Mori cones of holomorphic symplectic varieties of K3 type
[Cônes de Mori des variétés symplectiques holomorphes de type K3]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 941-950.

On détermine les cônes de Mori des variétés symplectiques holomorphes qui se déforment au schéma de Hilbert de points sur une surface K3. Notre description est donnée en termes de structure de Hodge élargie de Markman.

We determine the Mori cone of holomorphic symplectic varieties deformation equivalent to the punctual Hilbert scheme on a K3 surface. Our description is given in terms of Markman's extended Hodge lattice.

Publié le :
DOI : 10.24033/asens.2262
Classification : 14E30; 14C20, 53C26, 14J28, 14D07.
Keywords: Mori cone, ample cone, holomorphic symplectic varieties, K3 surfaces
Mot clés : Cône de Mori, cône ample, variétés symplectiques holomorphes, surfaces K3
@article{ASENS_2015__48_4_941_0,
     author = {Bayer, Arend and Hassett, Brendan and Tschinkel, Yuri},
     title = {Mori cones of holomorphic symplectic varieties of {K3} type},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {941--950},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {4},
     year = {2015},
     doi = {10.24033/asens.2262},
     mrnumber = {3377069},
     zbl = {1375.14124},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2262/}
}
TY  - JOUR
AU  - Bayer, Arend
AU  - Hassett, Brendan
AU  - Tschinkel, Yuri
TI  - Mori cones of holomorphic symplectic varieties of K3 type
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 941
EP  - 950
VL  - 48
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2262/
DO  - 10.24033/asens.2262
LA  - en
ID  - ASENS_2015__48_4_941_0
ER  - 
%0 Journal Article
%A Bayer, Arend
%A Hassett, Brendan
%A Tschinkel, Yuri
%T Mori cones of holomorphic symplectic varieties of K3 type
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 941-950
%V 48
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2262/
%R 10.24033/asens.2262
%G en
%F ASENS_2015__48_4_941_0
Bayer, Arend; Hassett, Brendan; Tschinkel, Yuri. Mori cones of holomorphic symplectic varieties of K3 type. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 941-950. doi : 10.24033/asens.2262. http://www.numdam.org/articles/10.24033/asens.2262/

Arcara, D.; Bertram, A.; Coskun, I.; Huizenga, J. W. The minimal model program for the Hilbert scheme of points on 2 and Bridgeland stability, Adv. Math., Volume 235 (2013), pp. 580-626 (ISSN: 0001-8708) | DOI | MR | Zbl

Amerik, E.; Verbitsky, M. Rational curves on hyperkähler manifolds (preprint arXiv:1401.0479 ) | MR

Bertram, A.; Coskun, I., Birational geometry, rational curves, and arithmetic, Springer, New York, 2013, pp. 15-55 | DOI | MR | Zbl

Bakker, B.; Jorza, A. Lagrangian 4-planes in holomorphic symplectic varieties of K3[4]-type, Cent. Eur. J. Math., Volume 12 (2014), pp. 952-975 (ISSN: 1895-1074) | DOI | MR | Zbl

Bayer, A.; Macrì, E. MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math., Volume 198 (2014), pp. 505-590 (ISSN: 0020-9910) | DOI | MR | Zbl

Bayer, A.; Macrì, E.; Toda, Y. Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities, J. Algebraic Geom., Volume 23 (2014), pp. 117-163 (ISSN: 1056-3911) | DOI | MR | Zbl

Bridgeland, T. Stability conditions on triangulated categories, Ann. of Math., Volume 166 (2007), pp. 317-345 (ISSN: 0003-486X) | DOI | MR | Zbl

Bridgeland, T. Stability conditions on K3 surfaces, Duke Math. J., Volume 141 (2008), pp. 241-291 (ISSN: 0012-7094) | DOI | MR | Zbl

Coskun, I.; Huizenga, J. W. Interpolation, Bridgeland stability and monomial schemes in the plane, J. Math. Pures Appl., Volume 102 (2014), pp. 930-971 (ISSN: 0021-7824) | DOI | MR | Zbl

Cho, K.; Miyaoka, Y.; Shepherd-Barron, N. I., Higher dimensional birational geometry (Kyoto, 1997) (Adv. Stud. Pure Math.), Volume 35, Math. Soc. Japan, Tokyo, 2002, pp. 1-88 | MR | Zbl

Harvey, D.; Hassett, B.; Tschinkel, Y. Characterizing projective spaces on deformations of Hilbert schemes of K3 surfaces, Comm. Pure Appl. Math., Volume 65 (2012), pp. 264-286 (ISSN: 0010-3640) | DOI | MR | Zbl

Hacon, C. D.; Mckernan, J. On Shokurov's rational connectedness conjecture, Duke Math. J., Volume 138 (2007), pp. 119-136 (ISSN: 0012-7094) | DOI | MR | Zbl

Hassett, B.; Tschinkel, Y. Rational curves on holomorphic symplectic fourfolds, Geom. Funct. Anal., Volume 11 (2001), pp. 1201-1228 | DOI | MR | Zbl

Hassett, B.; Tschinkel, Y. Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., Volume 19 (2009), pp. 1065-1080 (ISSN: 1016-443X) | DOI | MR | Zbl

Hassett, B.; Tschinkel, Y. Intersection numbers of extremal rays on holomorphic symplectic varieties, Asian J. Math., Volume 14 (2010), pp. 303-322 (ISSN: 1093-6106) | DOI | MR | Zbl

Huizenga, J. W. Effective divisors on the Hilbert scheme of points in the plane and interpolation for stable bundles (preprint arXiv:1210.6576, to appear in J. of Algebraic Geom ) | MR

Huybrechts, D. Compact hyper-Kähler manifolds: basic results, Invent. Math., Volume 135 (1999), pp. 63-113 (ISSN: 0020-9910) | DOI | MR | Zbl

Kaledin, D. Symplectic singularities from the Poisson point of view, J. reine angew. Math., Volume 600 (2006), pp. 135-156 (ISSN: 0075-4102) | DOI | MR | Zbl

Kebekus, S. Families of singular rational curves, J. Algebraic Geom., Volume 11 (2002), pp. 245-256 (ISSN: 1056-3911) | DOI | MR | Zbl

Kovács, S. J. The cone of curves of a K3 surface, Math. Ann., Volume 300 (1994), pp. 681-691 (ISSN: 0025-5831) | DOI | MR | Zbl

Markman, E. On the monodromy of moduli spaces of sheaves on K3 surfaces, J. Algebraic Geom., Volume 17 (2008), pp. 29-99 (ISSN: 1056-3911) | DOI | MR | Zbl

Markman, E. Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a K3 surface, Internat. J. Math., Volume 21 (2010), pp. 169-223 (ISSN: 0129-167X) | DOI | MR | Zbl

Markman, E., Complex and differential geometry (Springer Proc. Math.), Volume 8, Springer, Heidelberg, 2011, pp. 257-322 | DOI | MR | Zbl

Markman, E. Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections, Kyoto J. Math., Volume 53 (2013), pp. 345-403 (ISSN: 2156-2261) | DOI | MR | Zbl

Mongardi, G. A note on the Kähler and Mori cones of manifolds of K 3 [ n ] type (preprint arXiv:1307.0393 ) | MR

Namikawa, Y. Deformation theory of singular symplectic n-folds, Math. Ann., Volume 319 (2001), pp. 597-623 (ISSN: 0025-5831) | DOI | MR | Zbl

Ran, Z. Hodge theory and deformations of maps, Compositio Math., Volume 97 (1995), pp. 309-328 (ISSN: 0010-437X) | Numdam | MR | Zbl

Remmert, R. Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann., Volume 133 (1957), pp. 328-370 (ISSN: 0025-5831) | DOI | MR | Zbl

Voisin, C., Complex projective geometry (Trieste, 1989/Bergen, 1989) (London Math. Soc. Lecture Note Ser.), Volume 179, Cambridge Univ. Press, Cambridge, 1992, pp. 294-303 | DOI | MR | Zbl

Wierzba, J. Contractions of symplectic varieties, J. Algebraic Geom., Volume 12 (2003), pp. 507-534 (ISSN: 1056-3911) | DOI | MR | Zbl

Yoshioka, K. Bridgeland's stability and the positive cone of the moduli spaces of stable objects on an Abelian surface (preprint arXiv:1206.4838 ) | MR

Yanagida, S.; Yoshioka, K. Bridgeland's stabilities on abelian surfaces, Math. Z., Volume 276 (2014), pp. 571-610 (ISSN: 0025-5874) | DOI | MR | Zbl

Cité par Sources :