Dans cet article nous résolvons complètement une question posée par B. Devaney. Nous montrons que toutes les composantes hyperboliques sont des domaines de Jordan dans la famille de fractions rationnelles de type McMullen. De plus nous donnons une description précise de toutes les fractions du bord de la composante non bornée. Il en découle que les cusps sont denses dans le bord de la composante non bornée.
In this article, we completely settle a question raised by B. Devaney. We prove that all the hyperbolic components are Jordan domains in the family of rational maps of McMullen type. Moreover, we give a precise description of all the rational maps on the outer boundary. It follows that the cusps are dense on the outer boundary.
DOI : 10.24033/asens.2256
Keywords: Parameter plane, McMullen map, Hyperbolic component, Jordan curve.
Mot clés : Plan de paramètres, application de McMullen, composante hyperbolique, courbe de Jordan.
@article{ASENS_2015__48_3_703_0, author = {Qiu, Weiyuan and Roesch, Pascale and Wang, Xiaoguang and Yin, Yongcheng}, title = {Hyperbolic components of {McMullen} maps}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {703--737}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {3}, year = {2015}, doi = {10.24033/asens.2256}, mrnumber = {3377057}, zbl = {1327.30028}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2256/} }
TY - JOUR AU - Qiu, Weiyuan AU - Roesch, Pascale AU - Wang, Xiaoguang AU - Yin, Yongcheng TI - Hyperbolic components of McMullen maps JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 703 EP - 737 VL - 48 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2256/ DO - 10.24033/asens.2256 LA - en ID - ASENS_2015__48_3_703_0 ER -
%0 Journal Article %A Qiu, Weiyuan %A Roesch, Pascale %A Wang, Xiaoguang %A Yin, Yongcheng %T Hyperbolic components of McMullen maps %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 703-737 %V 48 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2256/ %R 10.24033/asens.2256 %G en %F ASENS_2015__48_3_703_0
Qiu, Weiyuan; Roesch, Pascale; Wang, Xiaoguang; Yin, Yongcheng. Hyperbolic components of McMullen maps. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 703-737. doi : 10.24033/asens.2256. http://www.numdam.org/articles/10.24033/asens.2256/
Riemann's mapping theorem for variable metrics, Ann. of Math., Volume 72 (1960), pp. 385-404 (ISSN: 0003-486X) | DOI | MR | Zbl
, McGraw-Hill Book Co., New York, 1978, 331 pages (ISBN: 0-07-000657-1) |Les probabilités dénombrables et leurs applications arithmétiques, Rendiconti del Circolo Matematico di Palermo, Volume 27 (1909), pp. 247-271 | DOI | JFM
, Universitext: Tracts in Mathematics, Springer, New York, 1993, 175 pages (ISBN: 0-387-97942-5) | DOI | MR | Zbl
Structure of the McMullen domain in the parameter planes for rational maps, Fund. Math., Volume 185 (2005), pp. 267-285 (ISSN: 0016-2736) | DOI | MR | Zbl
The McMullen domain: satellite Mandelbrot sets and Sierpiński holes, Conform. Geom. Dyn., Volume 11 (2007), pp. 164-190 (ISSN: 1088-4173) | DOI | MR | Zbl
Intertwined internal rays in Julia sets of rational maps, Fund. Math., Volume 206 (2009), pp. 139-159 (ISSN: 0016-2736) | DOI | MR | Zbl
Singular perturbations of complex polynomials, Bull. Amer. Math. Soc. (N.S.), Volume 50 (2013), pp. 391-429 (ISSN: 0273-0979) | DOI | MR | Zbl
A proof of Thurston's topological characterization of rational functions, Acta Math., Volume 171 (1993), pp. 263-297 (ISSN: 0001-5962) | DOI | MR | Zbl
Complex dynamics. Twenty-five years after the appearance of the Mandelbrot set, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held in Snowbird, UT, June 13–17, 2004 (Devaney, R. L.; Keen, L., eds.) (Contemporary Mathematics), Volume 396, Amer. Math. Soc., Providence, RI (2006) (ISBN: 0-8218-3625-0) | DOI | MR | Zbl
The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J., Volume 54 (2005), pp. 1621-1634 (ISSN: 0022-2518) | DOI | MR | Zbl
Dynamic classification of escape time Sierpiński curve Julia sets, Fund. Math., Volume 202 (2009), pp. 181-198 (ISSN: 0016-2736) | DOI | MR | Zbl
Connectivity of Julia Sets for Singularly Perturbed rational Maps, Chaos, CNN, Memristors and beyond: A Festschrift for Leon Chua (Adamatzky, A. et al., eds.), World Scientific Publishing Co. (2013), pp. 239-245
, Geometry of Riemann surfaces (London Math. Soc. Lecture Note Ser.), Volume 368, Cambridge Univ. Press, Cambridge, 2010, pp. 156-193 | DOI | MR | Zbl
Quasisymmetrically inequivalent hyperbolic Julia sets, Rev. Mat. Iberoam., Volume 28 (2012), pp. 1025-1034 (ISSN: 0213-2230) | DOI | MR | Zbl
Rigidity for real polynomials, Ann. of Math., Volume 165 (2007), pp. 749-841 (ISSN: 0003-486X) | DOI | MR | Zbl
Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc., Volume 99 (2009), pp. 275-296 (ISSN: 0024-6115) | DOI | MR | Zbl
On the Lebesgue measure of the Julia set of a quadratic polynomial (preprint arXiv:math/9201285 )
Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., Volume 100 (1985), pp. 495-524 http://projecteuclid.org/euclid.cmp/1104114003 (ISSN: 0010-3616) | DOI | MR | Zbl
Erratum: “Hyperbolicity, sinks and measure in one-dimensional dynamics” [Comm. Math. Phys. 100 (1985), 495–524], Comm. Math. Phys., Volume 112 (1987), pp. 721-724 http://projecteuclid.org/euclid.cmp/1104160062 (ISSN: 0010-3616) | DOI | MR | Zbl
, The Mandelbrot set, theme and variations (London Math. Soc. Lecture Note Ser.), Volume 274, Cambridge Univ. Press, Cambridge, 2000, pp. 1-17 | MR | Zbl
, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) (Math. Sci. Res. Inst. Publ.), Volume 10, Springer, New York, 1988, pp. 31-60 | DOI | MR | Zbl
Cusps are dense, Ann. of Math., Volume 133 (1991), pp. 217-247 (ISSN: 0003-486X) | DOI | MR | Zbl
, Annals of Math. Studies, 135, Princeton Univ. Press, Princeton, NJ, 1994, 214 pages (ISBN: 0-691-02982-2; 0-691-02981-4) | MR | Zbl
Rational maps and Teichmüller space: analogies and open problems, Linear and Complex Analysis Problem Book (Havin, V. P.; Nikolskii, N. K., eds.) (Lecture Notes in Math.), Volume 1574 (1994), pp. 430-433
, Friedr. Vieweg & Sohn, Braunschweig, 2000, 257 pages (ISBN: 3-528-03130-1) |On the dynamics of rational maps, Ann. Sci. École Norm. Sup., Volume 16 (1983), pp. 193-217 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Dynamics of McMullen maps, Adv. Math., Volume 229 (2012), pp. 2525-2577 (ISSN: 0001-8708) | DOI | MR | Zbl
Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Sci. China Ser. A, Volume 52 (2009), pp. 45-65 (ISSN: 1006-9283) | DOI | MR | Zbl
Captures for the family , Dynamics on the Riemann Sphere, EMS (2006) | DOI | Zbl
Hyperbolic components of polynomials with a fixed critical point of maximal order, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 901-949 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Topologie locale des méthodes de Newton cubiques (1997) | MR
Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 347-355 (ISSN: 0002-9939) | DOI | MR | Zbl
On the dynamics of the McMullen family , Conform. Geom. Dyn., Volume 10 (2006), pp. 159-183 (ISSN: 1088-4173) | DOI | MR | Zbl
, Complex dynamics, A. K. Peters, Wellesley, MA, 2009, pp. 215-227 | MR | Zbl
No invariant line fields on Cantor Julia sets, Forum Math., Volume 22 (2010), pp. 75-94 (ISSN: 0933-7741) | DOI | MR | Zbl
Cité par Sources :