Nous étudions les équivalences de Fourier-Mukai entre surfaces de type K3 en caractéristique positive et démontrons que les résultats classiques sur les complexes se généralisent sans modifications. Le résultat clef est un “théorème de Torelli” pour les catégories dérivées. Comme conséquence, toute K3 surface supersingulière est determinée uniquement à isomorphisme près par sa catégorie dérivée. Nous étudions de plus quelques réalisations algébriques de structure de Mukai-Hodge et les utilisons pour prouver que : 1) la fonction zêta d'une surface de type K3 est une invariante dérivée (découverte indépendamment par Huybrechts) ; 2) la conjecture variationnelle cristalline de Hodge est vérifiée pour les correspondances entre produits de surfaces de type K3 résultant de transformés de Fourier-Mukai.
We study Fourier-Mukai equivalence of K3 surfaces in positive characteristic and show that the classical results over the complex numbers all generalize. The key result is a positive-characteristic version of the Torelli theorem that uses the derived category in place of the Hodge structure on singular cohomology; this is proven by algebraizing formal lifts of Fourier-Mukai kernels to characteristic zero. As a consequence, any Shioda-supersingular K3 surface is uniquely determined up to isomorphism by its derived category of coherent sheaves. We also study different realizations of Mukai's Hodge structure in algebraic cohomology theories (étale, crystalline, de Rham) and use these to prove: 1) the zeta function of a K3 surface is a derived invariant (discovered independently by Huybrechts); 2) the variational crystalline Hodge conjecture holds for correspondences arising from Fourier-Mukai kernels on products of two K3 surfaces.
DOI : 10.24033/asens.2264
Keywords: Fourier-Mukai equivalence, K3 surfaces, zeta function, motives.
Mot clés : Équivalence de Fourier-Mukai, surfaces de type K3, fonctions zêta, motifs.
@article{ASENS_2015__48_5_1001_0, author = {Lieblich, Max and Olsson, Martin}, title = {Fourier-Mukai partners of {K3} surfaces in positive characteristic}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1001--1033}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {5}, year = {2015}, doi = {10.24033/asens.2264}, mrnumber = {3429474}, zbl = {1342.14038}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2264/} }
TY - JOUR AU - Lieblich, Max AU - Olsson, Martin TI - Fourier-Mukai partners of K3 surfaces in positive characteristic JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 1001 EP - 1033 VL - 48 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2264/ DO - 10.24033/asens.2264 LA - en ID - ASENS_2015__48_5_1001_0 ER -
%0 Journal Article %A Lieblich, Max %A Olsson, Martin %T Fourier-Mukai partners of K3 surfaces in positive characteristic %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 1001-1033 %V 48 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2264/ %R 10.24033/asens.2264 %G en %F ASENS_2015__48_5_1001_0
Lieblich, Max; Olsson, Martin. Fourier-Mukai partners of K3 surfaces in positive characteristic. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1001-1033. doi : 10.24033/asens.2264. http://www.numdam.org/articles/10.24033/asens.2264/
Complex surfaces with equivalent derived categories, Math. Z., Volume 236 (2001), pp. 677-697 (ISSN: 0025-5874) | DOI | MR | Zbl
-isocrystals and de Rham cohomology. I, Invent. Math., Volume 72 (1983), pp. 159-199 (ISSN: 0020-9910) | DOI | MR | Zbl
Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc., Volume 31 (1999), pp. 25-34 (ISSN: 0024-6093) | DOI | MR | Zbl
The Tate conjecture for surfaces over finite fields, Invent. Math., Volume 194 (2013), pp. 119-145 (ISSN: 0020-9910) | DOI | MR | Zbl
Twisted Fourier-Mukai functors, Adv. Math., Volume 212 (2007), pp. 484-503 (ISSN: 0001-8708) | DOI | MR | Zbl
, Algebraic surfaces (Orsay, 1976–78) (Lecture Notes in Math.), Volume 868, Springer, Berlin-New York, 1981, pp. 58-79 | MR | Zbl
, Publ. Math. IHÉS, 4, 8, 11, 17, 20, 24, 28, 32, 1961–1967 | Numdam | MR | Zbl
Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J., Volume 55 (1987), pp. 501-538 (ISSN: 0012-7094) | DOI | MR | Zbl
Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. France, Volume 21 (1985) (ISSN: 0037-9484) | Numdam | MR | Zbl
, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2010, 325 pages (ISBN: 978-0-521-13420-0) | DOI | MR | Zbl
, Algebraic structures and moduli spaces (CRM Proc. Lecture Notes), Volume 38, Amer. Math. Soc., Providence, RI, 2004, pp. 177-192 | DOI | MR | Zbl
, Oxford Mathematical Monographs, The Clarendon Press, Oxford Univ. Press, Oxford, 2006, 307 pages (ISBN: 978-0-19-929686-6; 0-19-929686-3) | DOI | MR | Zbl
Derived and abelian equivalence of surfaces, J. Algebraic Geom., Volume 17 (2008), pp. 375-400 (ISSN: 1056-3911) | DOI | MR | Zbl
, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 43-70 | DOI | MR | Zbl
, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 3-20 | DOI | MR | Zbl
Semistable sheaves in positive characteristic, Ann. of Math., Volume 159 (2004), pp. 251-276 (ISSN: 0003-486X) | DOI | MR | Zbl
Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math., Volume 101 (1975), pp. 88-110 (ISSN: 0003-486X) | DOI | MR | Zbl
, Séminaire de géométrie analytique (École Norm. Sup., Paris, 1974-75) (Astérisque), Volume 36–37, Soc. Math. France, Paris, 1976, pp. 163-188 | Numdam | MR | Zbl
Moduli of complexes on a proper morphism, J. Algebraic Geom., Volume 15 (2006), pp. 175-206 (ISSN: 1056-3911) | DOI | MR | Zbl
Moduli of twisted sheaves, Duke Math. J., Volume 138 (2007), pp. 23-118 (ISSN: 0012-7094) | DOI | MR | Zbl
Twisted sheaves and the period-index problem, Compositio Math., Volume 144 (2008), pp. 1-31 (ISSN: 0010-437X) | DOI | MR | Zbl
A note on the cone conjecture for K3 surfaces in positive characteristic (preprint arXiv:1102.3377 ) | MR
Two fundamental theorems on deformations of polarized varieties, Amer. J. Math., Volume 86 (1964), pp. 668-684 (ISSN: 0002-9327) | DOI | MR | Zbl
Néron-Severi groups under specialization, Duke Math. J., Volume 161 (2012), pp. 2167-2206 (ISSN: 0012-7094) | DOI | MR | Zbl
, Vector bundles on algebraic varieties (Bombay, 1984) (Tata Inst. Fund. Res. Stud. Math.), Volume 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341-413 | MR | Zbl
, Moduli of abelian varieties (Texel Island, 1999) (Progr. Math.), Volume 195, Birkhäuser, 2001, pp. 325-343 | DOI | MR | Zbl
, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II (Astérisque), Volume 64, Soc. Math. France, Paris, 1979, pp. 3-86 | Numdam | MR | Zbl
, Arithmetic and geometry, Vol. II (Progr. Math.), Volume 36, Birkhäuser, 1983, pp. 361-394 | DOI | MR | Zbl
Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk, Volume 58 (2003), pp. 89-172 ; translation: Russian Math. Surveys 58 (2003), 511–591 (ISSN: 0042-1316) | DOI | MR | Zbl
Equivalences of derived categories and surfaces, J. Math. Sci., Volume 84 (1997), pp. 1361-1381 (ISSN: 1072-3374) | DOI | MR | Zbl
The Tate conjecture for K3 surfaces in odd characteristic (preprint arXiv:1301.6326 ) | MR
Classes de Chern et classes de cycles en cohomologie rigide, Bull. Soc. Math. France, Volume 131 (2003), pp. 59-121 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl
, Cambridge Studies in Advanced Math., 38, Cambridge Univ. Press, Cambridge, 1994, 450 pages (ISBN: 0-521-43500-5; 0-521-55987-1) | DOI | MR | Zbl
Cité par Sources :