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STOKES RESOLVENT ESTIMATES
IN SPACES OF BOUNDED FUNCTIONS

 K ABE, Y GIGA  M HIEBER

A. – The Stokes equation on a domain Ω ⊂ Rn is well understood in the Lp-setting
for a large class of domains including bounded and exterior domains with smooth boundaries pro-
vided 1 < p <∞. The situation is very different for the case p =∞ since in this case the Helmholtz
projection does not act as a bounded operator anymore. Nevertheless it was recently proved by the first
and the second author of this paper by a contradiction argument that the Stokes operator generates an
analytic semigroup on spaces of bounded functions for a large class of domains. This paper presents
a new approach as well as new a priori L∞-type estimates to the Stokes equation. They imply in par-
ticular that the Stokes operator generates a C0-analytic semigroup of angle π/2 on C0,σ(Ω), or a non-
C0-analytic semigroup on L∞σ (Ω) for a large class of domains. The approach presented is inspired by
the so called Masuda-Stewart technique for elliptic operators. It is shown furthermore that the method
presented applies also to different types of boundary conditions as, e.g., Robin boundary conditions.

R. – L’équation de Stokes sur un ouvert Ω ⊂ Rn a été bien étudiée dans le cadre de Lp

pour 1 < p <∞ et pour une grande classe d’ouverts réguliers. La situation est bien différente pour le
cas p =∞, car la projection de Leray n’est pas bornée dans ce cas. Il a été démontré par les premier
et second auteurs de cet article que l’opérateur de Stokes engendre tout de même un semigroupe
holomorphe sur des espaces de fonctions bornées pour une grande classe d’ouverts. Cet article présente
une nouvelle approche et des nouvelles estimations a priori de type L∞ pour l’équation de Stokes.
Celles-ci impliquent en particulier que l’opérateur de Stokes engendre un semigroupe holomorphe
d’angle π/2 sur L∞σ (Ω) (pas fortement continu) ou C0,σ(Ω) pour une grande classe d’ouverts Ω.
L’approche est inspirée par la méthode de Masuda-Stewart. D’autre part, il est démontré que la
méthode s’applique aussi à d’autres conditions de bord, par exemple aux conditions de Robin.

1. Introduction and main results

The investigation of the linear Stokes equations as well as properties and corresponding
estimates are often basis for the analysis of the nonlinear Navier-Stokes equations. In partic-
ular, analyticity of the solution operator (called the Stokes semigroup) plays a fundamental
role for studying the Navier-Stokes equations. It is well-known that the Stokes semigroup
forms an analytic semigroup on Lpσ(Ω) for p ∈ (1,∞), the space of Lp-solenoidal vector
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538 K. ABE, Y. GIGA AND M. HIEBER

fields, for various kind of domains Ω ⊂ Rn, n ≥ 2 including bounded and exterior do-
mains having smooth boundaries; see, e.g., [37, 20]. By now, analyticity results are known
for other type unbounded domains, see [17, 18], [4] ([6, 5] with variable viscosity coefficients)
and Lipschitz domains [33]. An L̃p-theory is developed in [13, 14], [15] for a general domain.
Moreover,Lp-theory is investigated in [19] for unbounded domains, for which the Helmholtz
projection is bounded.

It is the aim of this paper to consider the case p =∞. Note that the Helmholtz projection
is no longer bounded inL∞ even if Ω = Rn. When Ω = Rn

+, the analyticity of the semigroup
is known in L∞-type spaces including C0,σ(Ω), the L∞-closure of C∞c,σ(Ω), the space of
all smooth solenoidal vector fields compactly supported in Ω [11] (see also [38, 28]). Their
approach is based on explicit calculations of the solution operatorR(λ) : f 7→ v = vλ of the
corresponding resolvent problem of

λv −∆v +∇q = f in Ω,(1.1)

div v = 0 in Ω,(1.2)

v = 0 on ∂Ω.(1.3)

As recently shown in [2, 3] by a blow-up argument to the non-stationary Stokes equations, it
turns out that the Stokes semigroup is extendable to an analytic semigroup on C0,σ for what
is called admissible domains which include bounded and exterior domains having boundaries
of class C3.

In this paper, we present a direct resolvent approach to the Stokes resolvent equa-
tions (1.1)–(1.3) and establish the a priori estimate of the form

Mp(v, q)(x, λ)

= |λ‖v(x)|+ |λ|1/2|∇v(x)|+ |λ|n/2p‖∇2v‖Lp(Ω
x,|λ|−1/2 ) + |λ|n/2p‖∇q‖Lp(Ω

x,|λ|−1/2 ),

for p > n and

(1.4) sup
λ∈Σϑ,δ

‖Mp(v, q)‖L∞(Ω)(λ) ≤ C‖f‖L∞(Ω)

for some constant C > 0 independent of f . Here, Ωx,r denotes the intersection of Ω with an
open ballBx(r) centered at x ∈ Ω with radius r > 0, i.e., Ωx,r = Bx(r) ∩ Ω and Σϑ,δ denotes
the sectorial region in the complex plane given by Σϑ,δ = {λ ∈ C\{0} | | arg λ| < ϑ, |λ| > δ}
for ϑ ∈ (π/2, π) and δ > 0. Our approach is inspired by the corresponding approach
for general elliptic operators. K. Masuda was the first to prove analyticity of the semi-
group associated to general elliptic operators in C0(Rn) including the case of higher or-
ders [29, 31] ([30]). This result was then extended by H. B. Stewart to the case for the Dirichlet
problem [39] and more general boundary condition [40]. This Masuda-Stewart method was
applied to many other situations [7, 26], [22, 8], [9]. However, its application to the resolvent
Stokes equations (1.1)–(1.3) was unknown.

In the sequel, we prove the estimate (1.4) by using theLp-estimates for the Stokes resolvent
equations with inhomogeneous divergence condition [16, 17]. We invoke strictly admissibility
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STOKES RESOLVENT ESTIMATES IN SPACES OF BOUNDED FUNCTIONS 539

of a domain introduced in [3, Definition 2.4] which implies an estimate of pressure q in terms
of the velocity by

(1.5) sup
x∈Ω

dΩ(x)|∇q(x)| ≤ CΩ‖W (v)‖L∞(∂Ω) for W (v) = −(∇v −∇T v)nΩ,

where∇f denotes (∂fi/∂xj)1≤i,j≤n and∇T f = (∇f)T for a vector field f = (fi)1≤i≤n. The
estimate (1.5) plays a key role in transferring results from the elliptic situation to the situation
of the Stokes system. Here, nΩ denotes the unit outward normal vector field on ∂Ω and dΩ

denotes the distance function from the boundary, i.e., dΩ(x) = infy∈∂Ω |x − y| for x ∈ Ω.
The estimate (1.5) can be viewed as a regularizing-type estimate for solutions to the Laplace
equation ∆P = 0 in Ω with the Neumann boundary condition ∂P/∂nΩ = div∂ΩW on ∂Ω

for a tangential vector field W , where div∂Ω = tr ∇∂Ω denotes the surface divergence and
∇∂Ω = ∇− nΩ(nΩ · ∇) is the gradient on ∂Ω. It is known that P = q solves this Neumann
problem for W = W (v) given by (1.5) [3, Lemma 2.8] and the estimate (1.5) holds for
bounded domains [2] and exterior domains [3]. Note that when n = 3, W (v) is nothing but
a tangential trace of vorticity, i.e.,W (v) = −curl v×nΩ. We call Ω strictly admissible if there
exists a constant C = CΩ such that the a priori estimate

(1.6) ‖∇P‖L∞d (Ω) ≤ C‖W‖L∞(∂Ω)

holds for all solutionsP of the Neumann problem for a tangential vector fieldW ∈ L∞(∂Ω).
Here L∞d (Ω) denotes the space of all locally integrable functions f such that dΩf is
essentially bounded in Ω. The space L∞d (Ω) is equipped with the norm ‖f‖L∞d (Ω) =

supx∈Ω dΩ(x)|f(x)|. The meaning of a solution is understood in the weak sense, i.e., we
say ∇P ∈ L∞d (Ω) is a solution for the Neumann problem if

∫
Ω
P∆ϕdx =

∫
∂Ω
W ·

∇∂ΩϕdH n−1(x) holds for all ϕ ∈ C2
c (Ω̄) satisfying ∂ϕ/∂nΩ = 0 on ∂Ω, where H n−1 de-

notes the n− 1-dimensional Hausdorff measure; see also [3, Definition 2.3].

We are now in the position to formulate the main results of this paper.

T 1.1. – Let Ω be a strictly admissible, uniformly C2-domain in Rn, n ≥ 2.
Let p > n. For ϑ ∈ (π/2, π), there exist constants δ andC such that the a priori estimate (1.4)
holds for all solutions (v,∇q) ∈W 2,p

loc (Ω̄)×(Lploc(Ω̄)∩L∞d (Ω)) of (1.1) (1.3) for f ∈ C0,σ(Ω)

and λ ∈ Σϑ,δ.

The a priori estimate (1.4) implies the analyticity of the Stokes semigroup in L∞-type
spaces. Let us observe the generation of an analytic semigroup in C0,σ(Ω). By
the L̃p-theory [13, 14], [15] we verify the existence of a solution to (1.1)–(1.3),
(v,∇q) ∈W 2,p

loc (Ω̄)× (Lploc(Ω̄) ∩ L∞d (Ω)) for f ∈ C∞c,σ(Ω) in a uniformly C2-domain Ω.
The solution operator R(λ) is then uniquely extendable to C0,σ(Ω) by the uniform ap-
proximation together with the estimate (1.4). Here, the solution operator to the pressure
gradient f 7→ ∇qλ is also uniquely extended for f ∈ C0,σ. We observe that R(λ) is injective
on C0,σ since the estimate (1.5) immediately implies that f = 0 for f ∈ C0,σ such that
vλ = R(λ)f = 0. The operator R(λ) may be regarded as a surjective operator from C0,σ

to the range of R(λ). The open mapping theorem then implies the existence of a closed
operator A such that R(λ) = (λ − A)−1; see [10, Proposition B.6]. We call A the Stokes
operator in C0,σ(Ω). From Theorem 1.1, we obtain:
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540 K. ABE, Y. GIGA AND M. HIEBER

T 1.2. – Let Ω be a strictly admissible, uniformly C2-domain in Rn. Then, the
Stokes operator A generates a C0-analytic semigroup on C0,σ(Ω) of angle π/2.

We next consider the space L∞σ (Ω) defined by

L∞σ (Ω) =

{
f ∈ L∞(Ω)

∣∣∣∣∣
∫

Ω

f · ∇ϕdx = 0 for all ϕ ∈ Ŵ 1,1(Ω)

}
,

where Ŵ 1,1(Ω) denotes the homogeneous Sobolev space of the form

Ŵ 1,1(Ω) = {ϕ ∈ L1
loc(Ω) | ∇ϕ ∈ L1(Ω)}.

Note that C0,σ(Ω) ⊂ L∞σ (Ω). When Ω is unbounded, the space L∞σ (Ω) includes non-
decaying solenoidal vector fields at the space infinity. Actually, the a priori estimate (1.4) is
also valid for f ∈ L∞σ . In particular, (1.4) implies the uniqueness of a solution for f ∈ L∞σ .
We verify the existence of a solution by approximating f ∈ L∞σ with compactly supported
solenoidal vector fields {fm}∞m=1 ⊂ C∞c,σ. Note that f ∈ L∞σ is not approximated in the uni-
form topology by the elements of C∞c,σ in general. We thus weaken the convergence topology
to the pointwise convergence, i.e., fm → f a.e. in Ω and ‖fm‖L∞(Ω) ≤ C‖f‖L∞(Ω) with
some constant C = CΩ. When Ω is a bounded or an exterior domain, this approximation
is known to hold [2, Lemma 6.3], [3, Lemma 5.1]. In the following, we restrict our results
to bounded and exterior domains. By the approximation argument for L∞σ , we verify the
existence of a solution to (1.1)–(1.3) for general f ∈ L∞σ . We then define the Stokes oper-
ator on L∞σ by the same way as for C0,σ. Since bounded and exterior domains are strictly
admissible [2, Theorem 2.5], [3, Theorem 3.1] provided that the boundary is C3, we have:

T 1.3. – Assume that Ω is a bounded or an exterior domain with C3-boundary.
Then, the Stokes operatorA generates a (non-C0-)analytic semigroup onL∞σ (Ω) of angle π/2.

R 1.4. – (i) The direct resolvent approach clarifies the angle of the analyticity
of the Stokes semigroup etA on C0,σ. Theorem 1.2 (and also Theorem 1.3) asserts that etA is
angle π/2 onC0,σ which does not follow from a prioriL∞-estimates for solutions to the non-
stationary Stokes equations proved by blow-up arguments [2, Theorem 1.2], [3, Lemma 2.12].

(ii) We observe that our argument applies to other boundary conditions, for example, to
the Robin boundary condition, i.e., B(v) = 0 and v · nΩ = 0 on ∂Ω where

B(v) = αvtan + (D(v)nΩ)tan for α ≥ 0.

Here,D(v) = (∇v+∇T v)/2 denotes the deformation tensor and ftan the tangential compo-
nent of a vector field f on ∂Ω. Note that the case α =∞ corresponds to the Dirichlet bound-
ary condition (1.3); see [32] for generation results subject to the Robin boundary conditions
on L∞ for Rn

+. The Lp-resolvent estimate for the Robin boundary condition was established
in [21] concerning analyticity and was later strengthened in [34] to non homogeneous diver-
gence vector fields. We shall use the generalized resolvent estimate in [34] to extend our result
in spaces of bounded functions to the Robin boundary condition (Theorem 3.6). For a more
detailed discussion, see Remark 3.5.
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(iii) We observe that the domain of the Stokes operator D(A) is dense in C0,σ. In fact, by
the L̃p-theory and (1.4), we have

‖λv − f‖L∞(Ω) = ‖Ãpv‖L∞(Ω) ≤
C

|λ|
‖Ãpf‖L∞(Ω) → 0, |λ| → ∞

for f ∈ C∞c,σ ⊂ D(Ãp), where Ãp is the Stokes operator in L̃p. Thus, we conclude thatD(A) is
dense inC0,σ. On the other hand, smooth functions are not dense in L∞ and etAf is smooth
for t > 0, etAf → f as t ↓ 0 in L∞σ does not hold for some f ∈ L∞σ . This means etA is a
non-C0-analytic semigroup. We refer to [35, 1.1.2] for properties of the analytic semigroup
generated by non-densely defined sectorial operators; see also [10, Definition 3.2.5].

(iv) For a bounded domain Ω, v(·, t) = etAv0 and∇q = (1−P)[∆v] give a solution to the
non-stationary Stokes equations, vt−∆v+∇q = 0, div v = 0 in Ω×(0,∞) with v = 0 on ∂Ω

for initial data v0 ∈ L∞σ (Ω). Although for unbounded domains the Helmholtz projection
operator P : Lp(Ω)→ Lpσ(Ω) is not bounded on L∞ even for Ω = Rn, we are able to define
the pressure ∇q = K[W (v)] at least for exterior domains Ω by the solution operator to the
Neumann problem (harmonic-pressure operator) K : L∞tan(∂Ω) 3 W 7→ ∇P ∈ L∞d (Ω) [3,
Remarks 4.3 (ii)]. Here,L∞tan(∂Ω) denotes the space of all tangential vector fields inL∞(∂Ω).

(v) We observe that the Masuda-Stewart method does not imply the large time be-
havior for etA. For a bounded domain, the energy inequality implies that maximum
of v(·, t) = etAv0 (and also vt) decay exponentially as t→∞ [2, Remark 5.4 (i)]. In partic-
ular, etA is a bounded analytic semigroup on L∞σ . Recently, based on the L∞-estimates [2,
Theorem 1.2] it was shown in [27] that etA is a bounded semigroup on L∞σ for Ω being an
exterior domain with smooth boundary.

In the sequel, we sketch a proof for the a priori estimate (1.4). Our argument can be divided
into the following three steps:

(i) (Localization) We first localize a solution (v, q) of the Stokes equations (1.1)–(1.3) in a
domain Ω′ = Bx0

((η + 1)r) ∩Ω for x0 ∈ Ω, r > 0 and parameters η ≥ 1 by setting u = vθ0

and p = (q − qc)θ0 with a constant qc and the smooth cut-off function θ0 around Ωx0,r

satisfying θ0 ≡ 1 in Bx0
(r) and θ0 ≡ 0 in Bx0

((η + 1)r)c. We choose parameters η ≥ 1

and r > 0 so that (η + 2)r ≤ r0 with some constant r0. We then observe that (u, p) solves
the Stokes resolvent equations with inhomogeneous divergence condition in the localized
domain Ω′. Since we adjust parameters η ≥ 1 later, we take a C2-bounded domain Ω′′ so
that Ωx0,r0 ⊂ Ω′′ ⊂ Ω. Then, Ω′ ⊂ Ω′′ for all η ≥ 1 and r > 0 satisfying (η + 2)r ≤ r0. We
apply the Lp-estimate for the localized Stokes equations in Ω′′ to get

(1.7) |λ|‖u‖Lp(Ω′′) + |λ|1/2‖∇u‖Lp(Ω′′) + ‖∇2u‖Lp(Ω′′) + ‖∇p‖Lp(Ω′′)

≤ Cp
(
‖h‖Lp(Ω′′) + ‖∇g‖Lp(Ω′′) + |λ|‖g‖W−1,p

0 (Ω′′)

)
,

where W−1,p
0 (Ω′′) denotes the dual space of the Sobolev space W 1,p′(Ω′′) with 1/p+ 1/p′ = 1.

The constant Cp depends on r0 and a choice of Ω′′ but is independent of η ≥ 1 and r > 0

satisfying (η + 2)r ≤ r0. The external forces h and g contain error terms appearing in the
cut-off procedure and are explicitly given by

(1.8) h = fθ0 − 2∇v∇θ0 − v∆θ0 + (q − qc)∇θ0, g = v · ∇θ0.
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542 K. ABE, Y. GIGA AND M. HIEBER

(ii) (Error estimates) A key step is to estimate the error terms of the pressure such
as (q − qc)∇θ0. We here simplify the description by disregarding the terms related to g in
order to describe the essence of the proof. We will give precise estimates for the terms related
to g in Section 3. Now, the error terms related to h supported in Ω′ are estimated in the form

(1.9) ‖h‖Lp(Ω′)

≤ Crn/p
(

(η + 1)n/p‖f‖L∞(Ω) + (η + 1)−(1−n/p)
(
r−2‖v‖L∞(Ω) + r−1‖∇v‖L∞(Ω)

))
.

If we disregard the term (q − qc)∇θ0 in h, the estimate (1.9) easily follows by using the
estimates of the cut-off function θ0, i.e., ‖θ0‖∞+(η+1)r‖∇θ0‖∞+(η+1)2r2‖∇2θ0‖∞ ≤ K
with some constant K. We invoke the estimate (1.5) in order to estimate the pressure term
by velocity term through the Poincaré-Sobolev-type inequality:

(1.10) ‖ϕ− (ϕ)‖Lp(Ωx0,s)
≤ Csn/p‖∇ϕ‖L∞d (Ω) for all ϕ ∈ Ŵ 1,∞

d (Ω),

with some constantC independent of s ≤ r0, where (ϕ) denotes the mean value of ϕ in Ωx0,s

and Ŵ 1,∞
d (Ω) = {ϕ ∈ L1

loc(Ω̄) | ∇ϕ ∈ L∞d (Ω)}. We prove the inequality (1.10) in Section 2.
By taking qc = (q) and applying (1.10) for ϕ = q and s = (η + 1)r, we obtain the
estimate (1.9) via (1.5).

(iii) (Interpolation) Once we establish the error estimates for h and g, it is easy to obtain
the estimate (1.4) by applying the interpolation inequality,

(1.11) ‖ϕ‖L∞(Ωx0,r) ≤ CIr−n/p
(
‖ϕ‖Lp(Ωx0,2r) + r‖∇ϕ‖Lp(Ωx0,2r)

)
for ϕ ∈W 1,p

loc (Ω̄),

and x0 ∈ Ω, r ≤ r0. The constant CI is independent of x0 and r. We give a proof for the
inequality (1.11) in the appendix. Applying the above inequality for ϕ = u and∇u and now
taking r = |λ|−1/2, we obtain the estimate for Mp(v, q)(x0, λ) with the parameters η of the
form,

(1.12) Mp(v, q)(x0, λ) ≤ C
(

(η + 1)n/p‖f‖L∞(Ω) + (η + 1)−(1−n/p)‖Mp(v, q)‖L∞(Ω)(λ)
)

for some constant C independent of η. Note that r = |λ|−1/2 and η satisfy r(η+ 2) ≤ r0 for
all η ≥ 1 and |λ| ≥ δη where δη = (η + 2)2/r2

0. The second term in the right-hand side is
absorbed into the left-hand side by letting η sufficiently large provided p > n.

Actually, in the procedure (ii) we take qc by the mean value of q in Ωx0,(η+2)r and apply the
inequality (1.10) for s = (η+2)r since we estimate |λ‖|g‖W−1,p

0
. By using the equation (1.1),

we reduce the estimate of |λ‖|g‖W−1,p
0

to the L∞-estimate for the boundary value of q − qc
on ∂Ω′. In order to estimate ‖q−qc‖L∞(Ω′), we use a uniformly local Lp-norm bound for∇q
besides the sup-bound for∇v. This is the reason why we need the norm ‖Mp(v, q)‖L∞(Ω)(λ)

in the right-hand side of (1.12). For general elliptic operators, the estimate (1.12) is valid
without invoking the uniformly local Lp-norm bound for second derivatives of solutions.

This paper is organized as follows. In Section 2, we prove the inequality (1.10) for uni-
formly C2-domains. More precisely, we prove stronger estimates than (1.10) both interior
and up to boundary Ωx0,s of Ω. In Section 3, we first prepare the estimates for h and g and
then prove the a priori estimate (1.4) (Theorem 1.1). After proving Theorem 1.1, we also dis-
cuss the estimate (1.4) under the Robin boundary condition.
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R 1.5. – (i) After this work was completed, it turned out that a perturbed
half space of class C3 for n ≥ 3 was also strictly admissible [1, Theorem 2.3.3]. Fur-
thermore, the approximation for f ∈ L∞σ by {fm}∞m=1 ⊂ C∞c,σ, i.e., fm → f a.e. in Ω

and ‖fm‖∞ ≤ C‖f∞‖∞ with C = CΩ, was proved for a perturbed half space, n ≥ 2, in
[1, Lemma 4.3.10]. Thus, our main theorems (Theorem 1.1–Theorem 1.3) are also valid for
a perturbed half space with C3-boundary for n ≥ 3.

(ii) After this work was completed, the authors were informed of the recent paper by
Kenig et al. [24], where the estimate (1.6) was proved for C1,γ-bounded domains by estimat-
ing the Green function for the Neumann problem (independently of the works [2, 3], [1]).
If one applies their result, one is able to reduce the regularity assumption of boundaries
from C3 to C2 at least for bounded domains; the assertion of Theorem 1.3 is still valid for
bounded domains with C2-boundary. For elliptic operators, the estimate corresponding
to (1.4) is valid with C1,1-boundary. However, we use the C2-regularity in the proof of the
inequality (1.10). Note that C1,1-boundary is sufficient for the Lp-estimate of the Stokes
equations (1.7); see [17].

(iii) After this work was completed, it was proved in [23] that etA is a bounded analytic
semigroup on L∞σ (Ω), provided that Ω is an exterior domain with smooth boundary.

2. Poincaré-Sobolev-type inequality

In this section, we prove the inequality (1.10) in a uniformly C2-domain. We start with
the Poincaré-Sobolev-type inequality in a bounded domain D and observe the compactness
of the embedding from Ŵ 1,∞

d (D) to Lp(D) which is the key in proving the inequality (1.10)
by reductio ad absurdum.

2.1. Curvilinear coordinates

Let D be a bounded domain in Rn, n ≥ 2 and p ∈ [1,∞). We prove an inequality of the
form

(2.1) ‖ϕ− (ϕ)‖Lp(D) ≤ C‖∇ϕ‖L∞d (D) for ϕ ∈ Ŵ 1,∞
d (D),

where (ϕ) denotes the mean value of ϕ in D, i.e., (ϕ) = −
∫
D
ϕdx. If we replace the norm

‖∇ϕ‖L∞d (D) by the Lp-norm ‖∇ϕ‖Lp(D), the estimate (2.1) is nothing but the Poincaré in-
equality [12, 5.8.1]. We observe that the boundedness of ‖∇ϕ‖L∞d (Ω) implies Lp-integrability
of ϕ in D even if∇ϕ is not in Lp(D). For example, when D = B0(1), ϕ(x) = log (1− |x|) is
in Lp although |∇ϕ(x)| = dD(x)−1 is not for any p ∈ [1,∞). Since the space Ŵ 1,∞

d is com-
pactly embedded to the space C(D̄′) for each subdomain D′ of D with D̄′ ⊂ D, we shall
show a pointwise upper bound for ϕ near ∂D′ by an Lp-integrable function to conclude that
the space Ŵ 1,∞

d (D) is compactly embedded to Lp(D) by the dominated convergence theo-
rem. We estimate ϕ ∈ Ŵ 1,∞

d (D) near ∂D directly by using the curvilinear coordinates. Here,
for a domain Ω, ∂Ω 6= ∅, we say that ∂Ω is Ck if for each x0 ∈ ∂Ω, there exist constants
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α, β,K and a Ck-function h of n − 1 variables y′ such that (by translation from x0 to the
origin and rotation) we have

U(0) ∩ Ω =
{

(y′, yn)
∣∣ h(y′) < yn < h(y′) + β, |y′| < α

}
,

U(0) ∩ ∂Ω =
{

(y′, yn)
∣∣ yn = h(y′), |y′| < α

}
,

sup
|l|≤k,|y′|<α

∣∣∂ly′h(y′)
∣∣ ≤ K, ∇′h(0) = 0, h(0) = 0,

where U(0) denotes the neighborhood of the origin of the form

U(0) =
{

(y′, yn) ∈ Rn
∣∣ h(y′)− β < yn < h(y′) + β, |y′| < α

}
.

Here, ∂lx = ∂l1x1
· · · ∂lnxn for a multi-index l = (l1, . . . , ln) and ∂xj = ∂/∂xj as usual and

∇′ denotes the gradient in Rn−1. Moreover, if we are able to take uniform constants α, β,K
independent of each x0 ∈ ∂Ω, we call Ω uniformly Ck-domain of type (α, β,K) as defined
in [36, I.3.2].

We estimate ϕ ∈ Ŵ 1,1
d (Ω) along the boundary using the curvilinear coordinates.

P 2.1. – Let D be a bounded domain with Ck-boundary, k ≥ 2. Let
Γ = {x ∈ ∂D | x = (x′, h(x′)), |x′| < α′} be a neighborhood of x0 = 0 ∈ ∂D.

(i) There exist positive constants µ and α′ such that (γ, d) 7→ X(γ, d) = γ + dnD(γ) is
a Ck−1 diffeomorphism from Γ× (0, µ) onto

N µ(Γ) = {X(γ, d) ∈ U(0) | (γ, d) ∈ Γ× (0, µ)},

i.e., x ∈ N µ(Γ) has a unique projection to ∂D denoted by γ(x) ∈ ∂D such that

(γ(x), dD(x)) = X−1(x) for x ∈ N µ(Γ).

(ii) There exists a constant C1 such that for any x1 ∈ N µ(Γ) and r1 > 0 satisfying
Dx1,r1 = Bx1

(r1) ∩D ⊂ N µ(Γ),

|ϕ(x)− ϕ(y)| ≤ C1

(∣∣∣∣log
dD(x)

dD(y)

∣∣∣∣+
|γ(x)− γ(y)|

max{dD(x), dD(y)}

)
sup

z∈Dx1,r
dD(z)|∇ϕ(z)|

for x, y ∈ Dx1,r1 and ϕ ∈ Ŵ 1,∞
d (D).

Proof. – The assertion (i) is based on the inverse function theorem [25, Lemma 4.4.7].
We shall prove the second assertion (ii). We take points x, y ∈ Dx1,r1 for x1 ∈ N µ(Γ)

and r1 > 0 satisfying Dx1,r1 ⊂ N µ(Γ). We may assume dD(y) = d(y) > d(x). By
setting z = X(γ(x), d(y)) we estimate

|ϕ(x)− ϕ(y)| ≤ |ϕ(x)− ϕ(z)|+ |ϕ(z)− ϕ(y)|.
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We connect x and z by the straight line to estimate

|ϕ(x)− ϕ(z)| =
∣∣∣∣∫ 1

0

d

dt
ϕ(X(γ(x), td(x) + (1− t)d(y)))dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

(d(y)− d(x))(∇ϕ)(X(γ(x), td(x) + (1− t)d(y)) · nD(γ(x))dt

∣∣∣∣
≤ (d(y)− d(x))

∫ 1

0

dt

t(d(x)− d(y)) + d(y)
sup

z∈Dx1,r
d(z)|∇ϕ(z)|

=

∣∣∣∣log
d(y)

d(x)

∣∣∣∣ sup
z∈Dx1,r

d(z)|∇ϕ(z)|.

It remains to estimate |ϕ(z)− ϕ(y)|. We connect z and y by the curve

Cz,y = {X(γ(t), d(y)) | γ(t) = (γ′(t), h(γ′(t))), γ′(t) = tγ′(x) + (1− t)γ′(y), 0 ≤ t ≤ 1},

where γ′ denotes the n− 1 variables of γ. We then estimate

|ϕ(z)− ϕ(y)| =
∣∣∣∣∫ 1

0

d

dt
ϕ(X(γ(t), d(y)))dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

dγ

dt
(t)(1 + d(y)∇∂DnD(γ(t)))∇ϕ(X(γ(t), d(y)))dt

∣∣∣∣
≤ C(1 + µK)

|γ(x)− γ(y)|
d(y)

sup
z∈Dx1,r1

d(z)|∇ϕ(z)|,

since |dγ(t)/dt| ≤ C|γ(x) − γ(y)| and |∇∂DnD| ≤ K with a constant C depending on K.
The assertion (ii) thus follows.

R 2.2. – (i) We observe from the second assertion that ϕ ∈ Ŵ 1,∞
d (D) is

bounded from above by an Lp-integrable function for all p ∈ [1,∞) near ∂D, i.e., for
each fixed y ∈ Dx1,r1 such that dD(y) ≥ δ we have

(2.2) |ϕ(x)| ≤ C2(| log dD(x)|+ 1)

(
sup

z∈Dx1,r1
dD(z)|∇ϕ(z)|

)
+ |ϕ(y)| for x ∈ Dx1,r1

with a constant C2 depending on µ, δ.

(ii) Note that Proposition 2.1 is also valid for a uniformlyCk-domain Ω of type (α, β,K),
i.e., there exist constants µ, α′, depending only on α, β,K, such that for each x0 ∈ ∂Ω the
assertions (i) and (ii) hold. The above constants C1 and C2 are depending only on α, β,K
and δ. In the sequel, we will apply Proposition 2.1 to a uniformly C2-domain to prove the
inequality (1.10).

The estimate (2.2) implies the compactness from Ŵ 1,∞
d (D) to Lp(D).

L 2.3. – Let D be a bounded domain in Rn, n ≥ 2, with C2-boundary. Then, there
exists a constant CD such that the estimate (2.1) holds for all ϕ ∈ Ŵ 1,∞

d (D). Moreover, the
space Ŵ 1,∞

d (D) is compactly embedded into Lp(D).
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Proof. – We argue by contradiction. Suppose that the estimate (2.1) were false for any
choice of the constant C. Then, there would exist a sequence of functions {ϕm}∞m=1 ⊂
Ŵ 1,∞
d (D) such that

‖ϕm − (ϕm)‖Lp(D) > m‖∇ϕm‖L∞d (D), m ∈ N.

We may assume (ϕm) = 0 by replacing ϕm to ϕm − (ϕm). We divide ϕm by Mm = ‖ϕm‖Lp(D)

to get a sequence of functions {φm}∞m=1, φm = ϕm/Mm such that

‖∇φm‖L∞d (D) < 1/m,

‖φm‖Lp(D) = 1 with (φm) = 0.

We now prove the compactness of {φm}∞m=1 in Lp(D). Since ‖∇φm‖L∞d (D) is bounded,
there exists a subsequence still denoted by {φm}∞m=1 such that φm converges to a limit φ̄
locally uniformly in D. By Proposition 2.1, in particular, the estimate (2.2) implies that
φm is uniformly bounded from above by an Lp-integrable function near ∂D. The dominated
convergence theorem implies that

φm → φ̄ in Lp(D) as m→∞.

Since ∇φm(x) → 0 as m → ∞ for each x ∈ D and ‖φ̄‖Lp(D) = 1, φ̄ is a non-zero constant
which contradicts the fact that (φ̄) = 0. We reached a contradiction.

For the compactness of {φm}∞m=1 in Lp(D), we here only invoke the bound for ‖∇φm‖L∞d (D).

This means that the embedding from Ŵ 1,∞
d (D) into Lp(D) is compact. The proof is now

complete.

2.2. Estimates near the boundary

We now prove the inequality (1.10) for uniformly C2-domains Ω. When the ball Bx0
(r)

locates in the interior of Ω, i.e., Ωx0,r = Bx0
(r), applying (2.1) to ϕr(x) = ϕ(x0 + rx)

in D = B0(1) implies the estimate

(2.3) ‖ϕ− (ϕ)‖Lp(Ωx0,r) ≤ Crn/p sup
z∈Ωx0,r

dΩx0,r
(z)|∇ϕ(z)|, r > 0.

Since dΩx0,r
(x) ≤ dΩ(x) for x ∈ Ωx0,r, the assertion (1.10) follows. However, if Bx0

(r)

involves ∂Ω, the boundary of Ωx0,r may not have C1-regularity. We thus prove

(2.4) ‖ϕ− (ϕ)‖Lp(Ωx0,r) ≤ Crn/p sup
z∈Ωx0,r

dΩ(z)|∇ϕ(z)| for ϕ ∈ Ŵ 1,∞
d (Ω)

for x0 ∈ Ω and r > 0 satisfying dΩ(x0) < r, which is weaker than (2.3).

P 2.4. – Let Ω be a uniformlyC2-domain. There exist constants r0 andC such
that forx0 ∈ Ω and r ≤ r0 satisfyingdΩ(x0) < r, the estimate (2.4) holds for allϕ ∈ Ŵ 1,∞

d (Ω)

with a constant C independent of x0 and r.

The inequality (1.10) easily follows from Proposition 2.4.

L 2.5. – The inequality (1.10) holds for ϕ ∈ Ŵ 1,∞
d (Ω) for all x0 ∈ Ω and r ≤ r0

with a constant C independent of x0 and r.

Proof. – For r < r0, combining (2.3) for dΩ(x0) ≥ r with (2.4) for dΩ(x0) < r, the
assertion (1.10) follows.
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Proof of Proposition 2.4. – We argue by contradiction. Suppose that the estimate (2.4)
were false for any choice of constants r0 and C. Then, there would exist a sequence
of functions {ϕ}∞m=1 ⊂ Ŵ

1,∞
d (Ω) and a sequence of points {xm}∞m=1 ⊂ Ω satisfying

dΩ(xm) < rm ↓ 0 such that

‖ϕm − (ϕm)‖Lp(Ωxm,rm ) > mrm
n/p sup

z∈Ωxm,rm

dΩ(z)|∇ϕm(z)|, m ∈ N.

Replacing ϕm by ϕm − (ϕm) and dividing ϕm by r
−n/p
m ‖ϕm‖Lp(Ωxm,rm ) (still denoted

by ϕm), we observe that ϕm satisfies

sup
z∈Ωxm,rm

dΩ(z)|∇ϕm(z)| < 1/m,

rm
−n/p‖ϕm‖Lp(Ωxm,rm ) = 1 with (ϕm) = 0.

Since the points {xm}∞m=1 accumulate at the boundary ∂Ω, we may assume by rotation and
translation of Ω that xm = (0, dm) with dm = dΩ(xm) which subsequently converges to
the origin located on the boundary ∂Ω. Here, the neighborhood of the origin is denoted
by Ωloc = U(0) ∩ Ω with constants α, β and C2-function h, i.e.,

Ωloc = {(x′, xn) ∈ Rn
+ | h(x′) < xn < h(x′) + β, |x′| < α}.

We rescale ϕm around the point xm by setting

φm(x) = ϕm(xm + rmx) for x ∈ Ωm,

where Ωm = {x ∈ Rn | x = (y − xm)/rm, y ∈ Ω} is the rescaled domain. Since cm = dm/rm < 1,
by taking a subsequence we may assume limm→∞ cm = c0 ≤ 1. We then observe that the
rescaled domain Ωm expands to a half space Rn

+,−c0 = {(x′, xn) ∈ Rn | xn > −c0}. In fact,
the neighborhood Ωloc ⊂ Ω is rescaled to the domain

Ωmloc =

{
(x′, xn) ∈ Rn

∣∣∣∣∣ 1

rm
h(rmx

′)− cm < xn <
1

rm
h(rmx

′) +
β

rm
, |x′| < α

rm

}

which converges to Rn
+,−c0 by letting m → ∞. Note that constants of uniformly regu-

larity of ∂Ωm are uniformly bounded under this rescaling procedure. Moreover, for any
constants µ and α′, the curvilinear neighborhood of the origin N µ(Γ) is in Ωmloc for suffi-
ciently large m ≥ 1, where Γ = Γα′(0) is the neighborhood of the origin on ∂Ωm. Then, the
estimates for ϕm are inherited to the estimates for φm, i.e.,

sup
z∈Ωm0,1

dΩm(z)|∇φm(z)| < 1/m, m ∈ N,

‖φm‖Lp(Ωm0,1) = 1 with (φm) = −
∫

Ωm0,1

ϕdx = 0,

where Ωm0,1 = B0(1) ∩ Ωm. From the above bound for ∇φm, there exists a subsequence still
denoted by {φm}∞m=1 such that φm converges to a limit φ̄ locally uniformly in (Rn

+,−c0)0,1 =

Rn
+,−c0 ∩B0(1).
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We now observe the compactness of the sequence {φm}∞m=1 in Lp((Rn
+,−c0)0,1). By Re-

mark 2.2 (ii), we apply Proposition 2.1 to Ωm to get the estimate (2.2) with x1 = 0, r = 1 and
a fixed y ∈ Ωm0,1 satisfying dΩm(y) ≥ δ, i.e.,

|φm(x)| ≤ C(| log dΩm(x)|+ 1)

(
sup
z∈Ωm0,1

dΩm(z)|∇φm(z)|

)
+ |φm(y)| for x ∈ Ωm0,1,

for sufficiently large m ≥ 1. Here, the constant C is independent of m ≥ 1. Since φm is
uniformly bounded from above by an Lp-integrable function in Ωm0,1, the dominated conver-
gence theorem implies that φm converges to a limit φ̄ inLp((Rn

+,−c0)0,1). Since∇φm(x)→ 0

as m → ∞ for each x ∈ (Rn
+,−c0)0,1 and ‖φ̄‖Lp((Rn

+,−c0
)0,1) = 1, φ̄ is a non-zero constant

which contradicts the fact that (φ̄) = 0. We reached a contradiction and the proof is now
complete.

3. A priori estimates for the Stokes equations

The goal of this section is to prove the a priori estimate (1.4) by using the inequality (1.10).
A key step is to establish the estimates for h and g in the procedure (ii) as explained in the in-
troduction. We first recall theLp-estimates to the Stokes equations (1.7) and the interpolation
inequality (1.11). Note that the constantCp in (1.7) depends on r0 and Ω′′ but is independent
of parameters η ≥ 1 and r ≤ r0 satisfying (η + 2)r ≤ r0.

3.1. Lp-estimates for localized equations

Let Ω′′ be a bounded domain withC2-boundary. For the a priori estimate (1.4), we invoke
the Lp-estimates (1.7) to the Stokes resolvent equations with inhomogeneous divergence
condition,

λu−∆u+∇p = h in Ω′′,(3.1)

div u = g in Ω′′,(3.2)

u = 0 on ∂Ω′′,(3.3)

for h ∈ Lp(Ω′′), g ∈ W 1,p(Ω′′) ∩ Lpav(Ω′′) and λ ∈ Σϑ,0 where ϑ ∈ (π/2, π). Here, Lpav(Ω′′)

denotes the space of all functions g in Lp(Ω′′) satisfying average zero, i.e.,
∫

Ω′′
gdx = 0.

P 3.1 ([16], [17, Theorem 1.2]). – Let ϑ ∈ (π/2, π) and λ ∈ Σϑ,0. For
h ∈ Lp(Ω′′) and g ∈W 1,p(Ω′′) ∩ Lpav(Ω

′′), there exists a unique solution of (3.1) (3.3)
satisfying the estimate (1.7) with the constant Cp depending on ϑ, p, n and the C2-regularity
of ∂Ω′′.

We estimate theL∞-norms of a solution up to first derivatives via the Sobolev embeddings
together with the Lp-estimates (1.7) for p > n. In order to estimate the L∞-norms of
a solution, we apply the interpolation inequality (1.11). Actually, if Ωx0,r = Bx0(r), the
stronger estimate (A.1) holds, i.e., we are able to replace the right-hand side of (1.11) by the
norms forϕ and∇ϕ onBx0(r). However, ifBx0(r) is near the boundary ∂Ω, ∂Ωx0,r may not
be C1-boundary. We thus estimate the sup-norm of ϕ in Ωx0,r by the norms for ϕ and ∇ϕ
in Ωx0,2r. In the appendix, we prove the inequality (1.11) with the constant CI independent
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of x0 and r; see Lemma A.2. In what follows, we fix the constant r0 with the same constant r0

given in Lemma 2.5.

3.2. Estimates in the localization procedure

We prepare the estimates for h and g in the procedure (ii). The estimate for |λ‖|g‖W−1,p
0

is different from that of ‖h‖Lp . In order to estimate |λ‖|g‖W−1,p
0

, we use the uniformly
localLp-norm bound for∇q besides the sup-bound of∇v as in (3.7). After establishing these
estimates, we will put the procedures (i)-(iii) together in the next subsection.

Let Ω be a uniformly C2-domain. Let θ be a smooth cut-off function satisfying θ ≡ 1

in [0, 1/2] and θ ≡ 0 in [1,∞). For x0 ∈ Ω and r > 0, we set θ0(x) = θ(|x − x0|/(η + 1)r)

with parameters η ≥ 1 and observe that θ0 ≡ 1 in Bx0
(r) and θ0 ≡ 0 in Bx0

((η+ 1)r)c. The
cut-off function θ0 is uniformly bounded by a constant K, i.e.,

(3.4) ‖θ0‖∞ + (η + 1)r‖∇θ0‖∞ + (η + 1)2r2‖∇2θ0‖∞ ≤ K, for η ≥ 1.

Let (v,∇q) ∈ W 2,p
loc (Ω̄)× Lploc(Ω̄) be a solution of (1.1)–(1.3) for f ∈ L∞σ (Ω) and λ ∈ Σϑ,0.

We localize a solution (v,∇q) in the domain Ω′ = Ωx0,(η+1)r by setting u = vθ0 and p = q̂θ0

where q̂ = q − qc and a constant qc. Then, (u,∇p) solves the localized equation (3.1)–(3.3)
in the domain Ω′ with h and g given by (1.8). We take parameters η ≥ 1 and r > 0 such
that (η + 2)r ≤ r0. Since we adjust parameters η ≥ 1 later, we take aC2-bounded domain Ω′′

such that Ωx0,r0 ⊂ Ω′′ and apply the Lp-estimate (1.7) in Ω′′. Note that Ω′ ⊂ Ω′′ for all η ≥ 1

and r > 0 satisfying (η + 2)r ≤ r0. We shall show the following estimates for h and g:

‖∇g‖Lp(Ω′′) ≤ C1r
n/p(η + 1)−(1−n/p) (r−1‖∇v‖L∞(Ω) + r−2‖v‖L∞(Ω)

)
,(3.5)

‖h‖Lp(Ω′′) ≤ C2r
n/p

(
(η + 1)n/p‖f‖L∞(Ω)

+ (η + 1)−(1−n/p)
(
r−1‖∇v‖L∞(Ω) + r−2‖v‖L∞(Ω)

))
,(3.6)

|λ‖|g‖W−1,p
0 (Ω′′) ≤ C3r

n/p

(
(η + 1)n/p‖f‖L∞(Ω)

+ (η + 1)−(1−2n/p)
(
r−1‖∇v‖L∞(Ω) + r−n/p sup

z∈Ω
‖∇q‖Lp(Ωz,r)

))
.(3.7)

The constants C1, C2 and C3 are independent of r and η ≥ 1 satisfying (η+ 2)r ≤ r0. Since
h and g are supported in Ω′, we have ‖h‖Lp(Ω′) = ‖h‖Lp(Ω′′) and ‖∇g‖Lp(Ω′) = ‖∇g‖Lp(Ω′′).

For the estimates of the terms f, v and ∇v, we use the estimates

‖fθ0‖Lp(Ω′) ≤ KC1/p
n rn/p(η + 1)n/p‖f‖L∞(Ω),(3.8)

‖∇v∇θ0‖Lp(Ω′) ≤ KC1/p
n rn/p(η + 1)−(1−n/p)r−1‖∇v‖L∞(Ω),(3.9)

‖v∇2θ0‖Lp(Ω′) ≤ KC1/p
n rn/p(η + 1)−(1−n/p)r−2‖v‖L∞(Ω),(3.10)

for all r > 0 and η ≥ 1, where the constantCn denotes the volume of the n-dimensional unit
ball. Since ∇g = ∇v∇θ0 + v∇2θ0 does not contain the pressure, the estimate (3.5) easily
follows from the estimates (3.9) and (3.10).
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For the estimates (3.6) and (3.7), we apply the inequality (1.10). We choose a constant qc
by a mean value of q in Ωx0,(η+2)r, i.e.,

(3.11) qc = −
∫

Ωx0,(η+2)r

q(x)dx.

We then observe that the inequality (1.10) implies the estimate

(3.12) ‖q̂‖Lp(Ωx0,(η+2)r) ≤ Crn/p(η + 2)n/p‖∇q‖L∞d (Ω)

for r > 0 and η ≥ 1 satisfying (η + 2)r ≤ r0, where q̂ = q − qc.
In order to show the estimate (3.7), we estimate the L∞-norm of q̂ on Ω′ since by using

the equation λv = f + ∆v − ∇q, we reduce (3.7) to the estimate of the boundary value
of q̂ on ∂Ω′. This is the reason why we take qc by (3.11). We apply the inequality (1.11)
in Ωx1,r/2 ⊂ Ωx0,(η+2)r for x1 ∈ Ω′ and r ≤ r0 with p > n to estimate

‖q̂‖L∞(Ωx1,r/2) ≤ CIr−n/p
(
‖q̂‖Lp(Ωx1,r) + r‖∇q‖Lp(Ωx1,r)

)
≤ CIr−n/p

(
‖q̂‖Lp(Ωx0,(η+2)r) + r sup

z∈Ω
‖∇q‖Lp(Ωz,r)

)
.(3.13)

Combining the estimate (3.13) with (3.12) and taking a supremum for x1 ∈ Ω′, we have

(3.14) ‖q̂‖L∞(Ω′) ≤ C
(

(η + 2)n/p‖∇q‖L∞d (Ω) + r1−n/p sup
z∈Ω
‖∇q‖Lp(Ωz,r)

)
.

We now invoke the strictly admissibility of a domain Ω to estimate the norm ‖∇q‖L∞d (Ω) by
the sup-norm of∇v in Ω via (1.5).

P 3.2. – Let Ω be a uniformlyC2-domain. Assume that Ω is strictly admissible.
Then, the estimate

(3.15) ‖q̂‖Lp(Ω′) ≤ C4r
n/p(η + 2)n/p‖∇v‖L∞(Ω)

holds for all r > 0 and η ≥ 1 satisfying (η + 2)r ≤ r0 and p ∈ [1,∞). If in addition p > n,
then the estimate

(3.16) ‖q̂‖L∞(Ω′) ≤ C5

(
(η + 2)n/p‖∇v‖L∞(Ω) + r1−n/p sup

z∈Ω
‖∇q‖Lp(Ωz,r)

)
holds. The constants C4 and C5 are independent of r and η.

Proof. – By (1.5), (3.12) and (3.14), the assertion follows.

By using the estimates (3.15) and (3.16), we obtain the estimates (3.6) and (3.7).

L 3.3. – Let Ω be a strictly admissible, uniformly C2-domain.

Let (v,∇q) ∈W 2,p
loc (Ω̄)× (Lploc(Ω̄) ∩ L∞d (Ω)) be a solution of (1.1) (1.3) for f ∈ L∞σ (Ω),

λ ∈ Σϑ,0 and p > n. Then, the estimates (3.5) (3.7) hold for Ω′ = Bx0((η+1)r)∩Ω, x0 ∈ Ω,
r > 0 and η ≥ 1 satisfying (η+2)r ≤ r0 with the constantsC1,C2 andC3 independent of x0, r
and η.
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Proof. – As mentioned before, (3.5) follows from (3.9) and (3.10). The estimate (3.6)
follows from the estimates (3.8)–(3.10) and (3.15). We shall show the estimate (3.7). Since
‖g‖W−1,p

0 (Ω′′) ≤ ‖g‖W−1,p
0 (Ω′), we estimate ‖g‖W−1,p

0 (Ω′). Note that ∂Ω′may not beC1 on the

intersection ∂Ω∩Bx0
((η+1)r). We first show (3.7) with assuming that ∂Ω′ hasC1-boundary.

By using the equation λg = λv · ∇θ0 = (f + ∆v −∇q) · ∇θ0, we estimate

|λ‖|g‖W−1,p
0 (Ω′) ≤ ‖f · ∇θ0‖W−1,p

0 (Ω′) + ‖∆v · ∇θ0‖W−1,p
0 (Ω′) + ‖∇q · ∇θ0‖W−1,p

0 (Ω′).

Since ‖f · ∇θ0‖W−1,p
0 (Ω′) ≤ ‖fθ0‖Lp(Ω′) for f ∈ L∞σ (Ω), it suffices to show the estimates

‖∆v · ∇θ0‖W−1,p
0 (Ω′) ≤ C6r

n/p(η + 1)−(1−n/p)r−1‖∇v‖L∞(Ω),

(3.17)

‖∇q · ∇θ0‖W−1,p
0 (Ω′) ≤ C7r

n/p(η + 1)−(1−2n/p)

(
r−1‖∇v‖L∞(Ω) + r−n/p sup

z∈Ω
‖∇q‖Lp(Ωz,r)

)
.

(3.18)

We first show (3.17). Take ϕ ∈ W 1,p′(Ω′) satisfying ‖ϕ‖W 1,p′ (Ω′) ≤ 1. By using div v = 0,
integration by parts yields that

n∑
i,j=1

∫
Ω′
∂2
j v
i∂iθ0ϕdx

=

n∑
i,j=1

∫
Ω′

(∂jv
i − ∂ivj)∂jθ0∂iϕdx−

∫
∂Ω′

(∂jv
i − ∂ivj)∂jθ0ϕn

i
ΩdH n−1(x).

We estimate the second term in the right-hand side by the W 1,1-norm of ϕ in Ω′ [12, 5.5
Theorem 1.1] to estimate

(3.19) ‖ϕ‖L1(∂Ω′) ≤ CT ‖ϕ‖W 1,1(Ω′) ≤ 2CT |Ω′|1/p

with the constant CT depending on the C1-regularity of the boundary ∂Ω but independent
of |Ω′|, the volume of Ω′. We thus obtain∣∣∣∣∣∣

n∑
i,j=1

∫
Ω′
∂2
j v
i∂iθ0ϕdx

∣∣∣∣∣∣ ≤ (1 + 2CT )

n∑
i,j=1

‖(∂jvi − ∂ivj)∂jθ0‖L∞(Ω′)|Ω′|1/p

≤ 4n(1 + 2CT )KCn
1/prn/p(η + 1)−(1−n/p)r−1‖∇v‖L∞(Ω).

Thus, the estimate (3.17) holds with the constant C6 independent of r and η. It remains to
show the estimate (3.18). Since∇q = ∇q̂, integration by parts yields that∫

Ω′
∇q · ∇θ0ϕdx = −

∫
Ω′
q̂(∆θ0ϕ+∇θ0 · ∇ϕ)dx+

∫
∂Ω′

q̂ϕ∇θ0 · nΩ′dH n−1(x)

= I + II + III.
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Combining (3.4), (3.19) with (3.16), we obtain

II + III ≤ (1 + 2CT )‖q̂∇θ0‖L∞(Ω′)|Ω′|1/p

≤ (1 + 2CT )KCn
1/prn/p(η + 1)−(1−n/p)r−1‖q̂‖L∞(Ω′)

≤ Crn/p(η + 1)−(1−2n/p)

(
r−1‖∇v‖L∞(Ω) + r−n/p sup

z∈Ω
‖∇q‖Lp(Ωz,r)

)
,

with the constant C depending on CT ,K,Cn, p, C4 and C5 but independent of r and η.
We complete the proof by showing the estimate for I. Applying the Hölder inequality,
for s, s′ ∈ (1,∞) with 1/s+ 1/s′ = 1 we have

I ≤ K(η + 1)−2r−2‖ϕ‖Ls(Ω′)‖q̂‖Ls′ (Ω′).

Since p > n, the conjugate exponent p′ is strictly smaller than n/(n − 1) for n ≥ 2. By
setting 1/s = 1/p′ − 1/n, we apply the Sobolev inequality [12, 5.6 Theorem 2] to estimate
‖ϕ‖Ls(Ω′) ≤ CS‖ϕ‖W 1,p′ (Ω′) ≤ CS with the constant Cs independent of |Ω′|. Applying the
estimate (3.15) to q̂ yields

I ≤ Crn/s
′−2(η + 2)n/s

′−2‖∇v‖L∞(Ω)

≤ Crn/p(η + 2)−(1−n/p)r−1‖∇v‖L∞(Ω),

since 1/s′ = 1 − 1/s = 1/p + 1/n. The constant C is independent of r and η. Thus, we
proved (3.7) with assuming the C1-regularity for ∂Ω′.

If ∂Ω′ is not C1, we modify Ω′ around the intersection ∂Ω ∩ Bx0
((η + 1)r), i.e., we take

a C1-bounded domain Ω̃′ ⊂ Ω′′ such that Ω′ ⊂ Ω̃′ and |Ω̃′| ≤ C|Ω′| with the constant C
depending on the C1-regularity of ∂Ω, but independent of |Ω′|. For example, we take
a C1-domain Ω̃′ such that Ωx0,(η+1)r ⊂ Ω̃′ ⊂ Ωx0,(η+3/2)r. Since Ω̃′ ⊂ Ω′′ and g is sup-
ported in Ω′, it follows that ‖g‖W−1,p

0 (Ω′′) ≤ ‖g‖W−1,p
0 (Ω̃′). Then, we are able to estimate

‖g‖W−1,p
0 (Ω̃′) in the same way as above. In fact, we are able to show the estimates:

‖∆v · ∇θ0‖W−1,p
0 (Ω̃′) ≤ C

′
6r
n/p(η + 1)−(1−n/p)r−1‖∇v‖L∞(Ω),

(3.17′)

‖∇q · ∇θ0‖W−1,p
0 (Ω̃′) ≤ C ′7r

n/p(η + 1)−(1−2n/p)

(
r−1‖∇v‖L∞(Ω) + r−n/p sup

z∈Ω
‖∇q‖Lp(Ωz,r)

)
.

(3.18′)

The estimates (3.7) follows from (3.17′) and (3.18′). The estimate (3.17′) follows by the same
way with (3.17) since ∂Ω′ is C1 and |Ω̃′| ≤ C|Ω′|.

We shall show (3.18′). Since ‖q̂‖L∞(Ω̃′) ≤ ‖q̂‖L∞(Ωx0,(η+2)r) = supx1∈Ω′ ‖q̂‖L∞(Ωx1,r/2),
the stronger estimate than (3.14) holds, i.e.,

‖q̂‖L∞(Ω̃′) ≤ C
(

(η + 2)n/p‖∇q‖L∞d (Ω) + r1−n/p sup
z∈Ω
‖∇q‖Lp(Ωz,r)

)
.

Thus, we are able to replace the left-hand side of (3.15) and (3.16) by ‖q̂‖L∞(Ω̃′). Then, the
estimate (3.18′) follows by the same way with (3.18).

We proved (3.7). The proof is now complete.
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R 3.4. – From the estimate (3.7), we observe that the exponent −(1 − 2n/p)

of (η + 1) in front of the term (r−1‖∇v‖L∞(Ω) + r−n/p supz∈Ω ‖∇q‖Lp(Ωz,r)) is negative
provided that p > 2n. We thus first prove the a priori estimate (1.4) for p > 2n. Once we
obtain the estimate |λ‖|v‖L∞(Ω) ≤ C‖f‖L∞(Ω), it is easy to replace the estimate (3.7) with

|λ‖|g‖W−1,p
0 (Ω′) ≤ CKCn

1/nrn/p(η + 1)n/p‖f‖L∞(Ω)

for p > n since

|λ‖|v · ∇θ0‖W−1,p
0 (Ω′) ≤ |λ‖|vθ0‖Lp(Ω)

≤ C‖θ0‖Lp(Ω′)‖f‖L∞(Ω)

≤ CKCn1/prn/p(η + 1)n/p‖f‖L∞(Ω).

3.3. Interpolation

We now prove the a priori estimate (1.4) for p > n. The parameters η and the constant δ
are determined only through the constants Cp, CI and C1–C3. Although we eventually ob-
tain the estimate (1.12) for all p > n, firstly we prove the case p > 2n as observed by Re-
mark 3.4. The case p > 2n is enough for analyticity but, for the completeness, we prove the
estimate (1.4) for all p > n.

Proof of Theorem 1.1. – We set δ = δη = (η + 2)2/r0
2 and now take r = 1/|λ|1/2

for λ ∈ Σϑ,δ. We then observe that r = 1/|λ|1/2 and η ≥ 1 automatically satisfy r(η + 2) ≤ r0

for λ ∈ Σϑ,δ. We take a C2-bounded domain Ω′′ such that Ωx0,r0 ⊂ Ω′′ ⊂ Ω. Then, Ω′ ⊂ Ω′′

for all η ≥ 1 and r > 0 satisfying (η + 2)r ≤ r0. We first prove:

Case (I). – Let p > 2n. We apply the Lp-estimates (1.7) to u = vθ0 and p = q̂θ0 in Ω′′ to get

|λ|‖u‖Lp(Ω′′) + |λ|1/2‖∇u‖Lp(Ω′′) + ‖∇2u‖Lp(Ω′′) + ‖∇p‖Lp(Ω′′)

≤ Cp
(
‖h‖Lp(Ω′′) + ‖∇g‖Lp(Ω′′) + |λ|‖g‖W−1,p

0 (Ω′′)

)
,

where the constant Cp depends on r0, but independent of η ≥ 1 and r > 0 satisfying
(η + 2)r ≤ r0. Combining the above estimate and (3.5)–(3.7), we obtain

(3.20) |λ‖|u‖Lp(Ω′′) + |λ|1/2‖∇u‖Lp(Ω′′) + ‖∇2u‖Lp(Ω′′) + ‖∇p‖Lp(Ω′′)

≤ C8|λ|−n/2p
(

(η + 1)n/p‖f‖L∞(Ω) + (η + 1)−(1−2n/p)‖Mp(v, q)‖L∞(Ω)(λ)
)
,

with the constantC8 independent of r = 1/|λ|1/2 and η ≥ 1. We next estimate theL∞-norms
of u and ∇u in Ω by interpolation. Applying the interpolation inequality (1.11) for ϕ = u

and∇u implies the estimates

‖u‖L∞(Ωx0,r) ≤ CIr−n/p
(
‖u‖Lp(Ωx0,2r) + r‖∇u‖Lp(Ωx0,2r)

)
,

‖∇u‖L∞(Ωx0,r) ≤ CIr−n/p
(
‖∇u‖Lp(Ωx0,2r) + r‖∇2u‖Lp(Ωx0,2r)

)
.
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Summing up these norms together with |λ|n/2p‖∇2u‖Lp(Ωx0,r) and |λ|n/2p‖∇p‖Lp(Ωx0,r), we
have

(3.21) Mp(u, p)(x0, λ)

≤ C9r
−n/p

(
|λ‖|u‖Lp(Ωx0,2r) + |λ|1/2‖∇u‖Lp(Ωx0,2r) + ‖∇2u‖Lp(Ωx0,2r) + ‖∇p‖Lp(Ωx0,2r)

)
with the constant C9 independent of r > 0 and η ≥ 1. Since (u,∇p) agrees with (v,∇q)
in Ωx0,r and Ωx0,2r ⊂ Ω′′, combining (3.20) with (3.21) yields
(3.22)

Mp(v, q)(x0, λ) ≤ C10

(
(η + 1)n/p‖f‖L∞(Ω) + (η + 1)−(1−2n/p)‖Mp(v, q)‖L∞(Ω)(λ)

)
with C10 = C8C9.We take a supremum for x0 ∈ Ω and now fix the parameters η ≥ 1 so that
C10(η + 1)−(1−2n/p) < 1/2. Then, we obtain (1.4) with C = 2C10 for p > 2n.

We shall complete the proof by showing the uniformly local Lp-bound for second deriva-
tives of (v, q) for all p > n.

Case (II). – Let p > n. Since |λ‖|g‖W−1,p̃
0

is bounded for p̃ > 2n, we may assume

(v,∇q) ∈W 2,p̃
loc (Ω̄)× Lp̃loc(Ω̄) for p̃ > 2n. By using |λ‖|v‖L∞(Ω) ≤ C‖f‖L∞(Ω) for λ ∈ Σϑ,δ

with δ = δp̃ we replace the estimate (3.7) with

|λ‖|g‖W−1,p
0 (Ω′) ≤ CKCn

1/prn/p(η + 1)n/p‖f‖L∞(Ω)

by Remark 3.4. Then, we are able to replace the estimate (3.22) to

‖Mp(v, q)‖L∞(Ω)(λ) ≤ C11

(
(η + 1)n/p‖f‖L∞(Ω) + (η + 1)−(1−n/p)‖Mp(v, q)‖L∞(Ω)(λ)

)
.

Letting η ≥ 1 large so that C11(η + 1)−(1−n/p) < 1/2, we obtain (1.4) for all p > n. The
proof is now complete.

R 3.5 (Robin boundary condition). – Concerning the Robin boundary condi-
tion, we replace the Dirichlet boundary condition for the localized equations (3.3) to the
inhomogeneous boundary condition with a tangential vector field k,

B(u) = k, u · nΩ′′ = 0 on ∂Ω′′.

Instead of the estimate (1.7), we apply the Lp-estimate of the form

|λ|‖u‖Lp(Ω′′) + |λ|1/2‖∇u‖Lp(Ω′′) + ‖∇2u‖Lp(Ω′′) + ‖∇p‖Lp(Ω′′)

≤ C(‖h‖Lp(Ω′′) + ‖∇g‖Lp(Ω′′) + |λ‖|g‖W−1,p
0 (Ω′′) + |λ|1/2‖k‖Lp(Ω′′) + ‖∇k‖Lp(Ω′′)),

where k is identified with its arbitrary extension to Ω′′. Since k = vtan∂θ0/∂nΩ′′ for u = vθ0

and p = q̂θ0, we observe that the norms of k in the right-hand side are estimated by
the same way with ‖∇g‖Lp where g = v · ∇θ0. The above Lp-estimate for the Robin
boundary condition is proved by [34] for bounded and exterior domains by generalizing the
perturbation argument to the Dirichlet boundary condition [17]. After proving the a priori
estimate (1.4) for f ∈ L∞σ subject to the Robin boundary condition, we verify the existence of
solutions for (1.1) and (1.2). In particular, v ∈ L∞σ (not in C0,σ). Then, we are able to define
the Stokes operator A = AR in L∞σ in the same way as we did for the Dirichlet boundary
condition. Our observations may be summarized as follows:
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T 3.6. – Assume that Ω is a bounded or an exterior domain with C3-boundary
in Rn. Then, the Stokes operator A = AR subject to the Robin boundary condition generates
an analytic semigroup on L∞σ (Ω) of angle π/2.

Appendix

An interpolation inequality near the boundary

In the appendix, we give a proof for the inequality (1.11). The inequality (1.11) holds for
all x0 ∈ Ω and r ≤ r0 in a uniformly C1-domain even if ∂Ωx0,r is not C1.

We prove (1.11) for x0 ∈ Ω and r ≤ r0 by a blow-up argument as we did for the in-
equality (2.4). If Bx0

(r) is in the interior of Ω, i.e., Ωx0,r = Bx0
(r), the inequality (1.11)

follows from the Sobolev inequality in B0(1). In fact, applying the Sobolev inequality
for ϕr(x) = ϕ(x0 + rx), ϕ ∈W 1,p

loc (Ω̄) yields

‖ϕr‖L∞(B0(1)) ≤ Cs‖ϕr‖W 1,p(B0(1)).

Since ‖ϕr‖Lp(B0(1)) = r−n/p‖ϕ‖Lp(Bx0 (r)) and ‖∇ϕr‖Lp(B0(1)) = r1−n/p‖∇ϕ‖Lp(Bx0 (r)),
we have

(A.1) ‖ϕ‖L∞(Bx0 (r)) ≤ Csr−n/p
(
‖ϕ‖Lp(Bx0 (r)) + r‖∇ϕ‖Lp(Bx0 (r))

)
for x0 ∈ Ω and r > 0 satisfying dΩ(x0) ≥ r. The inequality (A.1) is stronger than (1.11).

If Bx0
(r) is located near the boundary, i.e., dΩ(x0) < r, ∂Ωx0,r may not be C1. However,

the weaker inequality (1.11) holds since we take the norms on Ωx0,2r in the right-hand side
of (1.11). In the sequel, we prove the inequality (1.11) by flattening the boundary ∂Ω by
rescaling and applying the Sobolev inequality around Ωx0,r.

P A.1. – Let Ω be a uniformly C1-domain in Rn, n ≥ 2. Let p > n. Then,
there exist constants r0 and C such that

(A.2) ‖ϕ‖L∞(Ωx0,r) ≤ Cr−n/p
(
‖ϕ‖Lp(Ωx0,2r) + r‖∇ϕ‖Lp(Ωx0,2r)

)
for ϕ ∈W 1,p

loc (Ω̄),

and x0 ∈ Ω, r ≤ r0 satisfying dΩ(x0) < r.

From (A.1) and (A.2), for all x0 ∈ Ω and r ≤ r0, the inequality (1.11) follows.

L A.2. – Let Ω be a uniformly C1-domain in Rn, n ≥ 2. Let p > n. Then,
the inequality (1.11) holds for all ϕ ∈W 1,p

loc (Ω̄), x0 ∈ Ω and r ≤ r0 with the constant CI
independent of x0 and r ≤ r0 where r0 is the constant in Proposition A.1.

Proof. – Take arbitrary points x0 ∈ Ω and r ≤ r0. If dΩ(x0) ≥ r, apply (A.1) to get (1.11)
with the constant Cs. If dΩ(x0) < r, we apply (A.2) for (1.11).

Proof of Proposition A.1. – We argue by contradiction. Suppose on the contrary that the
inequality (A.2) were false for any choice of constants r0 and C. Then, there would exist se-
quences of points {xm}∞m=1 ⊂ Ω, rm ↓ 0 and a sequence of functions {ϕm}∞m=1 ⊂W

1,p
loc (Ω̄)

such that

‖ϕm‖L∞(Ωxm,rm ) > mr−n/pm

(
‖ϕm‖Lp(Ωxm,2rm ) + rm‖∇ϕm‖Lp(Ωxm,2rm )

)
.
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Divide the both sides by Mm = ‖ϕm‖L∞(Ωxm,rm ) and observe that ϕ̃m = ϕm/Mm satisfies

‖ϕ̃m‖L∞(Ωxm,rm ) = 1, r−n/pm

(
‖ϕ̃m‖Lp(Ωxm,2rm ) + rm‖∇ϕ̃m‖Lp(Ωxm,2rm )

)
< 1/m.

Since the points {xm}∞m=1 ⊂ Ω accumulate to the boundary by dm = dΩ(xm) < rm ↓ 0, by
rotation and translation of Ω, we may assumexm = (0, dm). Set cm = dm/rm < 1. By choos-
ing a subsequence of {cm}∞m=1, we may assume cm → c0 asm→∞ for c0 ≤ 1. In the sequel,
we rescale the domain Ω around the point xm ∈ Ω. Since Ω has a uniformly C1-boundary,
there exists uniform constants α, β,K and C1-function h such that the neighborhood of the
origin is represented by

Ωloc = {x ∈ Rn | h(x′) < xn < h(x′) + β, |x′| < α},

where h satisfies h(0) = 0,∇′h(0) = 0 and ‖h‖C1(Bn−1
0 (α)) ≤ K. Here,Bn−1

0 (α) denotes the
n− 1-dimensional open ball centered at the origin with radius α.

We rescale ϕ̃m around xm by

φm(x) = ϕ̃m(xm + rmx) for x ∈ Ωm,

where Ωm = {x ∈ Rn | xm + rmx ∈ Ω}. Then, the rescaled domain Ωm expands to a half
space Rn

+,−c0 = {x ∈ Rn | xn > −c0}. In fact, Ωloc is rescaled to

Ωmloc =

{
x ∈ Rn

∣∣∣∣∣ hm(x′)− cm < xn < hm(x′)− cm +
β

rm
, |x′| < α

rm

}
,

where hm(x′) = h(rmx
′)/rm. The functions hm and∇hm converge to zero locally uniformly

in Rn−1. Thus, Ωmloc expands to Rn
+,−c0 . Since Ωm0,1 = B0(1)∩Ωm may not be a C1-domain

on the intersection ∂Ωm ∩ B0(1), we take a C1-bounded domain Um so that Ωm0,1 ⊂ Um ⊂
Ωm0,2 and the C1-regularity of ∂Um is uniformly bounded for m ≥ 1. Since the C1-norm
of hm is locally uniformly bounded form ≥ 1 in Rn−1, we are able to take such aC1-domain
Um.

Now, we apply the Sobolev inequality for φm in Um to get

‖φm‖L∞(Um) ≤ C ′s‖φm‖W 1,p(Um)

with the constant C ′s. The constant C ′s depends onm ≥ 1 but is bounded for allm ≥ 1 since
the C1-regularity of ∂Um is uniformly bounded. Since the estimates for ϕ̃m are inherited to

‖φm‖L∞(Ωm0,1) = 1, ‖φm‖W 1,p(Ωm0,2) < 1/m,

it follows that

1 = ‖φm‖L∞(Ωm0,1) ≤ ‖φm‖L∞(Um)

≤ C ′s‖φm‖W 1,p(Um)

≤ C ′s‖φm‖W 1,p(Ωm0,2) < C ′s/m→ 0 as m→∞.

We reached a contradiction. The proof is now complete.
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