (as W -modules).

Proof. – The first assertion is established in Slooten ([55] 4.5.6) up to the property
Lλ ⊂Ms+ε

λ . By construction, it is enough to check it for discrete series. This is given in [17]
§4.4 as the matching of Lusztig’s W -types (of a generalized Springer correspondence of a
Spin group) and Slooten’s combinatorics.

In addition, [17] §4.5 and [41] show that the W -characters of {Ms+ε
λ }λ are equal to those

of {Kc
λ}λ for some cuspidal datum c. Thanks to the triangularity condition of the matrixK

in the Lusztig-Shoji algorithm (Theorem 2.10), we deduce that a bijection in the assertion
must be unique as required.

We return to the proof of Theorem 4.12. Thanks to [16] 3.16, each Ms+ε
λC is isomorphic

to (two) irreducible tempered modules of H ′ with their parameter ratios s/2 and (s + 1)/2

as W -modules. By [41] 1.17, 1.21, 1.22 (and Theorem 3.5), we identify {Ks
λ}λ with the set

of irreducible tempered modules (viewed as W -modules) with real central characters of H
with its parameter ratio s/2. By utilizing [16] 3.15, 3.25 (cf. [56] 3.5.3), we deduce that the
ungraded W -character

chMs+ε
λ ∈ ZIrrW ⊂ Z((t))IrrW

satisfies

(4.2) chMs+ε
λ ≡

∑
µ∈ T λ

gchKs
µ mod (t− 1)

for some set T λ ⊂ P(n). Put Sλ := {µ ∈ S | σsµ ⊂ σsλ}. By the comparison of [16] 3.15, 3.22
with Proposition 4.10, Lemma 4.11 (cf. [56] 3.4.4), we obtain a bijection Sλ ∼= T λ so that
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Sλ ⊂ Sλ′ implies T λ ⊂ T λ′ for each λ′ ∈ S. In view of [16] 3.24 and 3.25, the bijections
Sµ ∼= T µ (for every µ ∈ P(n)) yield a bijection ϕ : P(n) ∼= P(n) so that ϕ(λ) ∈ T λ and

Lϕ(λ) ⊂ Ks
ϕ(λ) ⊂M

s+ε
λ as W -modules

for each λ ∈ P(n). By the uniqueness part of Claim C, we deduce ϕ = id. In particular, we
conclude T λ = Sλ. Thanks to [37] 4.13, Proposition 2.23 1)–3) is satisfied. Applying Propo-
sition 2.23, we obtain a collection of modules {Ks+ε

λ }λ which satisfies the condition (1), and
gchKs+ε

λ ≡ chMs+ε
λ mod (t− 1). Combined with (4.2), we deduce the condition (2).

The condition (3) follows from a similar argument as above by replacing {Ks
λ}λ

with {Ks+1
λ }λ, identified with the set of irreducible tempered modules of a graded Hecke

algebra of type BC whose parameter ratio is (s+ 1)/2.

C 4.13. – Keep the setting of Theorem 4.12. The collection {Ks+ε
λ }λ∈P(n) is a

Kostka system adapted to an admissible phyla of a generalized Springer correspondence of a
Spin-group.

Proof. – By the proof of Theorem 4.12, {Ks+ε
λ }λ is isomorphic to the Kostka system

in the assertion as a set of W -modules. Since each Ks+ε
λ is a quotient of Pλ, we conclude

the isomorphism as a set of graded AW -modules by the P-trace characterization of Kostka
systems (Definition 2.13 1)).

5. Transition of Kostka systems in type BC

Keep the setting of the previous section.

L 5.1. – Let s ∈ Z>0 and 0 < ε < 1. For each strong similarity class S ⊂ Z2,s
n

and λ ∈ S, the AW -module Ks+ε
λ (borrowed from Theorem 4.12) admits a filtration whose

successive quotients are of the form {Ks
µ}µ∈ S up to grading shifts. If s > 1, thenK(s−1)+ε

λ also
admits a filtration whose successive quotients are of the form {Ks

µ}µ∈ S up to grading shifts.

Proof. – Since the proofs of both cases are essentially the same, we only prove the first
half of the assertion. Recall that a strong similarity class of Z2,s

n shares the same as-value.
We have [Ks

λ : Lµ] = 0 if as(λ) ≤ as(µ) and λ 6= µ. By Theorem 4.12 2), we deduce that

(5.1) [Ks+ε
λ : Lµ]|t=1= 1 (µ ∈ S and σsµ ⊂ σsλ) , and 0 (otherwise)

for each µ ∈ P(n) such that as(λ) ≤ as(µ). We set M0 := {0} ⊂ Ks+ε
λ . Then, by assuming

the existence of the submodule M i−1, we construct an AW -submodule M i of Ks+ε
λ which

is spanned by M i−1 and a unique Lµ with as(µ) = as(λ) such that M i/M i−1 contains no
other irreducibleW -constituent of typeLγ with as(γ) = as(λ). EachM i/M i−1 is a quotient
of Ks

µ with µ coming from (5.1) since Ks
µ is a P-trace adapted to Z2,s

n . Hence, we have

(5.2) dimKs+ε
λ =

∑
i≥1

dimM i/M i−1 ≤
∑

µ∈ S, σsµ⊂σsλ

dimKs
µ.

The most RHS of (5.2) is equal to dimKs+ε
λ again by Theorem 4.12 2). Therefore, conclude

that M i/M i−1 ∼= Ks
λi
〈di〉 for some di ∈ Z≥0 and λi ∈ S such that σsλi ⊂ σsλ. This

implies that Ks+ε
λ admits an AW -module filtration whose successive quotients are {Ks

λ}λ
as required.
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L 5.2. – We fix s ∈ Z>0 and 0 < ε � 1. Let S be a strong similarity class of Z2,s
n ,

and let {Pλ,?}λ be the collection of P-traces with respect to Z2,s+ε
n . For λ,µ ∈ S such that

σsλ ( σsµ, we have:

(5.3) dim homAW (Pλ 〈2dλ,µ〉 , Pµ,?)0 ≥ 1.

The same assertion holds for P-traces with respect to Z2,s−ε
n if we assume σsµ ( σsλ.

Proof. – Since the proofs of both cases are similar, we prove the assertion only for the
P-traces with respect to Z2,s+ε

n . We set d := dλ,µ.

By the proof of Lemma 4.11, we know that λ is obtained from µ = (µ(0), µ(1)) by
swapping (#σsµ − #σsλ) entries of t(µ(0)) with those of t(µ(1)). (Here we rephrased sym-
bol combinatorics by bi-partition combinatorics.) In particular, we have a bi-partition
δ = (δ(0), δ(1)) ∈ P(n− d) so that δ(0) = λ(0) and δ(1) = µ(1). Moreover, there exists a
partition κ of d so that (tλ(1))ji = (tδ(1))ji + (tκ)i and (tµ(0))j′i = (tδ(0))j′i + (tκ)i for
some sequences {ji} and {j′i}.

C D. – The inequality (5.3) is true if we have Lλ ⊂ Sdh⊗ Lµ.

Proof. – Every sequence of bi-partitions

µ = λ0
.
= λ1

.
= · · · .= λd = λ with λi = (λ

(0)
i , λ

(1)
i )

satisfies |λ(0)
i | = |µ(0)| − i for each 0 ≤ i ≤ d. In addition, every such sequence must satisfy

inequalities

as+ε(µ) > as+ε(λi) for every i > 0

by inspection. Thanks to Fact 4.1 6), it follows that any non-zero map in homAW (Pλ 〈2d〉 , Pµ)0

gives rise to a non-zero map in homAW (Pλ 〈2d〉 , Pµ,?)0. Thus, Lλ ⊂ Sdh⊗Lµ is enough to
prove (5.3).

We return to the proof of Lemma 5.2.

Recall that the Frobenius reciprocity (and Fact 4.1 1)) asserts

(5.4) HomW|µ(0)|
(L(δ(0),1d), S

dh⊗ L(µ(0),∅))

∼= Hom(W|δ(0)|×Wd)(L(δ(0),∅) � L(∅,1d), S
dh⊗ L(µ(0),∅)).

Applying the Littlewood-Richardson rule (Macdonald [43] I §9, applied in the sign-twisted
form; cf. Fact A.1 4)) and the Frobenius reciprocity, we deduce

L(µ(0),∅)|(W|δ(0)|×Wd)⊃ L(δ(0),∅) � L(1d,∅),

which is in fact a multiplicity-free copy. Let h′ ⊂ h be the reflection representation of Wd.
Notice that ∧d+h is the sum of SΓ-eigenspaces of Sdh so that exactly d elements of SΓ act
by −1. We have ∧d+h′ ⊂ ∧d+h ⊂ Sdh as Wd-modules. In addition, we have ∧d+h′ ∼= Lsgn as a
Wd-module. It follows that

(5.5) L(δ(0),∅) � L(∅,1d) ⊂ ∧d+h⊗ L(µ(0),∅) ⊂ Sdh⊗ L(µ(0),∅)
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as W|δ(0)| ×Wd-modules. Therefore, we deduce

Sdh⊗ Lµ ⊃ IndW(W|µ(0)|×W|µ(1)|)
(Sdh⊗ L(µ(0),∅))� L(∅,µ(1))

⊃ IndW(W|δ(0)|×Wd×W|δ(1)|)
L(δ(0),∅) � L(∅,1d) � L(∅,δ(1)) ⊃ Lλ,(5.6)

where the first inclusion is by adjunction, the second inclusion is (5.5) and Fact 4.1 1), and
the last one is the Littlewood-Richardson rule. This completes the proof.

L 5.3. – Let s ∈ Z>0 and 0 < ε < 1. Assume that the collection {Ks+ε
λ }λ of modules

(borrowed from Theorem 4.12) is a Kostka system adapted to Z2,s+ε
n . Then, we have

(5.7) gchKs+ε
λ =

∑
Ψ2,s(µ)≈Ψ2,s(λ), σsµ⊂σsλ

tdλ,µgchKs
µ.

Similarly, if {Ks+ε
λ }λ is a Kostka system adapted to Z2,s+1−ε

n , then we have

gchKs+ε
λ =

∑
Ψ2,(s+1)(µ)≈Ψ2,(s+1)(λ), σs+1

µ ⊃σs+1
λ

tdλ,µgchKs+1
µ .

Proof. – Since the proofs of both assertions are completely parallel, we prove only the
first assertion. Recall (from Theorem 4.12) that

[Ks+ε
λ : Lµ]|t=1= 1 (Ψ2,s(µ) ≈ Ψ2,s(λ) and σsµ ⊂ σsλ) , and 0 (otherwise)

for each µ ∈ P(n) so that Ψ2,s(µ) ∼ Ψ2,s(λ). Applying Lemma 5.2, we conclude
[Ks+ε
λ : Lµ] = tdλ,µ if it is nonzero. This, together with Lemma 5.1, implies

gchKs+ε
λ =

∑
Ψ2,s(µ)≈Ψ2,s(λ), σsµ⊂σsλ

tdλ,µgchKs
µ

as desired.

P 5.4. – We take an arbitrary r ∈ Z>0. Let s � 0. For a bi-partition
λ = (λ(0), λ(1)), we define Aλ := AW,Wλ = CWλ nC[h∗] ⊂ AW . If we put

Kλ := AW ⊗Aλ

(
Kex

(λ(0),∅) � L(∅,λ(1))

)
,

then {Kλ}λ∈P(n) gives rise to a Kostka system adapted to Zr,sn .

Proof. – Postponed to Appendix B.

T 5.5. – For each s′ ∈ R≥1, there exists a Kostka system adapted to Z2,s′

n . In
addition, we have:

– Fix s ∈ Z>0. For 0 < ε < 1, the Kostka systems adapted to Z2,s+ε
n do not depend on the

choice of ε. We denote them by {K◦λ}λ.
– The Kostka system {Ks

λ}λ adapted to Z2,s
n or the Kostka system {Ks+1

λ }λ adapted
to Z2,s+1

n determines the graded characters of the Kostka system {K◦λ}λ as follows:
1. For a strong similarity class S ⊂ Z2,s

n and λ ∈ S, we have

gchK◦λ =
∑

µ∈ S, σsµ⊂σsλ

tdλ,µgchKs
µ.
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2. For a strong similarity class S ⊂ Z2,s+1
n and λ ∈ S, we have

gchK◦λ =
∑

µ∈ S, σs+1
µ ⊃σs+1

λ

tdλ,µgchKs
µ.

Proof. – The first assertion holds if s′ ∈ Z>0. Fix s ∈ Z>0 so that s ≤ s′ ≤ s+ 1.

We borrow some notation from Theorem 4.12. An admissible phyla of the generalized
Springer correspondence attached to a cuspidal datum c (of a Spin group) is singleton (i.e.,
at most one local system on each orbit contributes as a Springer correspondent; [34] 14.4–
14.5). Therefore, for each λ 6= µ, we have〈

Ks+ε
λ , (Ks+ε

µ )∗
〉
gEP

= 0, and either(5.8)

ext1
AW (Ks+ε

λ , Lµ) = {0} and [Ks+ε
µ : Lλ] = 0, or

ext1
AW (Ks+ε

µ , Lλ) = {0} and [Ks+ε
λ : Lµ] = 0

by Corollary 4.13. Thanks to (both cases of) Lemma 5.1, we deduce

ext1
AW (Ks+ε

λ , Lµ) = {0} and [Ks+ε
µ : Lλ] = 0(5.9)

if either as(λ) > as(µ) or as+1(λ) > as+1(µ) holds. As each as+ε(λ) is linear with respect
to 0 ≤ ε ≤ 1, we conclude that (5.9) holds if as+ε(λ) > as+ε(µ) for some 0 < ε < 1.

C E. – Let λ,µ ∈ P(n) be a pair so that as+ε(λ) = as+ε(µ) for all 0 ≤ ε ≤ 1. Then,
we have either Ψ2,s(λ) 6∼ Ψ2,s(µ) or Ψ2,(s+1)(λ) 6∼ Ψ2,(s+1)(µ).

Proof. – If Ψ2,s(λ) ∼ Ψ2,s(µ), then there exists a multiplicity-free entry f in Ψ2,s(λ)

so that f belongs to the first sequence of Ψ2,s(λ), and also belongs to the second sequence
of Ψ2,s(µ). Then, Ψ2,(s+1)(λ) must contain f as its entry, while Ψ2,(s+1)(µ) cannot. Thus,
we conclude Ψ2,(s+1)(λ) 6∼ Ψ2,(s+1)(µ) as required.

We return to the proof of Theorem 5.5. By Claim E and the preceding argument, we have

(5.10) [Ks+ε
µ : Lλ] = δλ,µ if as+ε(λ) ≥ as+ε(µ)

for each 0 < ε < 1. Let Ps+ε be the phyla defined as follows: Each phylum is of the
form a−1

s+ε(α) for some α ∈ R. We have a−1
s+ε(α) < Ps+ε a

−1
s+ε(β) if and only if α > β ∈ R.

By (5.10), (5.9), and Claim E, we deduce that {Ks+ε
λ }λ is the set of Ps+ε-traces. Therefore,

Proposition 2.20 and (5.8) imply

ext1
AW (Ks+ε

λ , Lµ) = {0} if λ 6= µ and as+ε(λ) ≥ as+ε(µ).

Now Corollary 2.22 and (5.8) imply that setting K◦λ := Ks+ε
λ (which does not depend

on 0 < ε < 1 by Theorem 4.12) yields a Kostka system adapted to Z2,s+ε
n . This proves the

first two assertions. The last assertion follows from Lemma 5.3.

R 5.6 (on Theorem 5.5). – Since distances and the strong similarity classes are
easily computable, the knowledge of {gchK◦λ}λ is enough to determine the other two,
namely {gchKs

λ}λ and {gchKs+1
λ }λ. Combined with Proposition 5.4 (and Lemma B.3),

we can compute {gchKs′

λ }λ for every s′ ∈ R≥1 by Kostka polynomials of type A and the
Littlewood-Richardson rules.
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C 5.7. – Keep the setting of Theorem 5.5. The Kostka system {K◦λ}λ satisfies

ext•AW (K◦λ,K
◦
µ) = {0} if λ < µ,

where the ordering is determined by a phyla associated to Z2,s+ε
n .

Proof. – If as(λ) > as(µ) or as+1(λ) > as+1(µ), then we appeal to Corollary 3.9 2) and
Lemma 5.1 to deduce the assertion. We assume as+ε(λ) = as+ε(µ) for all 0 ≤ ε ≤ 1. For
each pair λ,µ ∈ P(n) so that λ 6∼ µ in Z2,s

n (i.e., Ψ2,s(λ) 6∼ Ψ2,s(µ)), we have

ext•(Ks
λ,K

s
µ) = {0} and ext•(Ks

µ,K
s
λ) = {0}

by Corollary 3.9, which proves the assertion in this case. The same is true if we replace s
with s+ 1. This completes the proof by Claim E (borrowed from the proof of Theorem 5.5).

Appendix A: Kostka systems in symmetric groups

In this appendix, we consider the caseW = Sn. We present a Kostka system adapted to its
natural ordering without relying on Theorem 3.5, that depends on geometric considerations.
We employ the setting of §2.

F A.1. – In the same notation as in §1.2, we have:

1. For a partition λ, we have

dim homAW (Pλ, P
∗
(n) 〈2a(λ)〉)0 = 1.

Let Mλ be the image of this unique homomorphism (up to a scalar). It gives rise to a
solution {[Mλ : Lµ]}λ,µ of the equation (2.3) corresponding to every total refinement
of the ordering from §1.2.

2. As Sn-modules, we have an isomorphism

Mλ
∼= IndSnSλ triv.

3. We have Ltλ
∼= Lλ ⊗ sgn, and Mλ ⊗ sgn ∼= IndSnSλ sgn.

4. For two partitions λ, µ of n, we have λ ≥ µ if and only if tλ ≤ tµ.

Proof. – (1) and (2) are reformulation of De Concini-Procesi [20] obtained by dualizing
the quotient map C[h∗] ∼= P(n) → M∗λ 〈2a(λ)〉. (3) and (4) can be read-off from Carter [14]
§11, together with the Frobenius reciprocity.

R A.2. – There is an alternate combinatorial proof of Fact A.1 1) and 2) by
Garsia-Procesi [23]. Thus, the proof of Theorem A.4 gives rise to a part of an algebraic proof
of the whole story.

C A.3. – For each partition λ, the AW -module Mλ has simple head Lλ and
simple socle triv 〈2a(λ)〉. �

T A.4. – The collection {Mλ}λ satisfies

extiASn (Mλ, Lµ) = {0} for every µ 6≤ λ and i = 0, 1.

In particular, {Mλ}λ is a Kostka system.
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The rest of this section is devoted to the proof of Theorem A.4. By Corollary A.3, it suffices
to prove the i = 1 case.

We have an inclusion

Mλ ⊃Mλ,0 = Lλ ⊃ sgn as Stλ-modules.

We set M↓λ := ASn,Stλ
· sgn ⊂ Mλ. We name this embedding ψ. Since Mλ is a submodule

of P ∗triv 〈2a(λ)〉, we conclude that the C[h∗]-action on

Mλ ⊂ P ∗triv 〈2a(λ)〉 ∼= C[h] 〈2a(λ)〉

is given by differentials. Consider the external tensor product factorization ASn,Stλ
∼= �iAS(tλ)i

of graded algebras. The S(tλ)i -module sgn yields an AS(tλ)i
-module P (0)

sgni = Psgn/
〈
JS(tλ)i

〉
Psgn,

and its projective cover Psgni . The graded ASn,Stλ
-module M↓λ admits the corresponding

factorization:

M↓λ
∼= �λ1

i=1P
(0)
sgni
⊂ C[h] 〈2a(λ)〉 .

It follows that the minimal projective resolution of M↓λ (as ASn,Stλ
-modules) involves only

the grading shifts of �iPsgni .

We have Mλ,0 = Lλ =
∑
w∈Sn wψ(M↓λ,0) by the irreducibility of Lλ. It follows that

Mλ =
∑
w∈Sn wψ(M↓λ) by the top-term generation property of Mλ. Every non-trivial

extension of Mλ by Lµ 〈d〉 induces a non-trivial extension as C[h∗]-modules by the semi-
simplicity of CSn.

Assume that we have a non-split short exact sequence

(A.1) 0→ Lµ 〈d〉 −→ E −→Mλ → 0

ofASn -modules. We choose a C-spanning set e1, . . . , ek ofEd−2 = Mλ,(d−2). Then, we have
{0} 6=

∑k
i=1 hei∩Lµ 〈d〉 ⊂ Ed by the non-split assumption. It follows that for somew ∈ Sn,

the short exact sequence (A.1) induces a non-splitting short exact sequence

0→ Lµ 〈d〉 −→ E′ −→ wψ(M↓λ)→ 0

of C[h∗]-modules.

By twisting by w−1 if necessary, we can assume w = id without the loss of generality.
This makes us possible to view the above exact sequence as that of ASn,Stλ

-modules. As
M↓λ admits a projective resolution consisting of grading shifts of �iPsgni as ASn,Stλ

-mod-
ules, it follows that its extension by a simple graded ASn,Stλ

-module L is non-zero if and
only if L ∼= sgn 〈d〉 for some d as a Stλ-module. Hence we need sgn ⊂ Lµ|Stλ

to satisfy the
non-split assumption on (A.1). By Fact A.1 3) and 2), we deduce that

{0} 6= HomStλ
(sgn, Lµ) ∼= HomStλ

(triv, Ltµ) ∼= HomSn(Mtλ, Ltµ).

By Fact A.1 1), this implies tλ ≤ tµ. Therefore, we have λ ≥ µ by Fact A.1 4). This means
that

ext1
ASn

(Mλ, Lµ) 6= {0} only if µ ≤ λ,(A.2)

which is equivalent to the first part of the assertion.
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Appendix B: Asymptotic type BC case

We employ the same setting as in §4 and borrow some notation from Appendix A. This
appendix is devoted to the proof of Proposition 5.4.

L B.1. – Let λ and µ be distinct partitions of n. We have

ext•AW (L(∅,λ), L(∅,µ)) = {0}.

Proof. – Observe that we have a Koszul resolution {∧kh ⊗ P(∅,λ) 〈2k〉}nk=0 of L(∅,λ).
Exactly k-elements in SΓ act by −1 on each SΓ-eigenspace of ∧kh. By Fact 4.1 1), we
deduce that an irreducible W -constituent of ∧kh ⊗ L(∅,λ) is of the form L(∅,γ) for a
partition γ if and only if k = 0 and γ = λ. It follows that every indecomposable sum-
mand of

⊕
k>0 ∧kh⊗ P(∅,λ) 〈2k〉 is not of the form P(∅,γ) 〈l〉 for a partition γ and l ∈ Z.

Therefore, we conclude the result.

L B.2. – Let r ∈ Z>0 and s � 0. Let λ = (λ(0), λ(1)) and µ = (µ(0), µ(1)) be two
bi-partitions of n regarded as elements of Zr,sn . Suppose that we have one of the following:

|λ(0)| > |µ(0)|, or a(λ(0)) > a(µ(0)) and λ(1) = µ(1).

Then, we have a(λ) > a(µ).

Proof. – Notice that each element of λ(0) contributes more than n-times, while each
element ofλ(1) contributes less than or equal to (n−1)-times. Therefore, ifm� n+s/r � n,
then the first case follows. The other case is immediate.

L B.3. – We define A[ := CW nC[ε21, . . . , ε
2
n] ⊂ AW . Consider the natural degree-

doubling embeddingASn ⊂ A[ and regardMλ as anA[-module by letting Γ act trivially. Then
we have

Kex
(λ,∅) ⊗ Lsgn ∼= AW ⊗A[ Mλ

for each partition λ of n.

Proof. – The algebra AW is a free A[-module with its free basis

(B.1) 1, ε1, ε2, . . . , εn, ε1ε2, ε1ε3, . . . , ε1ε2 · · · εn.

It follows that the induction functorAW ⊗A[ • preserves projective objects, and preserves the
indecomposability. The indecomposableAW -moduleAW⊗A[ triv has simple socle Lsgn 〈2n〉.
Hence, we apply the induction functor to Fact A.1 3),4) to obtain a non-zero degree 0

morphism
P(∅,λ) → P ∗Lsgn 〈4a(λ) + 2n〉 .

By twisting Lsgn to both sides and applying Fact 4.1 2) with an identity 2a(λ)+n = b(λ,∅),
we conclude the result.

C B.4. – The moduleKex
(λ,∅) admits a graded projective resolution by using only

{P(µ,∅) 〈d〉}µ,d’s.

Proof. – The induction functorAW⊗A[ • sends an indecomposable modulePλ toP(∅,λ).
Hence, Kex

(λ,∅) ⊗ Lsgn admits a graded projective resolution by using only {P(∅,µ) 〈d〉}µ,d’s.
By twisting Lsgn as in Lemma B.3, we conclude the assertion.
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L B.5. – For two distinct partitions λ, µ of n, we have〈
Kex

(λ,∅), (K
ex
(µ,∅))

∗
〉

gEP
= 0.

Assume that Corollary 3.9 holds for type A. Then, we have

ext•AW (Kex
(λ,∅), L(µ,∅)) = {0} for each µ 6≤ λ.

Proof. – By the arguments in the proof of Corollary B.4, if

Pi :=
⊕
γ,d≥2i

Pγ 〈d〉⊕m
i
γ,d

is the i-th term of the minimal projective resolution of Mλ, then

P ↑i :=
⊕
γ,d≥2i

P(γ,∅) 〈2d〉
⊕miγ,d = AW ⊗A[ Pi ⊗ Lsgn

is the i-th term of a projective resolution ofKex
(λ,∅). It follows that if we write 〈Mλ, Lµ〉gEP =

Qλ,µ(t), then we have 〈
Kex

(λ,∅), L(µ,∅)

〉
gEP

= Qλ,µ(t2).

Thus, we conclude the desired vanishing of the graded Euler-Poincaré pairing by Theo-
rem A.4 (or Theorem 3.5). For the second assertion, we have

dim extiAW (Kex
(λ,∅), L(µ,∅)) ≤ dim extiA[(Mλ, Lµ) for each i ∈ Z

by the above description of a projective resolution. Therefore, the assertion follows by Corol-
lary 3.9 (for type A).

We return to the proof of Proposition 5.4. Let ni := |λ(i)| for i = 0, 1. Let hi ⊂ h be the
reflection representation ofWni . We haveAλ ∼= (CWn0

nC[h∗0])� (CWn1
nC[h∗1]). We have

extiAW (Kλ, Lµ) = extiAλ(Kex
(λ(0),∅) � L(∅,λ(1)), Lµ) for each i ∈ Z

by the Frobenius-Nakayama reciprocity. Applying Corollary B.4, the first terms of the mini-
mal projective resolution ofKex

(λ(0),∅)
�L(∅,λ(1)) (obtained from the double complex arising

from the minimal projective resolutions of Kex
(λ(0),∅)

and L(∅,λ(1))) go as:

· · · →
⊕
γ,d>0

(
P(γ,∅) 〈d〉�

(
h1 ⊗ P(∅,λ(1)) 〈2〉

))
⊕
(
P(λ(0),∅) � (∧2h1 ⊗ P(∅,λ(1)) 〈4〉)

)
⊕
⊕
ν,d′>0

(
P(ν,∅) 〈d′〉� P(∅,λ(1))

)
→
(
P(λ(0),∅) � (h1 ⊗ P(∅,λ(1)) 〈2〉)

)
⊕
⊕
γ,d>0

(
P(γ,∅) 〈d〉� P(∅,λ(1))

)
→ P(λ(0),∅) � P(∅,λ(1)) → Kex

(λ(0),∅) � L(∅,λ(1)) → 0,

where γ, ν run over some sets of partitions of |λ(0)|. We have

Lµ =
⊕

w∈Sn/S|µ(0)|×S|µ(1)|

w · L(µ(0),∅) � L(∅,µ(1))
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by Fact 4.1 1). By examining the SΓ-action, we conclude that

homAW (Kλ, Lµ) 6= {0} only if |λ(1)| = |µ(1)|, and

extiAW (Kλ, Lµ) 6= {0} only if |λ(1)| − i ≤ |µ(1)| ≤ |λ(1)|.

In addition, if |λ(1)| = |µ(1)|, then we have

ext•AW (Kλ, Lµ) 6= {0} only if λ(0) ≥ µ(0) and λ(1) = µ(1)

by the second part of Lemma B.5. Therefore, we conclude that

ext•AW (Kλ, Lµ) = {0} if a(λ) ≥ a(µ) and λ 6= µ.(B.2)

By construction, we know that each Kλ is an indecomposable module with simple head Lλ.
Again by counting SΓ-eigenvalues and using Fact 4.1 1), we deduce

[K(λ(0),λ(1)) : L(µ(0),µ(1))] 6= 0 only if |λ(0)| > |µ(0)|, or λ(0) ≤ µ(0) and λ(1) = µ(1).

Hence, Lemma B.2 and (B.2) imply that Kλ is a P-trace with respect to Zr,sn . Applying
Proposition 2.16, we conclude that {Kλ}λ forms a Kostka system adapted to Zr,sn as
required.

R B.6. – The ext1 and gEP-version of the second part of Lemma B.5 follows by
Theorem A.4. This yields ext1(Kλ, Lµ) = {0} and 〈Kλ, Lµ〉gEP = 0 in place of (B.2), and
hence one can make the proof into a purely algebraic one.
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