On the spectral theory of groups of affine transformations of compact nilmanifolds
[Sur la théorie spectrale des groupes de transformations affines des nilvariétés compactes]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 607-645.

Soit N un groupe de Lie nilpotent, connexe et simplement connexe; soient Λ un réseau dans N et ΛN la nilvariété correspondante. Nous donnons une caractérisation des sous-groupes dénombrables du groupe Aff (ΛN) des transformations affines de ΛN dont l'action sur L2(ΛN) possède un trou spectral : ce sont les groupes H pour lesquels le tore quotient maximal T de ΛN ne possède aucun sous-tore propre et H-invariant S tel que la projection de H sur Aut (T/S) soit un groupe virtuellement abélien.

Les outils principaux de la preuve sont la théorie de Kirillov des représentations unitaires des groupes de Lie nilpotents et l'étude du comportement asymptotique des coefficients matriciels de la représentation métaplectique du groupe symplectique qui permettent de ramener le cas général à celui des tores dont l'étude est préalablement menée. Nos méthodes montrent que l'action de H Aff (ΛN) sur ΛN est ergodique (ou celle de H Aut (ΛN) sur ΛN est fortement mélangeante) si et seulement si l'action induite de H sur T possède la même propriété.

Let N be a connected and simply connected nilpotent Lie group, Λ a lattice in N, and ΛN the corresponding nilmanifold. We characterize the countable subgroups of the group  Aff (ΛN) of affine transformations of ΛN whose action on L2(ΛN) has a spectral gap: these are the groups H for which there exists no proper H-invariant subtorus S of the maximal torus factor T of ΛN such that the projection of H on  Aut (T/S) is a virtually abelian group.

The result is first established when ΛN is a torus. The problem for a general nilmanifold is reduced to the torus case, using Kirillov's theory of unitary representations of nilpotent Lie groups and decay properties of the metaplectic representation of the symplectic group. Our methods show that the action of H Aff (ΛN) on ΛN is ergodic (or the action of H Aut (ΛN) on ΛN is strongly mixing) if and only if the corresponding action of H on T has the same property.

Publié le :
DOI : 10.24033/asens.2253
Classification : 37A05, 22F30, 60B15, 60G50
Keywords: Nilmanifolds, groups of affine transformations, spectral gap, strong ergodicity, random walks on homogeneous spaces, metaplectic representation.
Mot clés : Nilvariétés, groupes de transformations affines, trou spectral, ergodicité forte, marches aléatoires sur les espaces homogènes, représentation métaplectique.
@article{ASENS_2015__48_3_607_0,
     author = {Bekka, Bachir and Guivarc'h, Yves},
     title = {On the spectral theory of groups  of affine transformations  of compact nilmanifolds},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {607--645},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {3},
     year = {2015},
     doi = {10.24033/asens.2253},
     mrnumber = {3377054},
     zbl = {1335.22009},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2253/}
}
TY  - JOUR
AU  - Bekka, Bachir
AU  - Guivarc'h, Yves
TI  - On the spectral theory of groups  of affine transformations  of compact nilmanifolds
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 607
EP  - 645
VL  - 48
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2253/
DO  - 10.24033/asens.2253
LA  - en
ID  - ASENS_2015__48_3_607_0
ER  - 
%0 Journal Article
%A Bekka, Bachir
%A Guivarc'h, Yves
%T On the spectral theory of groups  of affine transformations  of compact nilmanifolds
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 607-645
%V 48
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2253/
%R 10.24033/asens.2253
%G en
%F ASENS_2015__48_3_607_0
Bekka, Bachir; Guivarc'h, Yves. On the spectral theory of groups  of affine transformations  of compact nilmanifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 607-645. doi : 10.24033/asens.2253. http://www.numdam.org/articles/10.24033/asens.2253/

Auslander, L.; Green, L.; Hahn, F., Annals of Mathematical Studies, 53, Princeton Univ. Press, 1963 | MR | Zbl

Anantharaman-Delaroche, C. On spectral characterizations of amenability, Israel J. Math., Volume 137 (2003), pp. 1-33 (ISSN: 0021-2172) | DOI | MR | Zbl

Bekka, B.; de la Harpe, P.; Valette, A., Cambridge Univ. Press, 2008 | MR | Zbl

Bekka, B. Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990), pp. 383-401 (ISSN: 0020-9910) | DOI | MR | Zbl

Bekka, B.; Guivarc'h, Y. A spectral gap property for random walks under unitary representations, Geom. Dedicata, Volume 118 (2006), pp. 141-155 (ISSN: 0046-5755) | DOI | MR | Zbl

Bekka, B.; Heu, J.-R. Random products of automorphisms of Heisenberg nilmanifolds and Weil's representation, Ergodic Theory Dynam. Systems, Volume 31 (2011), pp. 1277-1286 (ISSN: 0143-3857) | DOI | MR | Zbl

Conze, J.-P.; Guivarc'h, Y. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 4239-4269 (ISSN: 1078-0947) | DOI | MR | Zbl

Conze, J.-P.; Guivarc'h, Y. Remarques sur la distalité dans les espaces vectoriels, C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 1083-1086 | MR | Zbl

Corwin, L.; Greenleaf, F., Cambridge Univ. Press, 1989

Conze, J.-P.; Le Borgne, S. Théorème limite central presque sûr pour les marches aléatoires avec trou spectral, C. R. Math. Acad. Sci. Paris, Volume 349 (2011), pp. 801-805 | DOI | MR | Zbl

Dixmier, J., Cahiers Scientifiques, XXIX, Gauthier-Villars, Paris, 1969, 390 pages | MR

del Junco, A.; Rosenblatt, J. Counterexamples in ergodic theory and number theory, Math. Ann., Volume 245 (1979), pp. 185-197 (ISSN: 0025-5831) | DOI | MR | Zbl

Duflo, M. Sur les extensions des représentations irréductibles des groupes de Lie nilpotents, Ann. Sci. École Norm. Sup., Volume 5 (1972), pp. 71-120 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Eymard, P., Lecture Notes in Math., 300, Springer, Berlin-New York, 1972, 113 pages | MR | Zbl

Fisher, D., Geometry, rigidity, and group actions (Chicago Lectures in Math.), Univ. Chicago Press, Chicago, IL, 2011, pp. 72-157 | DOI | MR | Zbl

Folland, G. B., Annals of Math. Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989, 277 pages (ISBN: 0-691-08527-7; 0-691-08528-5) | MR | Zbl

Furman, A.; Shalom, Y. Sharp ergodic theorems for group actions and strong ergodicity, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 1037-1061 (ISSN: 0143-3857) | DOI | MR | Zbl

Furstenberg, H. A note on Borel's density theorem, Proc. Amer. Math. Soc., Volume 55 (1976), pp. 209-212 (ISSN: 0002-9939) | MR | Zbl

Gorodnik, A.; Nevo, A., Annals of Math. Studies, 172, Princeton Univ. Press, Princeton, NJ, 2010, 121 pages (ISBN: 978-0-691-14185-5) | MR | Zbl

Guivarc'h, Y., Probability measures on groups: recent directions and trends, Tata Inst. Fund. Res., Mumbai, 2006, pp. 255-330 | MR | Zbl

Herz, C. Sur le phénomène de Kunze-Stein, C. R. Acad. Sci. Paris Sér. A-B, Volume 271 (1970), p. A491-A493 | MR | Zbl

Howe, R. E.; Moore, C. C. Asymptotic properties of unitary representations, J. Funct. Anal., Volume 32 (1979), pp. 72-96 (ISSN: 0022-1236) | DOI | MR | Zbl

Howe, R. On Frobenius reciprocity for unipotent algebraic groups over Q , Amer. J. Math., Volume 93 (1971), pp. 163-172 (ISSN: 0002-9327) | DOI | MR | Zbl

Howe, R. E. On the character of Weil's representation, Trans. Amer. Math. Soc., Volume 177 (1973), pp. 287-298 (ISSN: 0002-9947) | MR | Zbl

Howe, R., Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 223-331 | MR

Howe, R.; Tan, E.-C., Universitext, Springer, New York, 1992, 257 pages (ISBN: 0-387-97768-6) | DOI | MR | Zbl

Humphreys, J. E., Graduate Texts in Math., 21, Springer, New York-Heidelberg, 1975, 247 pages | MR | Zbl

Jones, V. F. R.; Schmidt, K. Asymptotically invariant sequences and approximate finiteness, Amer. J. Math., Volume 109 (1987), pp. 91-114 (ISSN: 0002-9327) | DOI | MR | Zbl

Kirillov, A. A. Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk, Volume 17 (1962), pp. 57-110 (ISSN: 0042-1316) | MR | Zbl

Lion, G. Extensions de représentations de groupes de Lie nilpotents et indices de Maslov, C. R. Acad. Sci. Paris Sér. A-B, Volume 288 (1979), p. A615-A618 (ISSN: 0151-0509) | MR | Zbl

Lubotzky, A., Progress in Math., 125, Birkhäuser, 1994, 195 pages (ISBN: 3-7643-5075-X) | DOI | MR | Zbl

Mackey, G. W. Unitary representations of group extensions. I, Acta Math., Volume 99 (1958), pp. 265-311 (ISSN: 0001-5962) | DOI | MR | Zbl

Mackey, G. W., University of Chicago Press, Chicago, Ill.-London, 1976, 372 pages | MR | Zbl

Moore, C. C. Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math., Volume 82 (1965), pp. 146-182 (ISSN: 0003-486X) | DOI | MR | Zbl

Nevo, A. Spectral transfer and pointwise ergodic theorems for semi-simple Kazhdan groups, Math. Res. Lett., Volume 5 (1998), pp. 305-325 (ISSN: 1073-2780) | DOI | MR | Zbl

Parry, W. Ergodic properties of affine transformations and flows on nilmanifolds., Amer. J. Math., Volume 91 (1969), pp. 757-771 (ISSN: 0002-9327) | DOI | MR | Zbl

Parry, W. Dynamical systems on nilmanifolds, Bull. London Math. Soc., Volume 2 (1970), pp. 37-40 (ISSN: 0024-6093) | DOI | MR | Zbl

Parry, W. Spectral analysis of G-extensions of dynamical systems, Topology, Volume 9 (1970), pp. 217-224 (ISSN: 0040-9383) | DOI | MR

Popa, S. On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc., Volume 21 (2008), pp. 981-1000 (ISSN: 0894-0347) | DOI | MR | Zbl

Raghunathan, M. S., Ergebn. Math. Grenzg., 68, Springer, New York-Heidelberg, 1972, 227 pages | MR | Zbl

Richardson, L. F. Decomposition of the L2-space of a general compact nilmanifold, Amer. J. Math., Volume 93 (1971), pp. 173-190 (ISSN: 0002-9327) | DOI | MR | Zbl

Sarnak, P., Cambridge Tracts in Mathematics, 99, Cambridge Univ. Press, Cambridge, 1990, 111 pages (ISBN: 0-521-40245-6) | DOI | MR | Zbl

Schmidt, K. Asymptotically invariant sequences and an action of SL (2,𝐙) on the 2-sphere, Israel J. Math., Volume 37 (1980), pp. 193-208 (ISSN: 0021-2172) | DOI | MR | Zbl

Schmidt, K. Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems, Volume 1 (1981), pp. 223-236 (ISSN: 0143-3857) | DOI | MR | Zbl

Stewart, I.; Tall, D., Chapman and Hall Mathematics Series, Chapman & Hall, London, 1987, 262 pages (ISBN: 0-412-29690-X) | MR | Zbl

Zimmer, R. J., Monographs in Math., 81, Birkhäuser, 1984, 209 pages (ISBN: 3-7643-3184-4) | DOI | MR | Zbl

Cité par Sources :