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FOURIER-MUKAI PARTNERS OF K3 SURFACES
IN POSITIVE CHARACTERISTIC

 M LIEBLICH  M OLSSON

A. – We study Fourier-Mukai equivalence of K3 surfaces in positive characteristic and
show that the classical results over the complex numbers all generalize. The key result is a positive-
characteristic version of the Torelli theorem that uses the derived category in place of the Hodge
structure on singular cohomology; this is proven by algebraizing formal lifts of Fourier-Mukai kernels
to characteristic zero. As a consequence, any Shioda-supersingular K3 surface is uniquely determined
up to isomorphism by its derived category of coherent sheaves. We also study different realizations
of Mukai’s Hodge structure in algebraic cohomology theories (étale, crystalline, de Rham) and use
these to prove: 1) the zeta function of a K3 surface is a derived invariant (discovered independently by
Huybrechts); 2) the variational crystalline Hodge conjecture holds for correspondences arising from
Fourier-Mukai kernels on products of two K3 surfaces.

R. – Nous étudions les équivalences de Fourier-Mukai entre surfaces de type K3 en carac-
téristique positive et démontrons que les résultats classiques sur les complexes se généralisent sans mo-
difications. Le résultat clef est un “théorème de Torelli” pour les catégories dérivées. Comme consé-
quence, toute K3 surface supersingulière est determinée uniquement à isomorphisme près par sa caté-
gorie dérivée. Nous étudions de plus quelques réalisations algébriques de structure de Mukai-Hodge
et les utilisons pour prouver que : 1) la fonction zêta d’une surface de type K3 est une invariante déri-
vée (découverte indépendamment par Huybrechts) ; 2) la conjecture variationnelle cristalline de Hodge
est vérifiée pour les correspondances entre produits de surfaces de type K3 résultant de transformés de
Fourier-Mukai.

1. Introduction

In this paper we establish several basic facts about Fourier-Mukai equivalence of K3 sur-
faces over fields of positive characteristic and develop some foundational material on defor-
mation and lifting of Fourier-Mukai kernels, including the study of several “realizations” of
Mukai’s Hodge structure in standard cohomology theories (étale, crystalline, Chow, etc.).

In particular, we prove the following theorem, extending to positive characteristic classical
results due to Hosono et al. [10], Mukai [25], and Orlov [29] in characteristic 0. For a
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1002 M. LIEBLICH AND M. OLSSON

scheme Z of finite type over a field k, let D(Z) denote the bounded derived category with
coherent cohomology. For a K3 surface X over an algebraically closed field k, we have
algebraic moduli spaces MX(v) of sheaves with fixed Mukai vector v (see Section 3.15 for
the precise definition) that are stable with respect to a suitable polarization.

T 1.1. – Let X be a K3 surface over an algebraically closed field k of positive
characteristic 6= 2.

1. If Y is a smooth projective k-scheme such that there exists an equivalence of triangulated
categories D(X) ' D(Y ), then Y is a K3 surface isomorphic to MX(v) for some Mukai
vector v such that there exists a Mukai vector w with 〈v, w〉 = 1.

2. There exist only finitely many smooth projective k-schemes Y with D(X) ' D(Y ).
3. If X has Picard number at least 11 and Y is a smooth projective k-scheme with

D(Y ) ' D(X), then X ' Y . In particular, any Shioda-supersingular K3 surface is
determined up to isomorphism by its derived category.

The classical proofs of these results in characteristic 0 rely heavily on the Torelli theorem
and lattice theory, so a transposition into characteristic p is necessarily delicate. We present
here a theory of the “Mukai motive”, generalizing the Mukai-Hodge structure to other coho-
mology theories, and use various realizations to aid in lifting derived-equivalence problems
to characteristic 0.

These techniques also yield proofs of several other results. The first answers a question
of Mustaţă and Huybrechts, while the second establishes the truth of the variational crys-
talline Hodge conjecture [24, Conjecture 9.2] in some special cases. (In the course of prepar-
ing this manuscript, we learned that Huybrechts discovered essentially the same proof of
Theorem 1.2, in `-adic form.)

T 1.2. – If X and Y are K3 surfaces over a finite field F of characteristic 6= 2

such that D(X) is equivalent to D(Y ), thenX and Y have the same zeta-function. In particular,
#X(F) = #Y (F).

T 1.3. – Suppose X and Y are K3 surfaces over an algebraically closed field k
of positive characteristic 6= 2 with Witt vectors W , and that X/W and Y/W are lifts, giving
rise to a Hodge filtration on the F -isocrystal H4

cris(X × Y/K), where K denotes the field of
fractions of W . SupposeZ ⊂ X×Y is a correspondence coming from a Fourier-Mukai kernel.
If the fundamental class of Z lies in Fil2H4

cris(X×Y/K) then Z is the specialization of a cycle
on X ×W Y.

Throughout this paper we consider only fields of characteristic 6= 2.

1.4. Outline of the paper

Sections 2 and 3 contain foundational background material on Fourier-Mukai equiv-
alences. In Section 2 we discuss variants in other cohomology theories (étale, crystalline,
Chow) of Mukai’s original construction of a Hodge structure associated to a smooth even
dimensional proper scheme. In Section 3 we discuss various basic material on kernels of
Fourier-Mukai equivalences. The main technical tool is Proposition 3.3, which will be used
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FOURIER-MUKAI PARTNERS OF K3 SURFACES 1003

when deforming kernels. The results of these two sections are presumably well-known to
experts.

As an application of the formalism of Mukai motives we prove Theorem 1.2 in Section 4.

In Section 5 we discuss the relationship between moduli of complexes and Fourier-Mukai
kernels. This relationship is the key to the deformation theory arguments that follow and
appears never to have been written down in this way. The main result of this section is
Corollary 5.5.

Section 6 contains the key result for the whole paper (Theorem 6.1). This result should
be viewed as a derived category version of the classical Torelli theorem for K3 surfaces. It
appears likely that this kind of reduction to the universal case via moduli stacks of complexes
should be useful in other contexts.

Using these deformation theory techniques we prove Theorem 1.3 in Section 7 and state-
ment (1) in Theorem 1.1 in Section 8.

In Section 9 we prove statement (2) in Theorem 1.1. Our proof involves deforming to
characteristic 0, which in particular is delicate for supersingular K3 surfaces.

Finally there is an appendix containing a technical result about versal deformations of
polarized K3 surfaces which is used in Section 7. The main result of the appendix is Theo-
rem A.1 concerning the Picard group of the general deformation of a fixed K3 surface from
characteristic p to characteristic 0.

1.5. Notation

For a proper smooth scheme X over a field k we write K(X) for the Grothendieck group
of vector bundles on X and A∗(X)Q for the Chow ring of algebraic cycles on X modulo
rational equivalence. We write ch : K(X)→ A∗(X)Q for the Chern character.

1.6. Acknowledgments

Lieblich partially supported by the Sloan Foundation, NSF grant DMS-1021444, and
NSF CAREER grant DMS-1056129, Olsson partially supported by NSF CAREER grant
DMS-0748718 and NSF grant DMS-1303173. We thank Andrew Niles, Daniel Huybrechts,
Davesh Maulik, Richard Thomas, and two anonymous referees for many helpful comments
and error-correction.

2. Mukai motive

2.1. Mukai’s original construction over C: the Hodge realization [25]

Suppose X is a smooth projective variety of even dimension d = 2δ. The singular coho-
mology Hi(X,Z) carries a natural pure Hodge structure of weight i, and the cup product
defines a pairing of Hodge structures

Hi(X,Z)×H2d−i(X,Z)→ H2d(X,Z) = Z(−d),

where Z(−1) is the usual Tate Hodge structure of weight 2.
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1004 M. LIEBLICH AND M. OLSSON

Define the (even) Mukai-Hodge structure ofX to be the pure Hodge structure of weight d
given by

H̃(X,Z) :=

δ⊕
i=−δ

Hd+2i(X,Z)(i).

The cup product and the identification H2d(X,Z) ∼= Z(−d) yield the Mukai pairing

H̃(X,Z)× H̃(X,Z)→ Z(−d)

defined by the formula

〈(a−δ, a−δ+1, . . . , aδ−1, aδ), (a
′
−δ, a

′
−δ+1, . . . , a

′
δ−1, a

′
δ)〉 :=

δ∑
i=−δ

(−1)iai · a′−i,

where ai ∈ Hd+2i(X,Z)(i). Similarly we get a rational Hodge structure H̃(X,Q), replac-
ing Z by Q in the preceding discussion.

One of the main features of the Mukai-Hodge structure is its compatibility with corre-
spondences. In particular, let Y be another smooth projective variety of dimension d. A per-
fect complex P on X × Y induces a map, compatible with the inner products,

ΨP : H̃(X,Q)→ H̃(Y,Q)

given by adding the maps

Ψi,j
P : Hd+2i(X,Q)(i)→ Hd+2j(Y,Q)(j)

defined as the composite

Hd+2i(X,Q)(i)
pr∗1 // Hd+2i(X × Y,Q)(i)

⋃
chj−i+d(P )

��
Hd+2j(Y,Q)(j) Hd+2j+2d(X × Y,Q)(j + d).

pr2∗oo

Note that this map depends only on the image of P in the Grothendieck group K(X × Y ).
In general this map is defined only with rational coefficients, due to the presence of denomi-
nators in the Chern character, but for K3 surfaces it is defined integrally.

Instead of considering ΨP it is standard to work with ΦP = Ψ
P
√

TdX×Y
. A discussion of

the reasons for this normalization can be found in [11, pp. 127–130]. This modified map

ΦP : H̃(X,Q)→ H̃(Y,Q)

has the advantage of making the transform compatible with inner products and Chern class
maps.

Mukai’s original work in [25] was on the cohomology of K3 surfaces. For such a sur-
face X, the Mukai-Hodge structure is

H0(X,Z)(−1)⊕H2(X,Z)⊕H4(X,Z)(1)

(colloquially rendered as “place H0 and H4 in H̃1,1”), and the Mukai pairing takes the form

〈(a, b, c), (a′, b′, c′)〉 = bb′ − ac′ − a′c.

4 e SÉRIE – TOME 48 – 2015 – No 5



FOURIER-MUKAI PARTNERS OF K3 SURFACES 1005

Note that this pairing restricts to the usual pairing on H2(X,Z). Moreover, the class
√

TdX×Y
lies in K(X × Y ) (i.e., it has integral components), so that for all pairs of K3 surfaces X
and Y , any P ∈ K(X × Y ) induces a map of rank 24 lattices

ΦP : H̃(X,Z)→ H̃(Y,Z).

As Mukai and Orlov proved in their seminal work (see [29, 3.3]), the Mukai-Hodge structure
of a K3 surface uniquely determines its derived category up to (non-canonical) equivalence.
In fact, they showed that the transcendental lattice alone suffices to determine the derived
category.

The previous constructions generalize immediately to any Weil cohomology theory. The
main ones we consider are the following:

2.2. Crystalline realization

R 2.3. – For a survey of basic properties of crystalline cohomology see [14].

Let k be a perfect field of characteristic p > 0, let W be its ring of Witt vectors, and let
K denote the field of fractions ofW . For a proper smooth schemeX/k letHi(X/K) denote
the crystalline cohomology

Hi(X/K) := Hi((X/W )cris,OX/W )⊗W K,

an F -isocrystal over K.
Following standard conventions, let K(1) denote the F -isocrystal whose underlying vec-

tor space isK, and whose Frobenius action is given by multiplication by 1/p. IfM is another
isocrystal and n is an integer we write M(n) for the tensor product M ⊗K(1)⊗n (with the
usual convention that if n is negative then K(1)⊗n denotes the −n-th tensor power of the
dual of K(1)).

For a proper smooth k-scheme X there is a crystalline Chern character

chcris : K(X)→ H2∗(X/K),

obtained by composing the cycle class map η : A∗(X)→ H2∗(X/K) (defined in [8] and [9])
with the Chern character K(X) → A∗(X)Q. See also [32] for a discussion of Chern classes
in rigid cohomology. For an integer i we write chicris for the 2i-th component of chcris.Using
the splitting principle to reduce to the case of a line bundle, one shows that for any integer i
and E ∈ K(X) we have

ϕX(chicris(E)) = pichicris(E).

If X/k is proper and smooth of even dimension d = 2δ, set

H̃i(X/K) := Hd+2i(X/K)(i), −δ ≤ i ≤ δ,

and define the Mukai F -isocrystal of X/K to be the F -isocrystal

H̃(X/K) := ⊕iH̃i(X/K).

Then using the same formulas as in the Betti cohomology setting, there is a pairing 〈·, ·〉
on H̃(X/K). Also if Y is a second smooth proper k-scheme of the same dimension asX and
P ∈ K(X × Y ) is an object, then we get a morphism of Mukai F -isocrystals

ΦP : H̃(X/K)→ H̃(Y/K)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1006 M. LIEBLICH AND M. OLSSON

using the crystalline Chern character multiplied by the square root of the Todd class√
Todd(X × Y ). This morphism is compatible with the inner products 〈·, ·〉X and 〈·, ·〉Y

on H̃(X/K) and H̃(Y/K) respectively, if we view these as taking values in H2d(X/K) and
H2d(Y/K) in which case we have the formula

ΦP 〈x, y〉X = 〈ΦP (x),ΦP (y)〉Y .

2.4. Étale realization

Let k be a field of characteristic p, and fix a prime ` distinct from p. Fix also a separable
closure k ↪→ k̄, and let Gk denote the Galois group of k̄ over k. The étale realization of the
Mukai motive is given by the Gk-modules

H̃i(Xk̄,Z`) := Hd+2i(Xk̄,Z`)(i), H̃(X,Z`) := ⊕iH̃i(Xk̄,Z`), −δ ≤ i ≤ δ,

where Hj(Xk̄,Z`) denotes étale cohomology.

The cycle class maps Ai(X)→ H2i(Xk̄,Z`(i)), Gysin maps, etc., yield identical functori-
alities to the crystalline case, and the usual formula yields a Mukai pairing.

When X is defined over a finite field Fq, the qth-power Frobenius gives an action of the
arithmetic (and geometric) Frobenius on H̃(Xk̄,Z`). Given X, Y , and P ∈ D(X × Y ), all
defined over Fq, we get a Frobenius-invariant map

Ψ : H̃(Xk̄,Q`)→ H̃(Yk̄,Q`).

In particular, when Ψ is an isomorphism the characteristic polynomials of Frobenius on
the `-adic Mukai lattices are equal.

2.5. De Rham realization

For a smooth proper scheme X over a field k of characteristic 0, let Hs
dR(X/k) denote

the s-th de Rham cohomology group of X. Recall that this is a filtered vector space with
filtration FildR defined by the Hodge filtration.

Following standard conventions, if V = (V, F •) is a vector space with a decreasing
filtration F •, define for an integer n the n-th Tate twist of V , denoted V (n), to be the filtered
vector space with the same underlying vector space V , but whose filtration in degree s is given
by F s+n.

For X/k smooth proper of dimension d Poincaré duality then gives a perfect pairing in
the category of filtered vector spaces

Hi
dR(X/k)⊗H2d−i

dR (X/k)→ k(−d).

If X is of even dimension 2δ, we set

H̃dR(X/k) := ⊕δi=−δHd+2i
dR (X/k)(i).

This has an inner product, called the Mukai pairing, taking values in k(−d) defined by the
same formula as in the Betti setting.

4 e SÉRIE – TOME 48 – 2015 – No 5



FOURIER-MUKAI PARTNERS OF K3 SURFACES 1007

R 2.6. – In the case when X is a surface we have

H̃dR(X/k) = H0
dR(X/k)(−1)⊕H2

dR(X/k)⊕H4
dR(X/k)(1),

the filtration is given by

Fil2 = Fil2H2
dR(X/k), Fil1 = H0

dR(X/k)⊕ Fil1H2
dR(X/k)⊕H4

dR(X/k),

and Fils is equal to H̃dR(X/k) (resp. 0) for s ≥ 0 (resp. s < 2). Note that this also shows that
Fil1 is the orthogonal complement of Fil2 under the Mukai pairing.

2.7. Crystalline and de Rham comparison

Consider now a complete discrete valuation ring V with perfect residue field k and field
of fractions K. Let W ⊂ V be the ring of Witt vectors of k, and let K0 ⊂ K be its
field of fractions. Let X /V be a proper smooth scheme of even relative dimension 2δ, and
let Xs (resp. Xη) denote the closed (resp. generic) fiber. We then have the Berthelot-Ogus
comparison isomorphism [1, 2.4]

H∗cris(Xs/K0)⊗K0
K → H∗dR(Xη/K).

This isomorphism induces an isomorphism of graded K-vector spaces

σX : H̃cris(Xs/K0)⊗K0
K → H̃dR(Xη/K).

Because the comparison isomorphism between crystalline cohomology and de Rham coho-
mology is compatible with cup product and respects the cohomology class of a point, the
map σ is compatible with the Mukai pairings on both sides.

Now suppose given two proper smooth V -schemes X and Y of the same even dimension,
and let X and Y respectively denote their reductions to k. Suppose further given a perfect
complex P on X × Y such that the induced map

Φcris
P : H̃cris(X/K0)→ H̃cris(Y/K0)

is an isomorphism. We then get an isomorphism

(2.7.1) H̃dR(Xη)
σ−1

X // H̃cris(X/K0)⊗K
Φcris
P // H̃cris(Y/K0)⊗K σY // H̃dR(Yη).

D 2.8. – The families X /V and Y /V are called P -compatible if the compos-
ite morphism (2.7.1) respects the Hodge filtrations.

2.9. Chow realization

For a scheme X proper and smooth over a field k, let A∗(X)num denote the graded
group of algebraic cycles on X modulo numerical equivalence, and let A∗(X)num,Q denote
A∗(X)num ⊗Q.

If X and Y are two smooth proper k-schemes of the same even dimension d = 2δ, and
if P ∈ K(X × Y ) is the class of a perfect complex in the Grothendieck group of coherent
sheaves on X × Y , then we can consider the class

β(P ) := ch(P ) ·
√

TdX×Y ∈ A∗(X × Y )num,Q.

This class induces a map

Φ
A∗num
P : A∗(X)num,Q → A∗(Y )num,Q,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1008 M. LIEBLICH AND M. OLSSON

defined by the formula

Φ
A∗num
P (α) = pr2∗(pr∗1(α) ∪ β(P )).

In the case when k is a perfect field of positive characteristic, the cycle class map defines
maps

clX : A∗(X)num,Q → H̃(X/K), clY : A∗(Y )num,Q → H̃(Y/K)

and

clX : A∗(X)num,Q → H̃(X,Q`), clY : A∗(Y )num,Q → H̃(Y,Q`).

P 2.10. – The diagrams

A∗(X)num,Q
Φ
A∗(−)num,Q
P //

clX
��

A∗(Y )num,Q

clY
��

H̃(X/K)
ΦP

// H̃(Y/K)

and

A∗(X)num,Q
Φ
A∗(−)num,Q
P //

clX
��

A∗(Y )num,Q

clY
��

H̃(X,Q`)
ΦP

// H̃(Y,Q`)

commute.

Proof. – This follows from the fact that the cycle class map commutes with smooth
pullback, proper pushforward, and cup product. In the étale context a reference for this is
[18, §6] and in the crystalline case see [8] or [9, II 4.2].

2.11. – It will be useful to consider the codimension filtration Fil•X on

A∗(X)num,Q = ⊕iAi(X)num,Q

given by

FilsX := ⊕i≥sAi(X)num,Q.

If X and Y are smooth proper k-schemes, and P ∈ D(X × Y ) is a perfect complex, then
we say that

Φ
A∗(−)num,Q

P : A∗(X)num,Q → A∗(Y )num,Q

is filtered if it preserves the codimension filtration. We will also sometimes refer to the functor

ΦP : D(X)→ D(Y )

as being filtered, meaning that Φ
A∗(−)num,Q

P is filtered (this apparently abusive terminology is
justified by the theorem of Orlov recalled in 3.6 below, which implies that P is determined
by the equivalence ΦP : D(X)→ D(Y )).

4 e SÉRIE – TOME 48 – 2015 – No 5
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Observe that in the case when X and Y are surfaces, we have

Fil0X = A∗(X)num,Q,Fil1X = A1(X)num,Q ⊕A2(X)num,Q, Fil2X = A2(X)num,Q,

and Fil1X is the subgroup of elements orthogonal to Fil2X . Therefore in the case of surfaces,
Φ
A∗(−)num,Q

P is filtered if and only if

Φ
A∗(−)num,Q

P (Fil2X) = Fil2Y .

2.12. Mukai vectors of perfect complexes

Let X be a smooth projective geometrically connected scheme over a field k.

D 2.13. – Given a perfect complex E ∈ D(X), the Mukai vector of E is

v(E) := ch(E)
√

TdX ∈ A∗(X)num,Q

In the case when X is a K3 surface, the Mukai vector of a complex E is given by (see for
example [11, p. 239])

v(E) = (rk(E), c1(E), rk(E) + c1(E)2/2− c2(E)).

In particular, using that the Todd class of the tangent bundle of X is (1, 0, 2), one gets by
Grothendieck-Riemann-Roch that for two objects E,F ∈ D(X) we have

(2.13.1) 〈v(E), v(F )〉 = −χ(E,F ).

As a consequence, if E is a simple torsion free sheaf on a K3 surface X, the universal
deformation of E (keeping X fixed) is formally smooth of dimension v(E)2 − 2, hinting
that the Mukai lattice captures the numerology needed to study moduli and deformations.
(A review of the standard results in this direction may be found in Section 3.15 below.)

The compatibility of the Chow realization with the crystalline, étale, and de Rham real-
izations yields Mukai vectors in each of those realizations, satisfying the same rule.

R 2.14. – In the above we work with realizations in the various cohomology
theories. One of course expects there to be an underlying motive whose realizations are
given as above. A precise definition of such a motive, however, seems to require the standard
projectors in cohomology H∗(X) → Hi(X) to be given by morphisms in the category of
motives. This is closely related to the Künneth standard conjecture, denoted C(X) in [15,
p. 14], and is known in the case of surfaces.

3. Kernels of Fourier-Mukai equivalences

3.1. Generalities

LetX and Y be proper smooth schemes over a field k. For a perfect complex P onX×Y ,
consider the functor

ΦPD : D(X)→ D(Y )

given by
ΦPD(K) := pr2∗(P ⊗L pr∗1K).

Let P∨ denote the complex

P∨ := RH om(P,OX×Y ),

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1010 M. LIEBLICH AND M. OLSSON

which we view as a perfect complex on Y × X (switching the factors). Let ωX (resp. ωY )
denote the highest exterior power of Ω1

X (resp. Ω1
Y ).

Let

(3.1.1) G : D(Y )→ D(X) (resp. H : D(Y )→ D(X))

denote

Φ
P∨⊗π∗Y ωY [dim(Y )]
D (resp. Φ

P∨⊗π∗XωX [dim(X)]
D ),

where πX and πY denote the projections from X ×Y . From Grothendieck duality one gets:

P 3.2 ([2, 4.5]). – The functor G (resp. H) is left adjoint (resp. right adjoint)
to ΦPD.

For later use let us recall how these adjunction maps

η : G ◦ ΦPD → id, ε : id→ H ◦ ΦPD

are obtained.

In general ifX, Y , and Z are proper smooth k-schemes, P is a perfect complex onX×Y ,
and Q is a perfect complex on Y × Z, then the composite functor

D(X)
ΦPD // D(Y )

ΦQD // D(Z)

is equal to

Φ
γX×Z∗(γ

∗
X×Y (P )⊗Lγ∗Y×ZQ)

D ,

where γX×Z , γX×Y , and γY×Z are the various projections from X × Y × Z.

In particular, taking Z = X and Q = P∨ ⊗ πY ωY [dim(Y )], we get that the composition
G ◦ ΦPD is equal to

Φ
γX×X∗(γ

∗
X×Y (P )⊗γ∗Y×X(P∨⊗σ∗Y ωY [dim(Y )])

D .

The adjunction

η : G ◦ ΦPD → id

is realized by a map

(3.2.1) η̄ : γX×X∗(γ
∗
X×Y (P )⊗ γ∗Y×X(P∨ ⊗ σ∗Y ωY [dim(Y )]))→ ∆∗OX ,

where we note that

Φ∆∗OX
D = id.
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This map η̄ is adjoint to the map

∆∗γX×X∗(γ
∗
X×Y (P )⊗ γ∗Y×X(P∨ ⊗ σ∗Y ωY [dim(Y )]))

'
��

πX∗(P ⊗ P∨ ⊗ π∗Y ωY [dim(Y )])

P⊗P∨→id
��

πX∗π
∗
Y ωY [dim(Y )]

'
��

RΓ(Y, ωY [dim(Y )])⊗k OX

tr⊗1

��
OX .

Similarly, the composite H ◦ ΦPD is induced by the perfect complex

γX×X∗(γ
∗
X×Y P ⊗ γ∗Y×X(P∨ ⊗ π∗XωX [dim(X)]))

on X ×X. There is a natural map

(3.2.2) ε̄ : ∆∗OX → γX×X∗(γ
∗
X×Y P ⊗ γ∗Y×X(P∨ ⊗ π∗XωX [dim(X)]))

which induces the adjunction map

ε : id→ H ◦ ΦPD.

The map ε̄ is obtained by noting that

∆!γX×X∗(γ
∗
X×Y P ⊗ γ∗Y×X(P∨ ⊗ π∗XωX [dim(X)])) ' πX∗(P ⊗ P∨),

so giving the map ε̄ is equivalent to giving a map

(3.2.3) OX → π∗(P ⊗P∨),

and this is adjoint to a map
OX×Y → P ⊗P∨.

Taking the natural scaling map for the latter gives rise to the desired map ε̄.

P 3.3. – The functor ΦPD is an equivalence if and only if the maps (3.2.1) and
(3.2.2) are isomorphisms.

Proof. – For a closed point x ∈ X(k), let Px ∈ D(Y ) denote the object obtained by
pulling back P along

Y ' Spec(k)× Y ix×id // X × Y,
where ix : Spec(k) ↪→ X is the closed immersion corresponding to x. If we write Ox
for ix∗OSpec(k), then we have

Px = ΦPD(Ox).

L 3.4. – Let ρ : K → K ′ be a morphism in D(X × Y ). Then the induced morphism
of functors Φ(ρ) : ΦKD → ΦK

′

D is an isomorphism if and only if ρ is an isomorphism.
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Proof. – The ‘if ’ direction is immediate. For the ‘only if ’ direction, observe that if
x ∈ X(k) is a point, then the condition that Φ(ρ) is an isomorphism implies that the map
ρx : Kx → K ′x is an isomorphism. By Nakayama’s lemma (for perfect complexes) this
implies that ρ is an isomorphism.

This implies Proposition 3.3, since it implies that the maps (3.2.1) and (3.2.2) are isomor-
phisms if and only if the adjunction maps for the adjoint pairs (G,ΦPD) and (ΦPD, H) are iso-
morphisms, which is equivalent to ΦPD being an equivalence.

In what follows we call an object P ∈ D(X × Y ) a Fourier-Mukai kernel (or FM-kernel)
if the functor ΦPD is an equivalence.

Let us also recall the following three results which will be relevant in the following discus-
sion.

P 3.5. – Let P ∈ D(X × Y ) be a FM kernel, and let x, x′ ∈ X(k) be points.
(i) If x 6= x′ then RHom(Px, Px′) = 0.

(ii) There is a natural isomorphism TxX ' Ext1(Px, Px) which induces an isomorphism of
algebras

Λ•TxX ' ⊕iExti(Px, Px).

Proof. – Indeed since P is a FM kernel, we have

RHom(Px, Px′) ' RHom(Ox,Ox′).

This implies (i) and also reduces the proof of (ii) to the calculation of the right side. There is
a resolution in the category of OX,x-modules

0→ m→ OX,x → Ox → 0,

where m denotes the maximal ideal in OX,x, which upon applying RHomOX,x(−,Ox)

induces a morphism
TxX = (m/m2)∨ → Ext1(Ox,Ox).

This induces a morphism of algebras as in (ii). The verification that it is an isomorphism is
a standard exercise in Koszul resolutions (see for example [33, Exercise 4.5.6]).

T 3.6 (Orlov [29, 2.2]). – LetX andM be smooth projective schemes over a fieldk,
and let

F : D(X)→ D(M)

be an equivalence of triangulated categories. Then F = ΦP for a perfect complex P onX×M ,
and the complex P is unique up to isomorphism.

R 3.7. – A generalization of Orlov’s theorem has been obtained by Canonaco
and Stellari [4, Theorem 1.1], but the above suffices for the purposes of this paper.

R 3.8. – In what follows we refer to an equivalence of triangulated categories
F : D(X)→ D(M) as a Fourier-Mukai transform. One could also consider more general
additive functors, but in this paper we restrict our attention to equivalences. Two smooth
projective k-schemes X and M are called Fourier-Mukai partners (or FM-partners) if there
exists a Fourier-Mukai kernel P ∈ D(X ×M). By Orlov’s theorem, X and M are FM-part-
ners if and only if there exists an equivalence of triangulated categories D(X) ' D(M).
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P 3.9. – If X is a K3 surface over k and Y is a smooth projective k-scheme
such that there is an equivalence D(X)

∼→ D(Y ) then Y is a K3 surface.

Proof. – See for example [11, Corollary 10.2] (though the proof given there is in the
characteristic 0 setting it generalizes immediately to arbitrary characteristic).

We end this section with a brief review of some standard kernels.

3.10. Tensoring with line bundles

Let k be a field and X/k a smooth projective scheme. Let L be a line bundle on X. Then
the equivalence of triangulated categories

D(X)→ D(X), K 7→ K ⊗L L

is induced by the kernel P := ∆∗L on X × X, where ∆ : X → X × X is the diagonal. In
the case when X is a surface the corresponding action on the Mukai motive is given by the
map sending (a, b, c) ∈ A∗(X)num,Q to

(3.10.1) (a, b+ ac1(L), c+ b · c1(L) + ac1(L)2/2).

3.11. Spherical twist [11, Chapter 8]

Recall the following definition (see e.g. [11, Definition 8.1]).

D 3.12. – A perfect complex E ∈ D(X) is spherical if

1. E
L
⊗ωX ∼= E;

2. Exti(E,E) = 0 unless i = 0 or i = dim(X), and in those cases we have
dim Exti(E,E) = 1.

In other words, RH om(E,E) has the cohomology of a sphere. A standard example is
given by the structure sheaf of a (−2)-curve in a K3 surface.

The trace map

RH om(E,E)→ OX

defines a morphism

t : Lp∗E ∨⊗Lq∗E → R∆∗OX

in D(X × X), where p and q are the two projections. Define PE to be the cone over t. The
following result dates to work of Kontsevich, Seidel and Thomas.

T 3.13 ([11, Proposition 8.6]). – The transform

TE : D(X)→ D(X)

induced by PE is an equivalence of derived categories.

This transform is called a spherical twist [11, 8.3].
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P 3.14 ([11, Lemma 8.12]). – Suppose X is a K3 surface and PE is the com-
plex associated to a spherical objectE ∈ D(X) as above. Let H̃ be any realization of the Mukai
motive described in the preceding sections (étale, crystalline, de Rham, Chow) and let v ∈ H̃
be the Mukai vector of PE . Then v2 = 2 and the induced map

ΦPE : H̃(X)→ H̃(X)

is the reflection in v:
ΦPE (x) = x− (x · v)v.

3.15. Moduli spaces of vector bundles

Let X be a K3 surface over a field k. One of Mukai and Orlov’s wonderful discoveries is
that one can produce Fourier-Mukai equivalences between X and moduli spaces of sheaves
on X by using tautological sheaves.

If S is a k-scheme and E is a locally finitely presented quasi-coherent sheaf on X ×S flat
over S, then we get a function on the points of S to A∗(X)num,Q by sending a point s to the
Mukai vector of the restrictionEs ofE to the fiber over s. This function is a locally constant
function on S, and so if S is connected it makes sense to talk about the Mukai vector of E,
which is defined to be the Mukai vector of Es for any s ∈ S.

For any ample class h on X, let Mh denote the algebraic stack of Gieseker-semistable
sheaves onX, where semistability is defined using h. A good summary of the standard results
on these moduli spaces may be found in [11, Section 10.3], with a more comprehensive treat-
ment in [13] and some additional non-emptiness results in [25]. For a discussion of semistable
sheaves in positive characteristic see Langer’s paper [16]. If we fix a vector v ∈ A∗(X)num,Q,
we then get an open and closed substack Mh(v) ⊂Mh classifying semistable sheaves on X
with Mukai vector v. Since the Mukai vector of a sheaf determines the Hilbert polynomial,
the stack Mh(v) is an algebraic stack of finite type over k. In fact, it is a GIT quotient stack
with projective GIT quotient variety (a reference for this point of view on moduli of sheaves,
and more generally twisted sheaves, is [20, Section 2.3.3]).

T 3.16 ([25, Theorem 5.1] and [30, Section 4.2]). – LetX be a K3 surface over a
field k.

1. Let v ∈ A∗(X)num,Q be a primitive element with v2 = 0 (with respect to the Mukai
pairing) and positive degree 0 part. Then Mh(v) is non-empty.

2. If, in addition, there is a complex P ∈ D(X) with Mukai vector v′ such that 〈v, v′〉 = 1

then every semistable sheaf with Mukai vector v is locally free and geometrically stable
[13, Remark 6.1.9], in which case Mh(v) is a µr-gerbe, for some r, over a smooth
projective K3 surface Mh(v) such that the associated Gm-gerbe is trivial (in older
language, a tautological family exists on X ×Mh(v)).

3. A tautological family E on X ×Mh(v) induces a Fourier-Mukai equivalence

ΦE : D(Mh(v))→ D(X),

and thus in the case when k = C an isomorphism of Mukai-Hodge lattices.

Finally, if k = C, then any FM partner of X is of this form.
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R 3.17. – While the non-emptiness uses the structure of analytic moduli of
K3 surfaces (and deformation to the Kummer case), it still holds over any algebraically
closed field. One can see this by lifting v and h together with X using Deligne’s theorem and
then specializing semistable sheaves using Langton’s theorem [17, theorem on p. 99].

R 3.18. – Using the results of [12], one can restrict to working with moduli of
locally free slope-stable sheaves from the start.

R 3.19. – All the statements in 3.16 can be verified over an algebraic closure
of k, except for the triviality of the Gm-gerbe M →Mh(v) associated to the µr-gerbe
Mh(v)→Mh(v) in (2). The triviality of this gerbe can be seen as follows. Let
α ∈ H2(Mh(v),Gm) be the class in the cohomological Brauer group corresponding
to M , and let E be the universal bundle on X × M . Then for every geometric point
ȳ → X × M the stabilizer action of Gm on E (ȳ) is the standard action. Consider the
complex K := Rpr2∗(pr∗1(P∨[1])⊗ E ) on M . It follows from (2.13.1) that this complex has
rank 1 and therefore the determinantL := det(K) is an α-twisted sheaf on M in the sense of
[21]. It follows that the gerbe is trivial (in fact a trivialization is provided by the complement
of the zero section in the total space of L which maps isomorphically to Mh(v)).

4. Zeta functions of FM partners over a finite field

In this section we address a question due to Mustaţă and communicated to us by Huy-
brechts: do Fourier-Mukai partners over a finite field have the same zeta function?

T 4.1. – Suppose X and Y are K3 surfaces over a finite field k. If there is an
equivalence D(X)

∼→ D(Y ) of k-linear derived categories then for all finite extensions k′/k
we have that

|X(k′)| = |Y (k′)|.

In particular, ζX = ζY .

Proof. – By [29, Theorem 3.2.1], there is a kernel P ∈ D(X × Y ) giving the equivalence.
The Leftschetz fixed-point formula in crystalline cohomology shows that it is enough to see
that the trace of Frobenius acting onH2

cris is the same. The kernel P induces an isomorphism
of F -isocrystals

H̃(X/K)
∼→ H̃(Y/K).

Thus, the trace of Frobenius on both sides is the same. On the other hand, it follows from
the definition of the Mukai crystal that

Tr(F |H̃(X/K)) = Tr(F |H2
cris(X/K)) + 2p

and similarly for Y . Thus

Tr(F |H2
cris(X/K)) = Tr(F |H2

cris(Y/K)),

giving the desired result.
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5. Fourier-Mukai transforms and moduli of complexes

In this section, we extend the philosophy of Mukai and Orlov and show that FM kernels
on X × Y correspond to certain open immersions of Y into a moduli space of complexes
on X. We start by reviewing the basic results of [19] on moduli of complexes.

Given a proper morphism of finite presentation between schemes Z → S, define a
category fibered in groupoids as follows: the objects over an S-scheme T → S are objects
E ∈ D(OZT ) of the derived category of sheaves of OZT -modules on ZT such that

1. for any quasi-compact T -scheme U → T the complex EU := Lp∗E is bounded, where
p : ZU → ZT is the natural map (“E is relatively perfect over T”);

2. for every geometric point s → S, we have that Exti(Es, Es) = 0 for all i < 0 (“E is
universally gluable”).

By [19, theorem on p. 2] this category fibered in groupoids is an Artin stack locally of finite
presentation over S. This stack is denoted DZ/S (or just DZ when S is understood).

R 5.1. – In [19, Proposition 2.1.9], it is proven that if f : Z → S is flat then a
relatively perfect complex E is universally gluable if and only if the second condition holds
after base change to geometric points of S, and it is straightforward to see that it suffices to
check at closed points of S when the closed points are everywhere dense (e.g., S is of finite
type over a field).

Furthermore, suppose f : Z → S is smooth and that S is of finite type over a field k.
In this case it suffices to verify both conditions for geometric points lying over closed points
of S (i.e., we need not even assumeE is relatively perfect in order to get a fiberwise criterion).
This can be seen as follows. First of all we may without loss of generality assume that k is
algebraically closed. Suppose condition (2) holds for all closed points, and let η̄ → S be a
geometric point lying over an arbitrary point η ∈ S. Let Z ↪→ S be the closure of η with the
reduced structure. Replacing S by Z we can assume that S is integral with generic point η,
and after shrinking further on S we may also assume that S is smooth over k. Consider the
complex

(5.1.1) Rf∗RHom(E,E)

on S. The restriction of this complex to η̄ computes Exti(Eη̄, Eη̄), so it suffices to show that
(5.1.1) is in D≥0(S). Since S, and hence also Z is smooth, the complex RHom(E,E) is a
bounded complex on S. Now by standard base change results, we can after further shrinking
arrange that the sheavesRif∗RHom(E,E) are all locally free on S, and that their formation
commute with arbitrary base change on S. In this case by our assumptions for i < 0 these
sheaves must be zero since their fibers over any closed point of S are zero.

Recall from [19, 4.3.1] that an objectE ∈ DZ/S(T ) over some S-scheme T is called simple
if the natural map of algebraic spaces

Gm → A ut(E)

is an isomorphism. By [19, 4.3.2 and 4.3.3], the substack sDZ/S ⊂ DZ/S classifying simple
objects is an open substack, and in particular sDZ/S is an algebraic stack. Moreover, there
is a natural map

π : sDZ/S → sDZ/S
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from sDZ/S to an algebraic space sDZ/S locally of finite presentation over S which real-
izes sDZ/S as a Gm-gerbe.

Fix smooth projective varieties X and Y over a field k. Let FF be the groupoid of
complexes P ∈ D(X × Y ) such that the transform

ΦP : D(X)→ D(Y )

is fully faithful.

L 5.2. – Let P ∈ FF be an object.

(i) The complex P is a simple object of DY (X).
(ii) The map µ̄P : X → sDY obtained by composing the map µP : X → sDY defined by P

with π : sDY → sDY is an open immersion.

R 5.3. – In what follows, we write µP : X → sDY for the morphism defined by
an object P ∈ FF , as in statement (ii).

Proof of 5.2. – For (i) note that since X is smooth the first condition (P has finite Tor-
dimension overX) is automatic. It therefore suffices (using Remark 5.1) to show that for any
geometric point x̄→ X lying over a closed point of X we have

Exti(Px̄, Px̄) = 0

for i < 0 and that the natural map

k → Ext0(Px̄, Px̄)

is an isomorphism, where Px̄ denotes the pullback of P along

x̄× Y → X × Y.

This follows from Proposition 3.5.

To prove (ii) it suffices to show that the map µ̄P is an étale monomorphism. For this it
suffices in turn to show that for distinct closed points x1, x2 ∈ X(k) the objects Px1

and
Px2

are not isomorphic, and that (see [7, IV.17.11.1]) µ̄P induces an isomorphism on tangent
spaces.

To see thatPx1
andPx2

are not isomorphic for x1 6= x2, note that since ΦP is fully faithful,
it yields isomorphisms

ExtiX(k(x1), k(x2))
∼→ ExtiY (Px1

, Px2
)

for all i. Thus, if x1 6= x2 we have that

HomY (Px1
, Px2

) = 0,

so that Px1
6∼= Px2

.

Next we show that µ̄P induces an isomorphism on tangent spaces.

Recall from [19, 3.1.1] the following description of the tangent space to sDY at a point
corresponding to a complex E. First of all since

π : DY → sDY
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is a Gm-gerbe, the tangent space T[E] sDY to sDY at E is given by the set of isomorphism
classes of pairs (E′, σ), where E′ ∈ DY (k[ε]) and σ : E′ ⊗L k → E is an isomorphism.
Tensoring the exact sequence

0→ OY ⊗k (ε)→ OYk[ε] → OY → 0

with E′ we see that a deformation (E′, σ) of E to k[ε] induces a distinguished triangle

E ⊗ (ε) // E′ // E
∂(E′,σ) // E ⊗ (ε)[1].

In this way we obtain a map

(5.3.1) T[E] sDY → Ext1
Yk[ε]

(E, (ε)⊗ E), (E′, σ) 7→ [∂(E′,σ)].

This map is a morphism of k-vector spaces. It is injective as the isomorphism class of (E′, σ)

can be recovered from ∂(E′,σ) by taking a cone of ∂(E′,σ) and rotating the resulting triangle.
The image of (5.3.1) can be described as follows. The usual derived adjunction formula

gives an isomorphism

RHomOYk[ε]
(E, (ε)⊗ E) ' RHomOY (E ⊗k (k ⊗L

k[ε] k), (ε)⊗ E).

Now we have
k ⊗k[ε] k ' ⊕i≥0k[i],

so this gives
Ext1

Yk[ε]
(E, (ε)⊗ E) ' ⊕i≥0 Ext1−i

Y (E, (ε)⊗ E).

Since E is universally gluable this reduces to an exact sequence

0→ Ext1
Y (E, (ε)⊗ E)→ Ext1

Yk[ε]
(E, (ε)⊗ E)→ HomY (E, (ε)⊗ E)→ 0.

As explained in [19, proof of 3.1.1], the image of (5.3.1) is exactly

Ext1
Y (E, (ε)⊗ E) ⊂ Ext1

Yk[ε]
(E, (ε)⊗ E).

Now taking E = Px for a closed point x ∈ X(k), we get by applying the fully faithful
functor ΦP an isomorphism

Ext1
X(k(x), (ε)⊗k k(x))

ΦP // Ext1
Y (Px, (ε)⊗k Px)

' // T[Px] sDY .

On the other hand, applying HomX(−, k(x)) to the short exact sequence

0→ Ix → OX → k(x)→ 0,

where Ix denotes the coherent sheaf of ideals defining x, we get an exact sequence

HomX(OX , k(x))→ HomX(Ix, k(x))→ Ext1
X(k(x), k(x))→ 0.

Since any morphism OX → k(x) factors through k(x), this gives an isomorphism

TxX = Hom(Ix/I
2
x, k(x)) ' Ext1

X(k(x), k(x)).

Putting it all together we find an isomorphism

TxX ' T[Px] sDY .

We leave to the reader the verification that this isomorphism is the map induced by µ̄P ,
thereby completing the proof that µ̄P is étale.
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N 5.4. – Let sDY (X)◦ be the groupoid of morphisms

µ : X → sDY

such that the composed map

X
µ //

µ !!

sDY

��
sDY

is an open immersion.

C 5.5. – The map FF → sDY (X) defined by sending P to µP induces a fully
faithful functor of groupoids

Ξ : FF → sDY (X)◦.

Proof. – Indeed this follows from 5.2 and the observation that the functor Ξ is fully
faithful by the definition of the stack sDY .

R 5.6. – Note that in the above we consider only complexes on X × Y and
morphisms between them, and not the resulting functors between derived categories. Related
to this we mention the observation of Căldăraru that the map HomD(X×Y )(P, P

′) →
Hom(ΦP ,ΦP ′) is not in general an isomorphism.

6. A Torelli theorem in the key of D

Fix K3 surfaces X and Y over an algebraically closed field k.

In this section we prove the following derived category version of the Torelli theorem that
has no characteristic restrictions. It is similar to the classical Torelli theorem in that it specifies
that some kind of “lattice” isomorphism preserves a filtration on an associated linear object.

T 6.1. – If there is a kernel P ∈ D(Y × X) inducing a filtered equivalence
D(Y )→ D(X) (see Paragraph 2.11) then X and Y are isomorphic.

We prove some auxiliary results before attacking the proof. By abuse of notation we will
write Φ for both ΦP and Φ

A∗(−)num,Q

P . Let CX ⊂ Pic(X) (resp. CY ⊂ Pic(Y )) denote the
ample cone of X (resp. Y ).

L 6.2. – In the situation of Theorem 6.1, we may assume that Φ(1, 0, 0) = (1, 0, 0)

and that the induced isometry κ : Pic(Y )→ Pic(X) has one of the following two properties:

I. κ sends CY isomorphically to CX .
II. κ sends CY isomorphically to −CX .
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Proof. – By the assumption that Φ is filtered, we have that Φ(0, 0, 1) = (0, 0, 1) or
(0, 0,−1). Composing with the shift functor F 7→ F [1] if necessary, we may assume that
Φ(0, 0, 1) = (0, 0, 1). Since Φ is an isometry, (1, 0, 0) · (0, 0, 1) = −1, and (1, 0, 0)2 = 0, we
see that there is some b ∈ Pic(X) such that

Φ(1, 0, 0) =

(
1, b,

1

2
b2
)
.

Composing Φ by the twist with −b yields a new Fourier-Mukai transformation sending
(0, 0, 1) to (0, 0, 1) and (1, 0, 0) to (1, 0, 0) (by the Formula 3.10.1). Since
Pic(X) = (0, 0, 1)⊥ ∩ (1, 0, 0)⊥ and similarly for Pic(Y ), we see that such a Φ induces
an isometry Pic(Y )

∼→ Pic(X). Following [27, p. 366] set

VX := {x ∈ Pic(X)R|x2 > 0, 〈x, δ〉 6= 0 for all δ ∈ Pic(X) with δ2 = −2}

and define VY similarly. Then since Φ is an isometry it induces an isomorphism VY → VX . By
results of Ogus [27, Proposition 1.10 and Remark 1.10.9], we know that the ample cone is a
connected component VX , and that the groupR generated by reflections in (−2)-curves and
multiplication by−1 acts simply transitively on the set of connected components of VX , and
similarly for VY . In particular, there is some element ρ : Pic(X) → Pic(X) of this group R
such that the composition ρ◦Φ : Pic(Y )

∼→ Pic(X) induces an isomorphism of ample cones.

We claim that there is a representation ofR as a group of Fourier-Mukai autoequivalences
of X whose induced action on A∗(X)num = Z⊕Pic(X)⊕Z is equal to the standard action
on Pic(X) and multipliciation by ±1 on the outer summands (with the same sign for both
factors). This will clearly complete the proof of the Lemma.

To define this embedding ofR, supposeC ⊂ X is a (−2)-curve. The structure sheaf OC is
a spherical object of D(X) (see Definition 3.12), and the spherical twistTOC : D(X)

∼→ D(X)

acts on H(X) by reflecting in the Mukai vector (0, C, 1). Composing this twist with the
tensoring equivalence ⊗O(C) : D(X) → D(X) gives a Fourier-Mukai equivalence whose
induced action on A∗(X)num = Z⊕Pic(X)⊕Z is the identity on the outer summands and
the reflection in C on Pic(X). Similarly, the shift isomorphism F 7→ F [1] : D(X)→ D(X)

acts by −1 on A∗(X)num. This establishes the claim.

We will assume that our kernel P satisfies the conclusions of Lemma 6.2.

P 6.3. – There is an isomorphism of infinitesimal deformation functors δ :

DefX → DefY such that

1. δ−1(Def(Y,L)) = Def(X,Φ(L)) for all L ∈ Pic(Y );
2. for each augmented Artinian W -algebra W → A and each

(XA → A) ∈ Def(X,HX)(A),

there is an object

PA ∈ D(XA ×A δ(XA))

reducing to P on X × Y .
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Proof. – Given an augmented ArtinianW -algebraW → A and a deformationXA → A,
let DA denote the stack of unobstructed universally gluable relatively perfect complexes with
Mukai vector (0, 0, 1) on XA. By Corollary 5.5, the kernel P defines an open immersion
Y ↪→ Dk such that the fiber product Gm-gerbe

Y := Y ×Dk Dk → Y

is trivial (the complex P defines a section of this gerbe).
Since Y → DA⊗ k is an open immersion and DA is smooth over A, we see that the

open subscheme YA of DA supported on Y gives a flat deformation of Y over A, carrying
a Gm-gerbe YA → YA. Write PA for the perfect complex of YA × XA-twisted sheaves
corresponding to the natural inclusion YA → DA. Write π : YA ×XA → YA ×XA.

P 6.4. – With the preceding notation, there is an invertible sheaf L on
YA ×XA such that the complex

PA := R(π∗PA⊗L ∨A ) ∈ D(YA ×A XA)

satisfies
Lι∗PA ∼= P ∈ D(Y ×X),

where ι : Y ×X ↪→ YA ×A XA is the natural inclusion.

Proof. – Consider the complex Q := P∨
A ⊗pr∗2 ωXA [2]. Pulling back by the morphism

g : Y ×X → YA ×A XA

corresponding to P yields the equality

Lg∗Q = P∨.

It follows that
R(pr1)∗(Q)

is a perfect complex on YA whose pullback via the section Y → Y is Φ−1(OX). Since

Φ(1, 0, 1) = (1, 0, 1),

this complex has rank 1 and

Lg∗ det R(pr1)∗(Q) = det R(pr1)∗(P
∨) ∼= OY .

It follows that
P ∼= P ⊗det R(pr1)∗(Q).

Setting
L = det R(pr1)∗(Q)∨

completes the proof.

We can now prove part (ii) of Proposition 6.3: the scheme YA defined before Proposi-
tion 6.4 gives a point of DefY (A), giving the functor

δ : DefX → DefY ,

and Proposition 6.4 shows that P lifts to

PA ∈ D(YA ×A XA),
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as desired.

A symmetric construction starting with the inverse kernel P∨ yields a map

δ′ : DefY → DefX

and lifts
P∨A ∈ D(δ′(YA)× YA).

Composing the two yields an endomorphism

η : DefX → DefX

and, for each A-valued point of DefX , lifts of

P∨ ◦ P

to a complex
QA ∈ D(XA × η(XA)).

But the adjunction map yields a quasi-isomorphism

O∆X

∼→ P∨ ◦ P,

so QA is a complex that reduces to the sheaf O∆X
via the identification

η(XA)⊗ k ∼→ X.

It follows that QA is the graph of an isomorphism

XA
∼→ η(XA),

showing that δ′ ◦ δ is an automorphism of DefX , whence δ is an isomorphism.

Now suppose YA lies in Def(Y,L). Applying P∨A yields a complex CA on XA whose deter-
minant restricts to Φ(L) on X. It follows that XA lies in Def(X,Φ(L)), as desired.

This completes the proof of Proposition 6.3.

Proof of Theorem 6.1. – Choose ample invertible sheaves HX and HY that are not divis-
ible by p such that eitherHX = Φ(HY ) (case I) orHX = −Φ(HY ) (case II). Deligne showed
in [6] that there is a projective lift (XV , HXV ) of (X,HX) over a finite extension V of the
Witt vectors W (k). For every n ≥ let Vn denote the quotient of V by the n-th power of the
maximal ideal, and let K denote the field of fractions of V .

By Proposition 6.3, for each n there is a polarized lift (Yn, HYn) of (Y,HY ) over Vn and
a complex

Pn ∈ D(Yn ×Xn)

lifting P . By the Grothendieck Existence Theorem, the polarized formal scheme (Yn, HYn)

is algebraizable, so that there is a lift (YV , HYV ) whose formal completion is (Yn, HYn).

By the Grothendieck Existence Theorem for perfect complexes [19, Proposition 3.6.1], the
system (Pn) of complexes is the formal completion of a perfect complex

PV ∈ D(YV ×V XV ).

In particular, PV lifts P and Nakayama’s Lemma shows that the adjunction maps

∆∗OX → PV ◦ P∨V
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and

P∨V ◦ PV → ∆∗OY

are quasi-isomorphisms. It follows that for any field extension K ′/K, the generic fiber com-
plex

PK′ ∈ D(YK′ ×K′ XK′)

induces a Fourier-Mukai equivalence

Φ : D(YK′)→ D(XK′),

and compatibility of Φ with reduction to k shows that Φ(0, 0, 1) = (0, 0, 1). Choosing an
embedding K ↪→ C yields a filtered Fourier-Mukai equivalence

D(YV ⊗C)
∼→ D(XV ⊗C).

Since Φ is filtered and induces an isometry of integral Mukai lattices, Φ induces a Hodge
isometry

H2(YV ⊗C,Z)
∼→ H2(XV ⊗C,Z)

(see e.g. part (i) of the proof [11, Proposition 10.10]), so that YV ⊗C and XV ⊗C are
isomorphic. Spreading out, we find a finite extension V ′ ⊃ V and isomorphisms of the
generic fibers XK′

∼→ YK′ . By the following lemma it follows that X and Y are isomorphic,
as desired.

L 6.5. – Let Y and Z be relative K3 surfaces over a discrete valuation ring R. If the
generic fibers of Y and Z are isomorphic then so are the special fibers.

Proof. – Applying [23, Theorem 1], any isomorphism of generic fibers yields a birational
isomorphism of the special fibers. Since K3 surfaces are minimal, this implies that the special
fibers are in fact isomorphic, as desired.

Note that we are not asserting that isomorphisms extend, only that isomorphy extends!

7. Lifting kernels using the Mukai isocrystals

Let k be a perfect field of characteristic p > 0, let W be the ring of Witt vectors of k, and
let K be the field of fractions of W .

Fix K3 surfaces X and Y over k with lifts XW and YW over W . The Hodge filtrations
on the de Rham cohomology of XW /W and YW /W give subspaces Fil2X ⊂ H2(X/K) ⊂
H̃(X/K) and Fil2Y ⊂ H2(Y/K) ⊂ H̃(Y/K), where H̃(X/K) and H̃(Y/K) denote the
crystalline realizations of the Mukai motives.

T 7.1. – Suppose P ∈ D(X × Y ) is a kernel whose associated functor
Φ : D(X)→ D(Y ) is fully faithful. If

ΦH̃ : H̃(X/K)→ H̃(Y/K)

sends Fil2X to Fil2Y then P lifts to a perfect complex PW ∈ D(XW ×W YW ).
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Proof. – We claim that it suffices to prove the result under the assumption that
Φ(0, 0, 1) = (0, 0, 1). Indeed, fix a W -ample divisor β on YW . Suppose

Φ(0, 0, 1) = (r, `, s)

with r > 0. Since Φ preserves the Hodge filtration we see that ` ∈ Fil1Y H2(Y/K), whence
` is unobstructed on Y [26, 1.12]. Similarly,

Φ(1, 0, 0) = (r′, `′, s′)

such that
` · `′ − rs′ − r′s = 1,

and `′ must also lie in Fil1Y H2
cris(Y/K), so that `′ lifts over YW . Thus, the moduli

space MY (r, `, s) lifts to a relative moduli space MYW (r, `, s), and there is a tautologi-
cal sheaf EW on MYW (r, `, s) ×W Y defining a relative FM equivalence. This induces an
isometry of F -isocrystals

ΦE : H̃(MY (r, `, s)/K)
∼→ H̃(Y/K)

that sends (0, 0, 1) to (r, `, s). The composition Φ−1
E ◦ ΦP yields a FM equivalence

ΦQ : D(X)→ D(MY (v))

sending (0, 0, 1) to (0, 0, 1) and preserving the Hodge filtrations on Mukai isocrystals. In
addition, since E lifts to EW , we see that P lifts if and only if Q lifts. Thus, we may assume
that Φ(0, 0, 1) = (0, 0, 1), as claimed.

Since Φ is an isometry, it follows that

Φ−1(1, 0, 0) =

(
1, b,

1

2
b2
)

for some b ∈ Pic(X). By Corollary 5.5, the kernel P corresponds to a morphism

µP : X → sDY

whose image in sDY is an open immersion. More concretely, if P denotes the universal
complex on sDY × Y , we have that

P = L(µP × id)∗P.

Write
M = X ×sDY sDY ,

so that µP defines morphisms
X →M → X

making X a Gm-torsor over M . The associated invertible sheaf is M -twisted.

Since sDY is smooth over W , there is a canonical formal lift X of X over W , with a
corresponding formal gerbe G → X lifting M such that there is a perfect complex of coherent
twisted sheaves P ∈ D(G × ŶW ) lifting P|M . (Indeed, X is just the open subspace of the
formal completion ŝDY supported on µ(X).)

The complex R(pr1)∗P is an invertible G -twisted sheaf, defining an equivalence

D(X)
∼→ Dtw(G ).
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Let
Q ∈ D(X× ŶW )

be the kernel giving the composition

D(X)
∼→ Dtw(G )

∼→ D(ŶW ).

Since the class of R(pr1)∗P might differ from the twisted invertible sheaf associated to
X →M , we have that the restriction

Q ∈ D(X × Y )

differs from P by tensoring with an invertible sheaf L pulled back from X. One can check
that ΦQ(1, 0, 1) = (1, 0, 1). Since b is the unique invertible sheaf L onX such that tensoring
with L sends (

1, b,
1

2
b2
)

to (1, 0, 0),

we see that
Q ∼= P ⊗pr∗1 OX(b).

We have that v(b) = Φ−1
P (v(OY )) and Φ respects the Hodge filtrations on the Mukai

isocrystals; since OY is unobstructed on YW , we therefore have that

b ∈ Fil1X H2
cris(X/K),

whence b is unobstructed on XW . The complex

P̂W := Q⊗pr∗1 OX(−b) ∈ D(X× ŶW )

gives a formal lift of P .
Finally, by construction the isotropic subspace

F ⊂ H2(X/K)

parametrizing the formal lift X is Φ−1(Fil2 H2
Y /K)). Since

Φ−1(Fil2 H2
Y /K)) = Fil2X H2(X/K),

we conclude that
X = X̂W .

Applying the Grothendieck Existence Theorem for perfect complexes as in [19], we get the
desired lift PW ∈ D(XW ×W YW ).

R 7.2. – If we had an integral version of the Mukai isocrystal and an integral
version of our results then we could produce the liftXW from YW via sDYW . Unfortunately,
the Tate twist involved in the formation of H̃(Y/K) precludes a naïve extension to integral
coefficients.

R 7.3. – Taking the cycle Z := ch(P )
√

TdX×Y giving the action on cohomol-
ogy, we can see that Theorem 7.1 gives a special case of the variational crystalline Hodge
conjecture (see e.g. [24, Conjecture 9.2]): the fact that ΦP preserves the Hodge filtrations on
the Mukai isocrystals means that

[Z] ∈ Fil2 H4(X × Y/K).
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Lifting the kernelP toPW lifts the cycle, confirming the conjecture in this case. This could be
interpreted as a kind of (weak) “variational crystalline version” of Mukai’s original results
on the Mukai-Hodge structure [25].

8. Every FM partner is a moduli space of sheaves

In this section we prove statement (1) in Theorem 1.1
Fix K3 surfaces X and Y over an algebraically closed field of characteristic exponent p.

Suppose P is the kernel of a Fourier-Mukai equivalence D(Y )→ D(X). We now show that
Y is isomorphic to a moduli space of sheaves on X.

Let v = (r, LX , s) = Φ(0, 0, 1) be the Mukai vector of a fiber Py (hence all fibers).

L 8.1. – We may assume that r is positive and prime to p and that LX is very ample.

Proof. – First, if either r or s is not divisible by p then we get the lemma by possibly
composing with a shift and the spherical twist corresponding to OX , which up to sign
interchanges r and s (see [11, Example 10.9 (ii)]). So we will assume that both r and s are
divisible by p and show that we can compose with an autoequivalence of X to ensure that
r is not divisible by p.

Since Φ induces an isometry of numerical Chow groups, we have that there is some other
Mukai vector (r′, `, s′) such that

(r, LX , s)(r
′, `, s′) = ` · LX − rs′ − r′s = 1.

Thus, since both r and s are divisible by p we have that ` · LX is prime to p. Consider the
equivalence D(X) → D(X) given by tensoring with `⊗n for an integer n. This sends the
Mukai vector (r, LX , s) to

(r, LX + rn`, s+ n` · LX +
n2

2
`2r).

It is elementary that for some n the last component will be non-zero modulo p. After
composing with the spherical twist associated to OX and shifting the complex we can swap
the first and last components and thus find that r is not divisible by p, as desired.

Changing the sign of r is accomplished by composing with a shift. MakingLX very ample
is accomplished by composing with an appropriate twist functor.

As discussed in Section 3.15, we can consider the moduli space MX(v) of sheaves on X
with Mukai vector v (with respect to the polarizationLX ofX), and this is again a K3 surface
which is a FM partner of X.

P 8.2. – With the notation from the beginning of this section, there is an
isomorphism Y

∼→MX(v).

Proof. – Consider the composition of the equivalences D(Y ) → D(X) → D(MX(v))

induced by the original equivalence and the equivalence defined by the universal bundle
on X ×MX(v). By assumption we have that D(Y )→ D(MX(v)) sends (0, 0, 1) to (0, 0, 1),
so it is filtered. Theorem 6.1 implies that Y ∼= MX(v), as desired.
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This completes the proof of statement (1) in Theorem 1.1. For later use we conclude
this section with some observations about the choice of v for which Y ∼→ MX(v), which
also makes use of the fact that r in the above is prime to p. Suppose that the equivalence
Φ : D(Y ) → D(X) is given by P on Y × X for which the Mukai vector v = (r, LX , s)

of a fiber Py has the additional property that r is positive and prime to p, and that LX is
ample (as can be arranged by 8.1). If M is any line bundle, then the composition of Φ with⊗
M : D(X)→ D(X) is given by a complex on Y ×X with Mukai vector w given by (see

3.10.1)

(8.2.1) w := (r, LX + rc1(M), s+ LX · c1(M) + rc1(M)2/2).

From the proof of 8.2 it follows that Y 'MX(w) for any such w for which LX + rc1(M) is
ample.

L 8.3. – For any subgroup Γ ⊂ NS(X) of non-maximal rank, there exists a primitive
Mukai vector v = (r, `, s) such that the following hold:

1. Y ' MX(v).
2. The map v · (∗) : A∗(X)num → Z is surjective.
3. ` is an ample class.
4. ` 6∈ pNS(X) + Γ.

Proof. – Start with any primitive Mukai vector v = (r, `, s) so that (1) and (2) hold. Now
observe that conditions (1) and (2) are preserved if we replace v by w as in 8.2.1.

To prove the lemma, it therefore suffices to show that we can add a suitable ample class
to ` to ensure conditions (3) and (4). This is immediate since every element of

NS(X)/(pNS(X) + Γ)

can be represented by an ample class.

9. Finiteness results

Fix a K3 surface X over the algebraically closed field k. In this section we prove state-
ments (2) and (3) in 1.1.

First consider the case when the Picard number ofX is≤ 4, in which case we need to show
that X has finitely many FM-partners.

If X has finite height then by [22, 4.2] there is a lift XW of X over W such that the
restriction map Pic(XW ) → Pic(X) is an isomorphism. Since every partner of X has the
form MX(v) for some Mukai vector v, we see that any partner of X is the specialization of
a partner of the geometric generic fiber. But the generic fiber has characteristic 0, whence it
has only finitely many FM partners by the Lefschetz principle and the known result over C

(see [3]). Since specializations of K3 surfaces are unique by Lemma 6.5, we see that X has
only finitely many partners.

If X is supersingular (1) then there is a flat deformation Xt of X over Spec k[[t]] such
that the generic fiber has finite height and the restriction map Pic(Xt) → Pic(X) is an

(1) Granting the recent results showing that any supersingular K3 surface is Shioda supersingular [5, 22, 31] (recall
that we are assuming p > 2), this case never occurs.
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isomorphism. Indeed, choosing generators g1, . . . , gn for Pic(X), each gi defines a Cartier
divisor Gi in DefX . Moreover, the supersingular locus of DefX has dimension 9 by [28,
Proposition 14]. Thus, a generic point of the intersection of the Gi lies outside the supersin-
gular locus, and we are done since we can dominate any local ring by k[[t]]. The argument of
the previous paragraph then implies the result for X.

Next we consider the case when X has Picard number ≥ 5. In this case, as explained at
the beginning of [22, Section 3],X is Shioda-supersingular and has Picard number 22. In this
case we will prove that in fact X has a unique FM partner (namely itself).

This we again do by lifting to characteristic 0. The key result is [10, Corollary 2.7 (2)],
which implies that if K is an algebraically closed field of characteristic 0 and if Z/K is a
K3 surface with Picard number≥ 3 and square-free discriminant, then any FM partner of Z
is isomorphic to Z.

We use this by showing that if X/k is Shioda-supersingular and Y is a FM partner of X,
then we can lift the pair (X,Y ) to a FM pair ( X , Y) over the ring of Witt vectors W (k)

such that the Picard lattice of the geometric generic fiber of X has rank ≥ 3 and square-
free discriminant. Then by the result of [10] just mentioned, we conclude that the geometric
generic fibers of X and Y are isomorphic whence X and Y are isomorphic.

So fix such a pair (X,Y ), and let us construct the desired lifting ( X , Y).

Let N be the Picard lattice of X. By our assumption that X is supersingular, N has the
following properties (see for example [27, 1.7]):

1. N has rank 22.
2. Let N∨ denote the dual of N , and let N ↪→ N∨ be the inclusion defined by the

nondegenerate pairing on N . Then the quotient N∨/N is annihilated by p and has
dimension as a Fp-vector space 2σ0 for some integer σ0 between 1 and 10 (σ0 is the
Artin invariant).

Let F ⊂ N be a rank 2 sublattice with N/F torsion free. Applying Lemma 8.3 with
Γ = F , we can assume that Y = MX(v) with v = (r, `, s) for ` ∈ N with nonzero
image in N/(pN + F ). Let E be the saturation of F + Z` in N . By construction, the map
F/pF → F∨/pF∨ = (F/pF )∨ is an isomorphism.

There is a natural diagram

E //

��

N

��
E∨

��

N∨oo

��
E∨/E N∨/Noo

in which all four arrows in the bottom square are surjective. In particular, E∨/E is an
Fp-vector space. Also if Q denotes the quotient E/F , then Q has rank 1 and we have an
exact sequence

0→ Q∨/(Q∨ ∩ E)→ E∨/E → F∨/(Im(E → F∨))→ 0.
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Since the quotient F∨/F is already 0, this shows that E∨/E is isomorphic to 0 or Z/pZ. In
particular, E has rank 3 and square-free discriminant.

As explained in the appendix (in particular A.1), there is a codimension at most 3 formal
closed subscheme of the universal deformation space D := Spf W [[t1, . . . , t20]] of X over
which E deforms. The universal deformation is algebraizable (as E contains an ample class)
and a geometric generic fiber is a K3 surface over an algebraically closed field of character-
istic 0 with Picard lattice isomorphic to E. Let

X → SpecR

be a relative K3 surface with special fiber X and geometric generic Picard lattice E. Write

M → SpecR

for the stack of sheaves with Mukai vector (r, `, s) stable with respect to a sufficiently general
polarization. We know that M is a µr-gerbe over a relative K3 surface

M → SpecR,

and by assumption we have that the closed fiber of M is isomorphic to Y × Bµr. Since r is
relatively prime to p, we have that the Brauer class associated to the gerbe M → M is trivial.
In particular, there is an invertible M -twisted sheaf L on M (see [21] for basic results on
twisted sheaves).

Now let V be the universal twisted sheaf on M ×R X and V the tautological sheaf
on Y ×X. Write

π : M × X → M × X
for the natural projection and let

W := π∗ (V ⊗L ∨) .

There is an invertible sheaf N on Y such that

W |Y×X ∼= V ⊗ pr∗1 N ,

the kernel of another equivalence between D(X) and D(Y ). It follows from the adjunction
argument in the proof of Proposition 6.3 that W also gives a Fourier-Mukai equivalence
between the geometric generic fibers of M and X over R. By [10], we have that Mη and Xη
are isomorphic. By specialization (using Lemma 6.5), we see that Y ∼= X, as desired.

This completes the proof of 1.1.

Appendix

Deformations of K3 surfaces with families of invertible sheaves

In this appendix, we prove the following result.

P A.1. – Let X be a K3 surface over an algebraically closed field k of charac-
teristic 6= 2, and letE ⊂ Pic(X) be a saturated subgroup containing an ample divisor. Suppose
one of the following conditions hold:

(i) k has characteristic 0.
(ii) X has finite height.

(iii) X is supersingular, the characteristic of k is 6= 2, and the rank of E is ≤ 10.
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Then there exist

– a complete dvr R with fraction field K of characteristic 0 and residue field κ;
– a relative K3 surface X → SpecR;
– an inclusion k → κ and an isomorphism X ⊗k κ

∼→ Xκ;
– an isomorphism E → Pic( X) specializing to the given inclusion E ⊂ Pic(X) whose

restriction E → Pic( XK) is an isomorphism for any choice of algebraic closure K ⊂ K.

In other words, there is a lift of X to characteristic 0 whose geometric generic fiber has Picard
group exactly E.

Cases (i) and (ii) are already shown in [22, 4.2], so the remainder of the appendix is devoted
to the supersingular case (iii).

Let (L1, . . . , Lm) be a basis for E with L1 ample (which we may assume without loss of
generality). We can define a moduli space overW that contains (X,L1, . . . , Lm) as a k-point:

D A.2. – Let M → SpecW be the stack whose objects over a W -scheme S
are tuples ( X ,L1, . . . ,Lm), where π : X → S is a relative K3 surface and L1, . . . ,Lm are
invertible sheaves such that L1 is π-ample.

L A.3. – The stack M is an Artin stack locally of finite type over W .

Sketch of proof. – Let N be the stack of polarized K3 surfaces, whose objects over S are
pairs ( X ,L1) with L1 an ample invertible sheaf. We know that N has a smooth covering by
open subschemes of Hilbert schemes, hence is an Artin stack locally of finite type over W .
Writing X → N for the universal relative K3 surface, the forgetful morphism M → N is
given by the m− 1-fold fiber product

PicX /N ×N · · · ×N PicX /N .

Since the Picard stack of a relative K3 surface is an Artin stack locally of finite type, we
conclude the same for M .

The surface X together with the generators (L1, . . . , Lm) yield an object of Mk.

L A.4. – To prove Proposition A.1, it suffices to show the existence of a chain of
objects ξ0, . . . , ξN of M such that ξ0 = (X,L1, . . . , Lm), each ξi is a specialization of ξi+1

along some local ring, and ξN has Picard group E.

Proof. – Indeed, one then finds that ξ0 is in the closure N of the residual gerbe of M

supported at ξN . Choosing any smooth cover of N , we find that a point over ξN will
specialize to a point over ξ0. Since N is locally Noetherian, we can then dominate the local
ring by a dvr with the given properties, as desired.

In other words, it suffices to prove the result in several generizations.

R A.5. – This method only works because the stack M is globally defined and
has a nice local structure. A proof of Proposition A.1 using purely formal methods is
significantly more complex than the global proof offered here.

In light of cases (i) and (ii) of Proposition A.1 which are already known, to complete the
proof of A.1 in the supersingular case it suffices to prove the following:
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L A.6. – If k has positive characteristic, the object (X,L1, . . . , Lm), with m ≤ 10,
is the specialization of an object (X ′, L′1, . . . , L

′
m) withX ′ a K3 surface of finite height defined

over an extension of k.

Proof. – Let DX = Spec k[[x1, . . . , x20]] denote the formal universal deformation space
of X over k. As observed in [6], each invertible sheaf Li determines a divisor in DX . In
particular, the complete local ring of M ⊗ k at (X,L1, . . . , Lm) is determined bym equations
f1, . . . , fm. Moreover, since L1 is ample, the universal deformation ( X , L1, . . . , Lm) of the
tuple (X,L1, . . . , Lm) over

Spf k[[x1, . . . , x20]]/(f1, . . . , fm)

is algebraizable.
We know by [28, Proposition 14(2)] that the closed subscheme of deformations of X

that have infinite height has dimension 9. Thus, since E has rank at most 10 we see that
T := Spec k[[x1, . . . , x20]]/(f1, . . . , fm) has dimension at least 10 and cannot lie entirely in
this closed subscheme. The generic point of T parametrizes a tuple with X ′ of finite height,
as desired.

This completes the proof of A.1.
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