Stokes Resolvent Estimates in Spaces of Bounded Functions
[Estimations de la résolvante de Stokes dans les espaces des fonctions bornées]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 537-559.

L'équation de Stokes sur un ouvert Ω𝐑n a été bien étudiée dans le cadre de Lp pour 1<p< et pour une grande classe d'ouverts réguliers. La situation est bien différente pour le cas p=, car la projection de Leray n'est pas bornée dans ce cas. Il a été démontré par les premier et second auteurs de cet article que l'opérateur de Stokes engendre tout de même un semigroupe holomorphe sur des espaces de fonctions bornées pour une grande classe d'ouverts. Cet article présente une nouvelle approche et des nouvelles estimations a priori de type L pour l'équation de Stokes. Celles-ci impliquent en particulier que l'opérateur de Stokes engendre un semigroupe holomorphe d'angle π/2 sur Lσ(Ω) (pas fortement continu) ou C0,σ(Ω) pour une grande classe d'ouverts Ω. L'approche est inspirée par la méthode de Masuda-Stewart. D'autre part, il est démontré que la méthode s'applique aussi à d'autres conditions de bord, par exemple aux conditions de Robin.

The Stokes equation on a domain Ω𝐑n is well understood in the Lp-setting for a large class of domains including bounded and exterior domains with smooth boundaries provided 1<p<. The situation is very different for the case p= since in this case the Helmholtz projection does not act as a bounded operator anymore. Nevertheless it was recently proved by the first and the second author of this paper by a contradiction argument that the Stokes operator generates an analytic semigroup on spaces of bounded functions for a large class of domains. This paper presents a new approach as well as new a priori L-type estimates to the Stokes equation. They imply in particular that the Stokes operator generates a C0-analytic semigroup of angle π/2 on C0,σ(Ω), or a non-C0-analytic semigroup on Lσ(Ω) for a large class of domains. The approach presented is inspired by the so called Masuda-Stewart technique for elliptic operators. It is shown furthermore that the method presented applies also to different types of boundary conditions as, e.g., Robin boundary conditions.

Publié le :
DOI : 10.24033/asens.2251
Classification : 35Q35, 35K90
Keywords: Analytic semigroups, bounded function spaces, resolvent estimates.
Mot clés : Semi-groupes holomorphes, espace des fonctions bornées, estimation de la résolvante.
@article{ASENS_2015__48_3_537_0,
     author = {Abe, Ken and Giga, Yoshikazu and Hieber, Matthias},
     title = {Stokes {Resolvent} {Estimates}  in {Spaces} of {Bounded} {Functions}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {537--559},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {3},
     year = {2015},
     doi = {10.24033/asens.2251},
     mrnumber = {3377052},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2251/}
}
TY  - JOUR
AU  - Abe, Ken
AU  - Giga, Yoshikazu
AU  - Hieber, Matthias
TI  - Stokes Resolvent Estimates  in Spaces of Bounded Functions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 537
EP  - 559
VL  - 48
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2251/
DO  - 10.24033/asens.2251
LA  - en
ID  - ASENS_2015__48_3_537_0
ER  - 
%0 Journal Article
%A Abe, Ken
%A Giga, Yoshikazu
%A Hieber, Matthias
%T Stokes Resolvent Estimates  in Spaces of Bounded Functions
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 537-559
%V 48
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2251/
%R 10.24033/asens.2251
%G en
%F ASENS_2015__48_3_537_0
Abe, Ken; Giga, Yoshikazu; Hieber, Matthias. Stokes Resolvent Estimates  in Spaces of Bounded Functions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 537-559. doi : 10.24033/asens.2251. http://www.numdam.org/articles/10.24033/asens.2251/

Abels, H. Nonstationary Stokes system with variable viscosity in bounded and unbounded domains, Discrete Contin. Dyn. Syst. Ser. S, Volume 3 (2010), pp. 141-157 (ISSN: 1937-1632) | DOI | MR | Zbl

Abe, K. The Stokes semigroup on non-decaying spaces (2013)

Arendt, W.; Batty, C. J. K.; Hieber, M.; Neubrander, F., Monographs in Math., 96, Birkhäuser, 2011, 539 pages (ISBN: 978-3-0348-0086-0) | DOI | MR | Zbl

Abe, K.; Giga, Y. Analyticity of the Stokes semigroup in spaces of bounded functions, Acta Math., Volume 211 (2013), pp. 1-46 (ISSN: 0001-5962) | DOI | MR | Zbl

Abe, K.; Giga, Y. The L-Stokes semigroup in exterior domains, J. Evol. Equ., Volume 14 (2014), pp. 1-28 (ISSN: 1424-3199) | DOI | MR | Zbl

Amann, H. Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., Volume 45 (1983), pp. 225-254 (ISSN: 0021-2172) | DOI | MR | Zbl

Angiuli, L.; Pallara, D.; Paronetto, F. Analytic semigroups generated in L1(Ω) by second order elliptic operators via duality methods, Semigroup Forum, Volume 80 (2010), pp. 255-271 (ISSN: 0037-1912) | DOI | MR | Zbl

Abe, T.; Shibata, Y. On a resolvent estimate of the Stokes equation on an infinite layer, J. Math. Soc. Japan, Volume 55 (2003), pp. 469-497 (ISSN: 0025-5645) | DOI | MR | Zbl

Abels, H.; Terasawa, Y. On Stokes operators with variable viscosity in bounded and unbounded domains, Math. Ann., Volume 344 (2009), pp. 381-429 (ISSN: 0025-5831) | DOI | MR | Zbl

Acquistapace, P.; Terreni, B. Hölder classes with boundary conditions as interpolation spaces, Math. Z., Volume 195 (1987), pp. 451-471 (ISSN: 0025-5874) | DOI | MR | Zbl

Desch, W.; Hieber, M.; Prüss, J. Lp-theory of the Stokes equation in a half space, J. Evol. Equ., Volume 1 (2001), pp. 115-142 (ISSN: 1424-3199) | DOI | MR | Zbl

Evans, L. C., Graduate Studies in Math., 19, Amer. Math. Soc., Providence, RI, 2010, 749 pages (ISBN: 978-0-8218-4974-3) | MR

Farwig, R.; Kozono, H.; Sohr, H. An Lq-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., Volume 195 (2005), pp. 21-53 (ISSN: 0001-5962) | DOI | MR | Zbl

Farwig, R.; Kozono, H.; Sohr, H. On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel), Volume 88 (2007), pp. 239-248 (ISSN: 0003-889X) | DOI | MR | Zbl

Farwig, R.; Kozono, H.; Sohr, H. On the Stokes operator in general unbounded domains, Hokkaido Math. J., Volume 38 (2009), pp. 111-136 (ISSN: 0385-4035) | DOI | MR | Zbl

Farwig, R.; Sohr, H., The Navier-Stokes equations II—Theory and numerical methods (Oberwolfach, 1991) (Lecture Notes in Math.), Volume 1530, Springer, 1992, pp. 97-110 | DOI | MR | Zbl

Farwig, R.; Sohr, H. Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, Volume 46 (1994), pp. 607-643 (ISSN: 0025-5645) | DOI | MR | Zbl

Farwig, R.; Sohr, H. Helmholtz decomposition and Stokes resolvent system for aperture domains in Lq-spaces, Analysis, Volume 16 (1996), pp. 1-26 (ISSN: 0174-4747) | DOI | MR | Zbl

Geissert, M.; Heck, H.; Hieber, M.; Sawada, O. Weak Neumann implies Stokes, J. reine angew. Math., Volume 669 (2012), pp. 75-100 (ISSN: 0075-4102) | MR | Zbl

Giga, Y. Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., Volume 178 (1981), pp. 297-329 (ISSN: 0025-5874) | DOI | MR | Zbl

Giga, Y. The nonstationary Navier-Stokes system with some first order boundary condition, Proc. Japan Acad. Ser. A Math. Sci., Volume 58 (1982), pp. 101-104 http://projecteuclid.org/euclid.pja/1195516105 (ISSN: 0386-2194) | DOI | MR | Zbl

Heck, H.; Hieber, M.; Stavrakidis, K. L-estimates for parabolic systems with VMO-coefficients, Discrete Contin. Dyn. Syst. Ser. S, Volume 3 (2010), pp. 299-309 (ISSN: 1937-1632) | DOI | MR | Zbl

Hieber, M.; Maremonti, P. Bounded analyticity of the Stokes semigroup on spaces of bounded functions, Recent Developments of Mathematical Fluid Mechanics (Galdi, G. P.; Heywood, J. G.; Rannacher, R., eds.) (Advances in Mathematical Fluid Mechanics), Birkhäuser (2015) (to appear) | MR

Kenig, C. E.; Lin, F.; Shen, Z. Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc., Volume 26 (2013), pp. 901-937 (ISSN: 0894-0347) | DOI | MR | Zbl

Krantz, S. G.; Parks, H. R., Birkhäuser, 2002, 163 pages (ISBN: 0-8176-4285-4) | DOI | MR

Lunardi, A., Progress in Nonlinear Differential Equations and their Applications, 16, Birkhäuser, 1995, 424 pages (ISBN: 3-7643-5172-1) | DOI | MR

Maremonti, P. On the Stokes problem in exterior domains: the maximum modulus theorems, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 2135-2171 (ISSN: 1078-0947) | DOI | MR | Zbl

Masuda, K. On the generation of analytic semigroups by elliptic differential operators with unbounded coefficients (preprint 1972)

Masuda, K. On the generation of analytic semigroups of higher-order elliptic operators in spaces of continuous functions (in Japanese), Proc. Katata Symposium on Partial Differential Equations (1972), pp. 144-149

Masuda, K., Kinokuniya Mathematical Monographs, 6, Kinokuniya Shoten, Tokyo, 1975

Maremonti, P.; Starita, G. On the nonstationary Stokes equations in half-space with continuous initial data, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 295 (2003), pp. 118-167 ; English translation: J. Math. Sci. (NY) 127 (2005), 1886–1914 (ISSN: 0373-2703) | DOI | MR | Zbl

Saal, J. The Stokes operator with Robin boundary conditions in solenoidal subspaces of L1(+n) and L(+n) , Comm. Partial Differential Equations, Volume 32 (2007), pp. 343-373 (ISSN: 0360-5302) | DOI | MR | Zbl

Shen, Z. Resolvent estimates in Lp for the Stokes operator in Lipschitz domains, Arch. Ration. Mech. Anal., Volume 205 (2012), pp. 395-424 (ISSN: 0003-9527) | DOI | MR | Zbl

Sinestrari, E. On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., Volume 107 (1985), pp. 16-66 (ISSN: 0022-247X) | DOI | MR | Zbl

Sohr, H., Birkhäuser Advanced Texts: Basler Lehrbücher., Birkhäuser, 2001, 367 pages (ISBN: 3-7643-6545-5) | DOI | MR | Zbl

Solonnikov, V. A. On nonstationary Stokes problem and Navier-Stokes problem in a half-space with initial data nondecreasing at infinity, J. Math. Sci. (N. Y.), Volume 114 (2003), pp. 1726-1740 (ISSN: 1072-3374) | DOI | MR | Zbl

Solonnikov, A. Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math., Volume 8 (1977), pp. 467-529 | DOI | Zbl

Shibata, Y.; Shimada, R. On a generalized resolvent estimate for the Stokes system with Robin boundary condition, J. Math. Soc. Japan, Volume 59 (2007), pp. 469-519 http://projecteuclid.org/euclid.jmsj/1191247596 (ISSN: 0025-5645) | MR | Zbl

Stewart, H. B. Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc., Volume 199 (1974), pp. 141-162 (ISSN: 0002-9947) | DOI | MR | Zbl

Stewart, H. B. Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc., Volume 259 (1980), pp. 299-310 (ISSN: 0002-9947) | DOI | MR | Zbl

Cité par Sources :