@article{ASENS_2007_4_40_6_901_0, author = {Roesch, Pascale}, title = {Hyperbolic components of polynomials with a fixed critical point of maximal order}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {901--949}, publisher = {Elsevier}, volume = {Ser. 4, 40}, number = {6}, year = {2007}, doi = {10.1016/j.ansens.2007.10.001}, mrnumber = {2419853}, zbl = {1151.37044}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2007.10.001/} }
TY - JOUR AU - Roesch, Pascale TI - Hyperbolic components of polynomials with a fixed critical point of maximal order JO - Annales scientifiques de l'École Normale Supérieure PY - 2007 SP - 901 EP - 949 VL - 40 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2007.10.001/ DO - 10.1016/j.ansens.2007.10.001 LA - en ID - ASENS_2007_4_40_6_901_0 ER -
%0 Journal Article %A Roesch, Pascale %T Hyperbolic components of polynomials with a fixed critical point of maximal order %J Annales scientifiques de l'École Normale Supérieure %D 2007 %P 901-949 %V 40 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2007.10.001/ %R 10.1016/j.ansens.2007.10.001 %G en %F ASENS_2007_4_40_6_901_0
Roesch, Pascale. Hyperbolic components of polynomials with a fixed critical point of maximal order. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 6, pp. 901-949. doi : 10.1016/j.ansens.2007.10.001. http://www.numdam.org/articles/10.1016/j.ansens.2007.10.001/
[1] Lectures on Quasi-Conformal Mappings, Wadsworth & Brook/Cole, Advanced Books & Software, Monterey, 1987.
,[2] Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11 (1984) 85-141. | MR | Zbl
,[3] Puzzles and para-puzzles of quadratic and cubic polynomials, Proc. Symp. Appl. Math. 49 (1994) 31-69. | MR | Zbl
,[4] The iteration of cubic polynomials, Part. 1: The global topology of the parameter space, Acta Math. 160 (1988) 143-206. | MR | Zbl
, ,[5] Douady A., Hubbard J.H., Étude dynamique des polynômes complexes I & II, Publ. Math. d'Orsay (1984) & (1985). | Zbl
[6] On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Sup. 18 (1985) 287-343. | Numdam | MR | Zbl
, ,[7] Faught D., Local connectivity in a family of cubic polynomials, Ph.D. Thesis, Cornell University, 1992.
[8] Fixed points of polynomial maps. Part II. Fixed point portraits, Ann. Sci. Éc. Norm. Sup. 26 (1993) 51-98. | Numdam | MR | Zbl
, ,[9] Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in: , (Eds.), Topological Methods in Modern Mathematics, Publish or Perish, 1993, pp. 467-511. | MR | Zbl
,[10] External rays to periodic points, Israel J. Math. 94 (1996) 29-57. | MR | Zbl
, ,[11] The Mandelbrot set is universal, in: (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000. | MR | Zbl
,[12] Dynamics in One Complex Variable, Vieweg, 1999, 2nd ed. 2000. | MR | Zbl
,[13] Local connectivity of Julia sets: Expository lectures, in: (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000, pp. 67-116. | MR | Zbl
,[14] Milnor J., On cubic polynomial maps with periodic critical point, preprint (1991), to be published dedicated to JHH.
[15] Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in and , Trans. Moscow Math. Soc. 42 (1983) 239-250. | MR | Zbl
,[16] On the Pommerenke-Levin-Yoccoz inequality, Ergod. Th. & Dynam. Sys. 13 (1993) 785-806. | Zbl
,[17] Puzzles de Yoccoz pour les applications à allure rationnelle, L'Enseignement Mathématique 45 (1999) 133-168. | MR | Zbl
,[18] Holomorphic motions and puzzles (following M. Shishikura), in: (Ed.), The Mandelbrot Set, Theme and Variations, LMS Lecture Note Series, vol. 274, Cambridge U. Press, 2000, pp. 117-132. | MR | Zbl
,[19] Extensions of holomorphic motions, Ann. Scuola Norm. Sup. Cl. Sci. 22 (1995) 185-210. | Numdam | Zbl
,[20] Petits diviseurs en dimension 1, Astérisque 231 (1995). | Numdam | Zbl
,Cité par Sources :