On étudie les problèmes aux limites pour les équations et systèmes elliptiques dégénérés avec données au bord de carré intégrable. La dégénérescence est contrôlée par un poids . On obtient représentation et trace pour les solutions dans des classes appropriées, des résultats de perturbation pour la résolubilité, et résolubilité pour certaines situations. La méthode de travaux antérieurs par les deux premiers auteurs est adaptée à ces dégénérescences une fois démontrée une estimation quadratique et nous améliorons même certains résultats dans le cas non-dégénéré. La preuve de cette estimation quadratique ne se déduit pas en revanche de résultats antérieurs et est la partie centrale de l'article.
We study boundary value problems for degenerate elliptic equations and systems with square integrable boundary data. We can allow for degeneracies in the form of an weight. We obtain representations and boundary traces for solutions in appropriate classes, perturbation results for solvability and solvability in some situations. The technology of earlier works of the first two authors can be adapted to the weighted setting once the needed quadratic estimate is established and we even improve some results in the unweighted setting. The proof of this quadratic estimate does not follow from earlier results on the topic and is the core of the article.
DOI : 10.24033/asens.2263
Keywords: Littlewood-Paley estimates, functional calculus, boundary value problems, second order elliptic equations and systems, weighted norm inequalities.
Mot clés : Estimées de Littlewood-Paley, calcul fonctionnel, problèmes aux limites, équations et systèmes elliptiques d'ordre deux, inégalités à poids.
@article{ASENS_2015__48_4_951_0, author = {Auscher, Pascal and Ros\'en, Andreas and Rule, David}, title = {Boundary value problems for degenerate elliptic equations and systems}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {951--1000}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {4}, year = {2015}, doi = {10.24033/asens.2263}, mrnumber = {3377070}, zbl = {1328.35049}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2263/} }
TY - JOUR AU - Auscher, Pascal AU - Rosén, Andreas AU - Rule, David TI - Boundary value problems for degenerate elliptic equations and systems JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 951 EP - 1000 VL - 48 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2263/ DO - 10.24033/asens.2263 LA - en ID - ASENS_2015__48_4_951_0 ER -
%0 Journal Article %A Auscher, Pascal %A Rosén, Andreas %A Rule, David %T Boundary value problems for degenerate elliptic equations and systems %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 951-1000 %V 48 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2263/ %R 10.24033/asens.2263 %G en %F ASENS_2015__48_4_951_0
Auscher, Pascal; Rosén, Andreas; Rule, David. Boundary value problems for degenerate elliptic equations and systems. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 951-1000. doi : 10.24033/asens.2263. http://www.numdam.org/articles/10.24033/asens.2263/
Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I, Invent. Math., Volume 184 (2011), pp. 47-115 (ISSN: 0020-9910) | DOI | MR | Zbl
Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems, J. Funct. Anal., Volume 255 (2008), pp. 374-448 (ISSN: 0022-1236) | DOI | MR | Zbl
Solvability of elliptic systems with square integrable boundary data, Ark. Mat., Volume 48 (2009), pp. 253-287 | DOI | MR | Zbl
On a quadratic estimate related to the Kato conjecture and boundary value problems, Harmonic Analysis and Partial Differential Equations (Contemporary Mathematics), Volume 505, Amer. Math. Soc. (2010), pp. 105-129 | DOI | MR | Zbl
, Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995) (Proc. Centre Math. Appl. Austral. Nat. Univ.), Volume 34, Austral. Nat. Univ., Canberra, 1996, pp. 77-136 | MR | Zbl
The solution of the Kato square root problem for second order elliptic operators on , Ann. of Math., Volume 156 (2002), pp. 633-654 (ISSN: 0003-486X) | DOI | MR | Zbl
Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math., Volume 163 (2006), pp. 455-497 (ISSN: 0020-9910) | DOI | MR | Zbl
On solvability of BVPs for elliptic systems, J. Fourier Anal. Appl., Volume 19 (2013), pp. 478-494 (ISSN: 1069-5869) | DOI | MR | Zbl
Weighted maximal regularity estimates and solvability of nonsmooth elliptic systems, II, Anal. PDE, Volume 5 (2012), pp. 983-1061 (ISSN: 2157-5045) | DOI | MR | Zbl
Astérisque, Astérisque, 249, Soc. Math. France, 1998 (ISSN: 0303-1179) | Numdam | MR | Zbl
Real interpolation of Sobolev spaces, Math. Scand., Volume 105 (2009), pp. 235-264 (ISSN: 0025-5521) | DOI | MR | Zbl
Quadratic estimates for perturbed Dirac type operators on doubling measure metric spaces, Proceedings of the AMSI International Conference on Harmonic Analysis and Applications, Proc. Centre Math. Appl. Austral. Nat. Univ. (2011), pp. 1-21 | MR | Zbl
Wiener criterion and potential estimates for obstacle problems relative to degenerate elliptic operators, Ann. Mat. Pura Appl., Volume 159 (1991), pp. 255-281 (ISSN: 0003-4622) | DOI | MR | Zbl
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1245-1260 (ISSN: 0360-5302) | DOI | MR | Zbl
The Kato problem for operators with weighted ellipticity, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 4727-4756 (ISSN: 0002-9947) | DOI | MR | Zbl
Boundary value problems for second order elliptic operators satisfying a Carleson condition (preprint arXiv:1301.0426 ) | MR
Elliptic equations in the plane satisfying a Carleson measure condition, Rev. Mat. Iberoam., Volume 26 (2010), pp. 1013-1034 (ISSN: 0213-2230) | DOI | MR | Zbl
Maximal and singular integral operators via Fourier transform estimates, Invent. Math., Volume 84 (1986), pp. 541-561 (ISSN: 0020-9910) | DOI | MR | Zbl
The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), Volume 32 (1982), pp. 151-182 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (Wadsworth Math. Ser.), Wadsworth, Belmont, CA, 1983, pp. 577-589 | MR | Zbl
The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, Volume 7 (1982), pp. 77-116 (ISSN: 0360-5302) | DOI | MR | Zbl
Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 14 (1987), pp. 527-568 (ISSN: 0391-173X) | Numdam | MR | Zbl
, Pure and Applied Mathematics, 96, Academic Press, Inc., New York-London, 1981, 467 pages (ISBN: 0-12-276150-2) | MR | Zbl
, North-Holland Mathematics Studies, 116, North-Holland Publishing Co., Amsterdam, 1985, 604 pages (ISBN: 0-444-87804-1) | MR | Zbl
, Pearson Education, Inc., Upper Saddle River, NJ, 2004, 931 pages (ISBN: 0-13-035399-X) |Sobolev met Poincaré, Mem. Amer. Math. Soc., Volume 145 (2000) (ISSN: 0065-9266) | DOI | MR | Zbl
Approximate and exact extensions of Lebesgue functions (preprint arXiv:1405.2153 )
On the Carleson duality, Ark. Mat., Volume 51 (2013), pp. 293-313 (ISSN: 0004-2080) | DOI | MR | Zbl
Weighted tent spaces with Whitney averages: factorization, interpolation and duality (preprint arXiv:1303.5982 ) | MR
The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math., Volume 175 (2012), pp. 1473-1506 (ISSN: 0003-486X) | DOI | MR | Zbl
, Die Grund. Math. Wiss., Band 132, Springer New York, Inc., New York, 1966, 592 pages | MR | Zbl
The Neumann problem for elliptic equations with nonsmooth coefficients, Invent. Math., Volume 113 (1993), pp. 447-509 (ISSN: 0020-9910) | DOI | MR | Zbl
, Actualités Mathématiques, Hermann, Paris, 1990, 215 pages (ISBN: 2-7056-6125-0) | MR | Zbl
, Harmonic analysis and partial differential equations (Contemp. Math.), Volume 612, Amer. Math. Soc., Providence, RI, 2014, pp. 163-178 | DOI | MR | Zbl
Spectral properties of linear operators in interpolation families of Banach spaces, Mat. Issled., Volume 9 (1974) (ISSN: 0542-9994) | MR | Zbl
Cité par Sources :