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MORI CONES OF HOLOMORPHIC SYMPLECTIC
VARIETIES OF K3 TYPE

 A BAYER, B HASSETT  Y TSCHINKEL

A. – We determine the Mori cone of holomorphic symplectic varieties deformation
equivalent to the punctual Hilbert scheme on a K3 surface. Our description is given in terms of
Markman’s extended Hodge lattice.

R. – On détermine les cônes de Mori des variétés symplectiques holomorphes qui se
déforment au schéma de Hilbert de points sur une surface K3. Notre description est donnée en termes
de structure de Hodge élargie de Markman.

Introduction

Let X be an irreducible holomorphic symplectic manifold. Let (, ) denote the Beauville-
Bogomolov form on H2(X,Z); we may embed H2(X,Z) in H2(X,Z) via this form. Fix a
polarization h on X; by a fundamental result of Huybrechts [17], X is projective if it admits
a divisor class H with (H,H) > 0. It is expected that finer birational properties of X
are also encoded by the Beauville-Bogomolov form and the Hodge structure on H2(X),
along with appropriate extension data. In particular, natural cones appearing in the minimal
model program—the moving cone, the nef cone, the pseudo-effective cone—should have a
description in terms of this form.

Now assumeX is deformation equivalent to the punctual Hilbert scheme S[n] of a K3 sur-
face S with n > 1. Recall that

(1) H2(S[n],Z)(,) = H2(S,Z)⊕⊥ Zδ, (δ, δ) = −2(n− 1)

where the restriction of the Beauville-Bogomolov form to the first factor is just the intersec-
tion form on S, and 2δ is the class of the locus of non-reduced subschemes. Recall from [20]
that for K3 surfaces S, the cone of (pseudo-)effective divisors is the closed cone generated by

{D ∈ Pic(S) : (D,D) ≥ −2, (D,h) > 0}.

The first attempt to extend this to higher dimensions was [13]. Further work on moving cones
was presented in [14, 24], which built on Markman’s analysis of monodromy groups. The
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942 A. BAYER, B. HASSETT AND Y. TSCHINKEL

characterization of extremal rays arising from Lagrangian projective spaces Pn ↪→ X has
been addressed in [14, 12] and [3]. The paper [15] proposed a general framework describing
all types of extremal rays; however, Markman found counterexamples in dimensions ≥ 10,
presented in [5].

The formalism of Bridgeland stability conditions [7, 8] has led to breakthroughs in the
birational geometry of moduli spaces of sheaves on surfaces. The case of punctual Hilbert
schemes of P2 and del Pezzo surfaces was investigated by Arcara, Bertram, Coskun, and
Huizenga [2, 16, 6, 10]. The effective cone on (P2)[n] has a beautiful and complex structure
as n increases, which only becomes transparent in the language of stability conditions. Bayer
and Macrì resolved the case of punctual Hilbert schemes and more general moduli spaces
of sheaves on K3 surfaces [5, 4]. Abelian surfaces, whose moduli spaces of sheaves include
generalized Kummer varieties, have been studied as well [31, 32].

In this note, we extend the results obtained for moduli spaces of sheaves over K3 sur-
faces to all holomorphic symplectic manifolds arising as deformations of punctual Hilbert
schemes of K3 surfaces. Our principal result is Theorem 1 below, providing a description of
the Mori cone (and thus dually of the nef cone).

In any given situation, this also leads to an effective method to determine the list of marked
minimal models (i.e., birational maps f : X 99K Y where Y is also a holomorphic symplectic
manifold): the movable cone has been described by Markman [23, Lemma 6.22]; by [14], it
admits a wall-and-chamber decomposition whose walls are the orthogonal complements of
extremal curves on birational models, and whose closed chambers correspond one-to-one to
marked minimal model, as the pull-backs of the corresponding nef cones.
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1. Statement of results

Let X be deformation equivalent to the Hilbert scheme of length-n subschemes of a
K3 surface. Markman, see [22, Theorem 1.10] and [23, Cor. 9.5], describes an extension of
lattices

H2(X,Z) ⊂ Λ̃

and weight-two Hodge filtrations

H2(X,C) ⊂ Λ̃C
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MORI CONES OF HOLOMORPHIC SYMPLECTIC VARIETIES OF K3 TYPE 943

with the properties listed below. We will write

θX : H2(X) ⊂ Λ̃X

to denote the extension of Hodge structures with pairing; here θX is defined canonically up
to a choice of sign.

– The orthogonal complement of θX
(
H2(X,Z)

)
has rank one, and is generated by a

primitive vector of square 2n− 2 and type (1, 1);
– as a lattice

Λ̃ ' U4 ⊕ (−E8)2

where U is the hyperbolic lattice and E8 is the positive definite lattice associated with
the corresponding Dynkin diagram;

– any parallel transport operator φ : H2(X, Z) → H2(X ′, Z) naturally lifts to an
isometry of lattices φ̃ : Λ̃X → Λ̃X′ such that

φ̃ ◦ θX = θX′ ◦ φ;

the induced action of the monodromy group on Λ̃/H2(X,Z) is encoded by a character
cov (see [21, Sec. 4.1]);

– we have the following Torelli-type statement: X1 and X2 are birational if and only if
there is Hodge isometry

Λ̃X1
' Λ̃X2

taking H2(X1,Z) isomorphically to H2(X2,Z);
– if X is a moduli space Mv(S) of sheaves (or of Bridgeland-stable complexes) over a

K3 surface S with Mukai vector v then there is an isomorphism from Λ̃ to the Mukai
lattice of S taking H2(X,Z) to v⊥.

Generally, we use v to denote a primitive generator for the orthogonal complement
of H2(X,Z) in Λ̃. Note that v2 = (v, v) = 2n − 2. When X ' Mv(S) we may take
the Mukai vector v as the generator.

As the dual of θX we obtain a homomorphism(1)

θ∨X : Λ̃X � H2(X,Z)

which restricts to an inclusion

H2(X,Z) ⊂ H2(X,Z)

of finite index. By extension, it induces a Q-valued Beauville-Bogomolov form onH2(X,Z).
Assume X is projective. Let H2(X)alg ⊂ H2(X,Z) and Λ̃alg ⊂ Λ̃X denote the alge-

braic classes, i.e., the integral classes of type (1, 1). Since the orthogonal complement
of iX

(
H2(X)

)
is generated by an algebraic class, it follows dually that a ∈ Λ̃X is of type

(1, 1) if and only if θ∨(a) is. The Beauville-Bogomolov form on H2(X)alg has signature
(1, ρ(X) − 1), where ρ(X) = dim(H2

alg(X)). The Mori cone of X is defined as the closed
cone in H2(X,R)alg containing the classes of algebraic curves in X. The positive cone
(or more accurately, non-negative cone) in H2(X,R)alg is the closure of the connected
component of the cone

{D ∈ H2(X,R)alg : D2 > 0}

(1) We will often drop the subscript X from the notation when the context is clear.
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944 A. BAYER, B. HASSETT AND Y. TSCHINKEL

containing an ample class. The dual of the positive cone in H2(X,R)alg is the positive cone.

T 1. – Let (X,h) be a polarized holomorphic symplectic manifold as above. The
Mori cone in H2(X,R)alg is generated by classes in the positive cone and the images under θ∨

of the following:

{a ∈ Λ̃alg : a2 ≥ −2, |(a, v)| ≤ v2/2, (h, θ∨(a)) > 0}.

This generalizes [4, Theorem 12.2], which treated the case of moduli spaces of sheaves on
K3 surfaces. This allows us to compute the full nef cone of X from its Hodge structure once
a single ample divisor is given. As another application of our methods, we can bound the
length of extremal rays of the Mori cone with respect to the Beauville-Bogomolov pairing:

P 2. – Let X be a projective holomorphic symplectic manifold as above. Then
any extremal ray of its Mori cone contains an effective curve class R with

(R,R) ≥ −n+ 3

2
.

The value −n+3
2 had been conjectured in [15]. Proposition 2 has been obtained indepen-

dently by Mongardi [25]. His proof is based on twistor deformations, and also applies to non-
projective manifolds.

2. Deforming extremal rational curves

In this section, we consider general irreducible holomorphic symplectic manifolds, not
necessarily of K3 type. Our arguments are based on the deformation theory of rational
curves on holomorphic symplectic manifolds, as first studied in [27]. Recall the definition
of a parallel transport operator φ : H2(X,Z) → H2(X ′,Z) between manifolds of a fixed
deformation type: there is a smooth proper family π : X → B over a connected analytic
space, points b, b′ ∈ B with X b := π−1(b) ' X and X b′ ' X ′, and a continuous path
γ : [0, 1]→ B, γ(0) = b, γ(1) = b′, such that parallel transport along γ induces φ.

P 3. – LetX be a projective holomorphic symplectic variety andR the class of
an extremal rational curve P1 ⊂ X with (R,R) < 0. Suppose thatX ′ is deformation equivalent
to X and φ : H2(X,Z) → H2(X ′,Z) is a parallel transport operator associated with some
family. IfR′ := φ(R) is a Hodge class, and if there exists a Kähler class κ onX ′ with κ.R′ > 0,
then a multiple of R′ is effective and represented by a cycle of rational curves.

Note that X ′ need not be projective here.

Proof. – Fix a proper holomorphic family π : X → B over an irreducible analytic
space B with X = X b. We claim there exists a rational curve ξ : P1 → X with class
[ξ(P1)] ∈ Q≥0R satisfying the following property: for each b′′ near b such that R remains
algebraic there exists a deformation ξb′′ : P1 → X b′′ of ξ.

Let ω denote the holomorphic symplectic form on X, f : X → Y the birational
contraction associated with R, E an irreducible component of the exceptional locus of f ,
Z its image in Y , and F a generic fiber of E → Z. We recall structural results about the
contraction f :
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MORI CONES OF HOLOMORPHIC SYMPLECTIC VARIETIES OF K3 TYPE 945

– ω restricts to zero on F [18, Lemma 2.7];
– the smooth locus of Z is symplectic with two-form pulling back to ω|E [18, Thm. 2.5]

[26, Prop. 1.6];
– the dimension r of F equals the codimension of E [30, Thm. 1.2].

Second, we review general results about rational curves ξ : P1 → X:

– a non-constant morphism ξ : P1 → X deforms in at least a (2n + 1)-dimensional
family [27, Cor. 5.1];

– the fibers of E → Z are rationally chain connected [11, Cor. 1.6];
– a non-constant morphism ξ : P1 → F deforms in at least a (2r+1)-dimensional family

[30, Thm. 1.2].

Let ξ : P1 → F ⊂ X be a rational curve of minimal degree passing through the
generic point of F . We do not assume a priori that F is smooth. The normal bundle Nξ
was determined completely in [9, §9], which gives a precise classification of F . The fact that
rational curves in F deform in (2r−2)-dimensional families implies that every rational curve
through the generic point of F is doubly dominant, i.e., it passes through two generic points
of F . Using a bend-and-break argument [9, Thm. 2.8 and 4.2], we may conclude that the
normalization of F is isomorphic to Pr. Note that the generic ξ : P1 → F is immersed in X
by [19, §3].

Using standard exact sequences for normal bundles and the fact that ξ : P1 → F is
immersed in X, one sees that (cf. [9, Lemma 9.4])

Nξ ' OP1(−2)⊕ OP1(−1)r−1 ⊕ O2(n−r)
P1 ⊕ OP1(1)r−1.

The crucial point is that h1(Nξ) = 1. Thus we may apply [27, Cor. 3.2] to deduce that the
deformation space of ξ(P1) ⊂ X has dimension 2n−2; [27, Cor. 3.3] then implies that ξ(P1)

persists in deformations of X for which R remains a Hodge class. This proves our claim.

E. – The extremality assumption is essential, as shown by an example suggested
by Voisin: Let S be a K3 surface arising as a double cover of P1 × P1 branched over a curve
of bidegree (4, 4) and X = S[2]. We may regard P1 × P1 ⊂ X as a Lagrangian surface.
Consider a smooth curve C ⊂ P1 × P1 ⊂ X of bidegree (1, 1). The curve C persists only
in the codimension-two subspace of the deformation space of X where P1×P1 deforms (see
[29]); note that NC/X ' OP1(2)⊕ OP1(−2)2.

We return to the proof of Proposition 3. Consider the relative Douady space parametriz-
ing rational curves of class [ξ(P1)] in fibers of X → B and their specializations. Remmert’s
Proper Mapping theorem [28, Satz 23] implies that its imageBR ⊂ B is proper and that over
each b′ ∈ BR there exists a cycle of rational curves in X ′b that is a specialization of ξb′′(P1).

To prove the Proposition 3, we need to produce a family$ : X+ → B+ over an irreducible
base, with both X and X ′ as fibers, such that X ′ lies over a point of B+

R and R′ = φ(R)

coincides with φ+(R). Here φ+ is the parallel transport mapping associated with $. Then
the Proper Mapping theorem would guarantee that R′ is in the Mori cone of X ′.
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946 A. BAYER, B. HASSETT AND Y. TSCHINKEL

L 4. – Let X,X ′, R be as in Proposition 3. There exists a smooth proper family
$ : X+ → B+ over an irreducible analytic space, points b, b′ ∈ B+ with X+

b ' X and
X+
b′ ' X ′, and a section

ρ : B+ → R2$∗Z
of type (1, 1), such that ρ(b) = R and ρ(b′) = R′.

Proof. – This proof is essentially the same as the argument for Proposition 5.12 of [24].
We summarize the key points.

LetM denote the moduli space of marked holomorphic symplectic manifolds of K3 type
[17, Sec. 1]. Essentially, this is obtained by gluing together all the local Kuranishi spaces of
the relevant manifolds. It is non-Hausdorff. LetM◦ denote a connected component ofM
containing X equipped with a suitable marking.

Consider the subspaceM◦R such thatR is of type (1, 1) and κ.R > 0 for some Kähler class,
which may vary from point to point of the moduli space. This coincides with an open subset
of the preimage of the hyperplaneR⊥ under the period map P [24, Claim 5.9]. Furthermore,
for general periods τ—those for which R is the unique integral class of type (1, 1)—the
preimage P−1(τ) consists of a single marked manifold [24, Cor. 5.10]. The proof of this in
[24] only requires that (R,R) < 0. (The Torelli Theorem implies two manifolds share the
same period point only if they are bimeromorphic [23, Th. 1.2], but ifR is the only algebraic
class, the only other bimeromorphic model would not admit a Kähler class κ′ with κ′.R > 0.)
Finally,M◦R is path-connected by [24, Cor. 5.11].

Choose a path γ : [0, 1]→M◦R joiningX andX ′ equipped with suitable markings, taking
R andR′ to the distinguished elementR in the reference lattice. Cover the image with a finite
number of small connected neighborhoods Ui admitting Kuranishi families. We claim there
exists an analytic space B+

γ([0, 1]) ⊂ B+ ⊂ ∪mi=1Ui

with a universal family. Indeed, we choose B+ to be an open neighborhood of γ([0, 1])

admitting a deformation retract onto the path, but small enough so it is contained in the
union of the Ui’s. The topological triviality of B+ means there is no obstruction to gluing
local families.

This completes the proof of Proposition 3.

3. Proof of Theorem 1

In the case where X = Mv(S) is a smooth moduli space of Gieseker-stable sheaves
(or, indeed, of Bridgeland-stable objects) on a K3 surface S, the statement is proven in [4,
Theorem 12.2]. We will prove Theorem 1 by reduction to this case.

The key argument is based on important results of Markman on the cone of movable divi-
sors and its relation to the monodromy group. Let Comov be the intersection of the movable
cone with the positive cone in H2(X,R)alg. Each wall of the movable cone corresponds to a
divisorial contraction of an irreducible exceptional divisorE on some birational model ofX;
the wall is contained in the orthogonal complement E⊥ of E with respect to the Beauville-
Bogomolov form.
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T 5 (Markman). – 1. Let X be an irreducible holomorphic symplectic mani-
fold. Consider the reflection ρE : H2(X,R)→ H2(X,R) that leavesE⊥ fixed and sends
E to −E. Then ρE is defined over Z, acts by a monodromy transformation, and extends
to a Hodge isometry of the extended lattice H2(X) ⊂ Λ̃.

2. Let WExc be the Weyl group generated by reflections ρE for all irreducible exceptional
divisors E on all marked birational models of X. Then Comov is a fundamental domain of
the action of WExc on the positive cone.

Proof. – These results are reviewed in [23, Section 6]. The first statement was originally
proved in [24, Corollary 3.6]. The second statement is [23, Lemma 6.22]. (Note that the
definition of WExc in [23, Definition 6.8] is slightly different to the one given above; by [23,
Theorem 6.18, part (3)] they are equivalent.)

C 6. – LetR ∈ H2(X) be an algebraic class with (R,R) < 0. Then there exists
a birational model X ′ of X, and a parallel transport operator ψ : H2(X)→ H2(X ′) such that
one of the two following conditions holds:

1. ψ(R) generates an extremal ray of the Mori cone.
2. Neither ψ(R) nor −ψ(R) is in the Mori cone.

In either case X ′ admits a Kähler class κ with κ.ψ(R) > 0.

Note that ψ may be non-trivial even when X = X ′.

Proof. – The statement immediately follows from the following claim: There existsX ′, ψ
such that the orthogonal complement ψ(R)⊥ intersects the nef cone in full dimension, and such
that there exists an ample class h with h.ψ(R) > 0. Case (1) corresponds to the case that
ψ(R)⊥ contains a wall of the nef cone, and case (2) to the case that ψ(R)⊥ intersects the
interior. Either way, we have a Kähler class κ meeting ψ(R) positively.

We first prove the claim with “nef cone” replaced by “movable cone” and “ample class”
by “movable class”. Since (R,R) < 0, the orthogonal complementR⊥ intersects the positive
cone; therefore, we can use the Weyl group action ofWExc to force the intersection of ψ(R)⊥

and the movable cone to be full-dimensional. In case ψ(R)⊥ contains a wall of the movable
cone, R is proportional to an irreducible exceptional divisor E⊥, and the reflection ρE at E
can be used to ensure the second condition.

Now we use the chamber decomposition of the movable cone, whose chambers are given
by pull-backs of nef cones of marked birational models (see [14]): at least one of the closed
chambers intersects ψ(R)⊥ in full dimension, such that part or all of the interior lies on the
side with positive intersection with ψ(R). The identification of H2 of different birational
models is induced by a parallel transport operator.

To prove Theorem 1, we will use the following facts:

– By assumption, there exists a deformation ofX to a Hilbert scheme S[n] of a projective
K3 surface S; by the surjectivity of the Torelli map for K3 surface, we may further
deform S such that a given class in Λ̃X becomes algebraic in H∗(S) ∼= Λ̃S[n] .

– By [4, Theorem 12.2], the main theorem holds for any moduli spaceMσ(v) of σ-stable
objects of given primitive Mukai vector v on any projective K3 surface (in particular,
for any Hilbert scheme).
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948 A. BAYER, B. HASSETT AND Y. TSCHINKEL

– By [4, Theorem 1.2], any birational model of Mσ(v) is also a moduli space of stable
objects (with respect to a different stability condition), and in particular the main
Theorem holds.

We will prove Theorem 1 by deformation to the Hilbert scheme X ′, followed by a second
deformation to a birational modelX ′′ ofX ′ using Corollary 6. By abuse of notation, we will
use the same letters φ, ψ to denote the parallel transport operators on H2, H2 and Λ̃ for the
deformations from X to X ′, and from X ′ to X ′′, respectively.

We first prove that the Mori cone of (X,h) is contained in the cone described in Theo-
rem 1. Let R be a generator of one of its extremal rays. Let X ′ be a deformation-equivalent
Hilbert scheme with parallel transport operator φ such that φ(R) is algebraic. We apply
Corollary 6 to φ(R); thus there exists a birational model X ′′ of X ′ such that ψ ◦ φ(R)

satisfies property (1) or (2) as stated in the corollary. By Proposition 3, ψ ◦ φ(R) is effective,
excluding case (2); thus ψ ◦ φ(R) is extremal on X ′′. Since X ′′ is a moduli space of stable
objects on a K3 surface, it is of the form θ∨(a) with a as stated in the theorem. Since the
Mori cone is generated by the positive cone and its extremal rays, this proves the claim.

Conversely, consider a class R = θ∨X(a) where a ∈ Λ̃X,alg satisfies the assumptions in
the theorem. We may assume (R,R) < 0. Again we deform to a Hilbert scheme X ′ such
that φ(R) is algebraic, and apply Corollary 6 to φ(R). Let R′′ := ψ ◦ φ(R) ∈ H2(X ′′)

and a′′ := ψ ◦ φ(a) ∈ Λ̃X′′ be the corresponding classes; since R′′ is algebraic, the same
holds for a′′. By Theorem [4, Theorem 12.2], the class R′′ is effective; by the conclusion of
the corollary, it has to be extremal. Thus we can apply Proposition 3 to R′′, and conclude
that R is effective.

This finishes the proof of Theorem 1.

Proof of Proposition 2. – In the case of moduli spaces of sheaves or Bridgeland-stable
objects on a projective K3 surfaces, the statement is proved in [4, Proposition 12.6]. By
the previous argument, there is a family π : X → B such that X b1 ∼= X and X b0 is a
moduli space of sheaves on a K3 surface, and such that the parallel transport ofR is extremal
on X b1 . By [4, Theorem 1.2], there exists a wall in the space of Bridgeland stability conditions
contractingR. LetR0 be the rational curve on X b0 in the ray R≥0[R] with (R0, R0) ≥ −n+3

2

given by [4, Proposition 12.6]. The curve R0 is a minimal free curve in a generic fibre of
the exceptional locus over B (see [4, Section 14]); therefore, the deformation argument in
Proposition 3 applies directly to R0 (rather than a multiple) and implies the conclusion.
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