Soit un groupe de Lie nilpotent, connexe et simplement connexe; soient un réseau dans et la nilvariété correspondante. Nous donnons une caractérisation des sous-groupes dénombrables du groupe des transformations affines de dont l'action sur possède un trou spectral : ce sont les groupes pour lesquels le tore quotient maximal de ne possède aucun sous-tore propre et -invariant tel que la projection de sur soit un groupe virtuellement abélien.
Les outils principaux de la preuve sont la théorie de Kirillov des représentations unitaires des groupes de Lie nilpotents et l'étude du comportement asymptotique des coefficients matriciels de la représentation métaplectique du groupe symplectique qui permettent de ramener le cas général à celui des tores dont l'étude est préalablement menée. Nos méthodes montrent que l'action de sur est ergodique (ou celle de sur est fortement mélangeante) si et seulement si l'action induite de sur possède la même propriété.
Let be a connected and simply connected nilpotent Lie group, a lattice in , and the corresponding nilmanifold. We characterize the countable subgroups of the group of affine transformations of whose action on has a spectral gap: these are the groups for which there exists no proper -invariant subtorus of the maximal torus factor of such that the projection of on is a virtually abelian group.
The result is first established when is a torus. The problem for a general nilmanifold is reduced to the torus case, using Kirillov's theory of unitary representations of nilpotent Lie groups and decay properties of the metaplectic representation of the symplectic group. Our methods show that the action of on is ergodic (or the action of on is strongly mixing) if and only if the corresponding action of on has the same property.
DOI : 10.24033/asens.2253
Keywords: Nilmanifolds, groups of affine transformations, spectral gap, strong ergodicity, random walks on homogeneous spaces, metaplectic representation.
Mot clés : Nilvariétés, groupes de transformations affines, trou spectral, ergodicité forte, marches aléatoires sur les espaces homogènes, représentation métaplectique.
@article{ASENS_2015__48_3_607_0, author = {Bekka, Bachir and Guivarc'h, Yves}, title = {On the spectral theory of groups of affine transformations of compact nilmanifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {607--645}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {3}, year = {2015}, doi = {10.24033/asens.2253}, mrnumber = {3377054}, zbl = {1335.22009}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2253/} }
TY - JOUR AU - Bekka, Bachir AU - Guivarc'h, Yves TI - On the spectral theory of groups of affine transformations of compact nilmanifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 607 EP - 645 VL - 48 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2253/ DO - 10.24033/asens.2253 LA - en ID - ASENS_2015__48_3_607_0 ER -
%0 Journal Article %A Bekka, Bachir %A Guivarc'h, Yves %T On the spectral theory of groups of affine transformations of compact nilmanifolds %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 607-645 %V 48 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2253/ %R 10.24033/asens.2253 %G en %F ASENS_2015__48_3_607_0
Bekka, Bachir; Guivarc'h, Yves. On the spectral theory of groups of affine transformations of compact nilmanifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 607-645. doi : 10.24033/asens.2253. http://www.numdam.org/articles/10.24033/asens.2253/
, Annals of Mathematical Studies, 53, Princeton Univ. Press, 1963 | MR | Zbl
On spectral characterizations of amenability, Israel J. Math., Volume 137 (2003), pp. 1-33 (ISSN: 0021-2172) | DOI | MR | Zbl
, Cambridge Univ. Press, 2008 |Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990), pp. 383-401 (ISSN: 0020-9910) | DOI | MR | Zbl
A spectral gap property for random walks under unitary representations, Geom. Dedicata, Volume 118 (2006), pp. 141-155 (ISSN: 0046-5755) | DOI | MR | Zbl
Random products of automorphisms of Heisenberg nilmanifolds and Weil's representation, Ergodic Theory Dynam. Systems, Volume 31 (2011), pp. 1277-1286 (ISSN: 0143-3857) | DOI | MR | Zbl
Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 4239-4269 (ISSN: 1078-0947) | DOI | MR | Zbl
Remarques sur la distalité dans les espaces vectoriels, C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 1083-1086 | MR | Zbl
, Cambridge Univ. Press, 1989
Théorème limite central presque sûr pour les marches aléatoires avec trou spectral, C. R. Math. Acad. Sci. Paris, Volume 349 (2011), pp. 801-805 | DOI | MR | Zbl
, Cahiers Scientifiques, XXIX, Gauthier-Villars, Paris, 1969, 390 pages | MR
Counterexamples in ergodic theory and number theory, Math. Ann., Volume 245 (1979), pp. 185-197 (ISSN: 0025-5831) | DOI | MR | Zbl
Sur les extensions des représentations irréductibles des groupes de Lie nilpotents, Ann. Sci. École Norm. Sup., Volume 5 (1972), pp. 71-120 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, Lecture Notes in Math., 300, Springer, Berlin-New York, 1972, 113 pages | MR | Zbl
, Geometry, rigidity, and group actions (Chicago Lectures in Math.), Univ. Chicago Press, Chicago, IL, 2011, pp. 72-157 | DOI | MR | Zbl
, Annals of Math. Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989, 277 pages (ISBN: 0-691-08527-7; 0-691-08528-5) | MR | Zbl
Sharp ergodic theorems for group actions and strong ergodicity, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 1037-1061 (ISSN: 0143-3857) | DOI | MR | Zbl
A note on Borel's density theorem, Proc. Amer. Math. Soc., Volume 55 (1976), pp. 209-212 (ISSN: 0002-9939) | MR | Zbl
, Annals of Math. Studies, 172, Princeton Univ. Press, Princeton, NJ, 2010, 121 pages (ISBN: 978-0-691-14185-5) | MR | Zbl
, Probability measures on groups: recent directions and trends, Tata Inst. Fund. Res., Mumbai, 2006, pp. 255-330 | MR | Zbl
Sur le phénomène de Kunze-Stein, C. R. Acad. Sci. Paris Sér. A-B, Volume 271 (1970), p. A491-A493 | MR | Zbl
Asymptotic properties of unitary representations, J. Funct. Anal., Volume 32 (1979), pp. 72-96 (ISSN: 0022-1236) | DOI | MR | Zbl
On Frobenius reciprocity for unipotent algebraic groups over , Amer. J. Math., Volume 93 (1971), pp. 163-172 (ISSN: 0002-9327) | DOI | MR | Zbl
On the character of Weil's representation, Trans. Amer. Math. Soc., Volume 177 (1973), pp. 287-298 (ISSN: 0002-9947) | MR | Zbl
, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 223-331 | MR
, Universitext, Springer, New York, 1992, 257 pages (ISBN: 0-387-97768-6) | DOI | MR | Zbl
, Graduate Texts in Math., 21, Springer, New York-Heidelberg, 1975, 247 pages | MR | Zbl
Asymptotically invariant sequences and approximate finiteness, Amer. J. Math., Volume 109 (1987), pp. 91-114 (ISSN: 0002-9327) | DOI | MR | Zbl
Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk, Volume 17 (1962), pp. 57-110 (ISSN: 0042-1316) | MR | Zbl
Extensions de représentations de groupes de Lie nilpotents et indices de Maslov, C. R. Acad. Sci. Paris Sér. A-B, Volume 288 (1979), p. A615-A618 (ISSN: 0151-0509) | MR | Zbl
, Progress in Math., 125, Birkhäuser, 1994, 195 pages (ISBN: 3-7643-5075-X) | DOI | MR | Zbl
Unitary representations of group extensions. I, Acta Math., Volume 99 (1958), pp. 265-311 (ISSN: 0001-5962) | DOI | MR | Zbl
, University of Chicago Press, Chicago, Ill.-London, 1976, 372 pages |Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math., Volume 82 (1965), pp. 146-182 (ISSN: 0003-486X) | DOI | MR | Zbl
Spectral transfer and pointwise ergodic theorems for semi-simple Kazhdan groups, Math. Res. Lett., Volume 5 (1998), pp. 305-325 (ISSN: 1073-2780) | DOI | MR | Zbl
Ergodic properties of affine transformations and flows on nilmanifolds., Amer. J. Math., Volume 91 (1969), pp. 757-771 (ISSN: 0002-9327) | DOI | MR | Zbl
Dynamical systems on nilmanifolds, Bull. London Math. Soc., Volume 2 (1970), pp. 37-40 (ISSN: 0024-6093) | DOI | MR | Zbl
Spectral analysis of -extensions of dynamical systems, Topology, Volume 9 (1970), pp. 217-224 (ISSN: 0040-9383) | DOI | MR
On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc., Volume 21 (2008), pp. 981-1000 (ISSN: 0894-0347) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 68, Springer, New York-Heidelberg, 1972, 227 pages | MR | Zbl
Decomposition of the -space of a general compact nilmanifold, Amer. J. Math., Volume 93 (1971), pp. 173-190 (ISSN: 0002-9327) | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 99, Cambridge Univ. Press, Cambridge, 1990, 111 pages (ISBN: 0-521-40245-6) | DOI | MR | Zbl
Asymptotically invariant sequences and an action of on the 2-sphere, Israel J. Math., Volume 37 (1980), pp. 193-208 (ISSN: 0021-2172) | DOI | MR | Zbl
Amenability, Kazhdan's property , strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems, Volume 1 (1981), pp. 223-236 (ISSN: 0143-3857) | DOI | MR | Zbl
, Chapman and Hall Mathematics Series, Chapman & Hall, London, 1987, 262 pages (ISBN: 0-412-29690-X) | MR | Zbl
, Monographs in Math., 81, Birkhäuser, 1984, 209 pages (ISBN: 3-7643-3184-4) | DOI | MR | Zbl
Cité par Sources :