Considérons un fibré holomorphe en droites
1) Les courants
2) Les moyennes des zéros communs d'un
L'hypothèse de croissance du noyau de Bergman est la conséquence de son développement asymptotique dans le cas d'une métrique lisse
Let
1) the currents
2) the expectations of the common zeros of a random
Here
Keywords: Bergman density function, Fubini-Study currents, singular Hermitian metric, equidistribution of zeros, random holomorphic sections.
Mot clés : Noyau de Bergman, courants de Fubini-Study, métrique hermitienne singulière, équidistribution des zéros, sections holomorphes aléatoires.
@article{ASENS_2015__48_3_497_0, author = {Coman, Dan and Marinescu, George}, title = {Equidistribution results for singular metrics on line bundles}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {497--536}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {3}, year = {2015}, doi = {10.24033/asens.2250}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2250/} }
TY - JOUR AU - Coman, Dan AU - Marinescu, George TI - Equidistribution results for singular metrics on line bundles JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 497 EP - 536 VL - 48 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2250/ DO - 10.24033/asens.2250 LA - en ID - ASENS_2015__48_3_497_0 ER -
%0 Journal Article %A Coman, Dan %A Marinescu, George %T Equidistribution results for singular metrics on line bundles %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 497-536 %V 48 %N 3 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2250/ %R 10.24033/asens.2250 %G en %F ASENS_2015__48_3_497_0
Coman, Dan; Marinescu, George. Equidistribution results for singular metrics on line bundles. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 3, pp. 497-536. doi : 10.24033/asens.2250. https://www.numdam.org/articles/10.24033/asens.2250/
Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, Volume 90 (1962), pp. 193-259 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl
, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2010, 230 pages (ISBN: 978-0-521-73955-9) | DOI | MR | Zbl
Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010), pp. 337-394 (ISSN: 0020-9910) | DOI | MR | Zbl
A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008), pp. 197-217 (ISSN: 0004-2080) | DOI | MR | Zbl
Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math., Volume 131 (2009), pp. 1485-1524 (ISSN: 0002-9327) | DOI | MR | Zbl
Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997), pp. 207-302 (ISSN: 0020-9910) | DOI | MR | Zbl
The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 (ISSN: 0020-9910) | DOI | MR | Zbl
A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 (ISSN: 0001-5962) | DOI | MR | Zbl
On the definition of the Monge-Ampère operator in
The domain of definition of the complex Monge-Ampère operator, Amer. J. Math., Volume 128 (2006), pp. 519-530 http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.2bl_ocki.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
, Analysis and geometry in several complex variables (Katata, 1997) (Trends Math.), Birkhäuser, 1999, pp. 1-23 | MR | Zbl
The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 159-179 http://aif.cedram.org/item?id=AIF_2004__54_1_159_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z., Volume 259 (2008), pp. 393-418 (ISSN: 0025-5874) | DOI | MR | Zbl
Convergence of Fubini-study currents for orbifold line bundles, Internat. J. Math., Volume 24 (2013), 1350051 pages (ISSN: 0129-167X) | DOI | MR | Zbl
On the approximation of positive closed currents on compact Kähler manifolds, Math. Rep. (Bucur.), Volume 15 (2013), pp. 373-386 (ISSN: 1582-3067) | MR | Zbl
On the Oka-Grauert principle for 1-convex manifolds, Math. Ann., Volume 310 (1998), pp. 561-569 (ISSN: 0025-5831) | DOI | MR | Zbl
Estimations
Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409 (ISSN: 1056-3911) | MR | Zbl
, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Math.), Volume 1507, Springer, 1992, pp. 87-104 | DOI | MR | Zbl
A numerical criterion for very ample line bundles, J. Differential Geom., Volume 37 (1993), pp. 323-374 http://projecteuclid.org/euclid.jdg/1214453680 (ISSN: 0022-040X) | MR | Zbl
, Complex analysis and geometry (Univ. Ser. Math.), Plenum, New York, 1993, pp. 115-193 | DOI | MR | Zbl
On the asymptotic expansion of Bergman kernel, J. Differential Geom., Volume 72 (2006), pp. 1-41 http://projecteuclid.org/euclid.jdg/1143593124 (ISSN: 0022-040X) | MR | Zbl
Equidistribution of zeros of holomorphic sections in the non-compact setting, J. Stat. Phys., Volume 148 (2012), pp. 113-136 (ISSN: 0022-4715) | DOI | MR | Zbl
Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv., Volume 81 (2006), pp. 221-258 (ISSN: 0010-2571) | DOI | MR | Zbl
Geometry of currents, intersection theory and dynamics of horizontal-like maps, Ann. Inst. Fourier (Grenoble), Volume 56 (2006), pp. 423-457 http://aif.cedram.org/item?id=AIF_2006__56_2_423_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, Grundl. math. Wiss., 153, Springer, 1969, 676 pages | MR | Zbl
, Ann. of Math. Studies, 75, Princeton Univ. Press, Princeton, N.J., 1972, 146 pages | MR | Zbl
, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999, 386 pages (ISBN: 0-471-31716-0) | MR | Zbl
, Modern methods in complex analysis (Princeton, NJ, 1992) (Ann. of Math. Stud.), Volume 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 135-182 | MR | Zbl
Oka's inequality for currents and applications, Math. Ann., Volume 301 (1995), pp. 399-419 (ISSN: 0025-5831) | DOI | MR | Zbl
Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, Volume 285 (1977), p. A387-A390 | MR | Zbl
, AMS Chelsea Publishing, Providence, RI, 2009, 318 pages (ISBN: 978-0-8218-2165-7) |Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005), pp. 607-639 (ISSN: 1050-6926) | DOI | MR | Zbl
The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007), pp. 442-482 (ISSN: 0022-1236) | DOI | MR | Zbl
, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), Amer. Math. Soc., Providence, R. I., 1977, pp. 309-382 | MR | Zbl
Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles, Comm. Anal. Geom., Volume 22 (2014), pp. 1-108 (ISSN: 1019-8385) | DOI | MR | Zbl
, Modern Birkhäuser Classics, Birkhäuser, 2007, 414 pages (ISBN: 978-0-8176-4584-7; 0-8176-4584-5) | MR | Zbl
Mass equidistribution for Hecke eigenforms, Ann. of Math., Volume 172 (2010), pp. 1517-1528 (ISSN: 0003-486X) | DOI | MR | Zbl
Properties of compact complex manifolds carrying closed positive currents, J. Geom. Anal., Volume 3 (1993), pp. 37-61 (ISSN: 1050-6926) | DOI | MR | Zbl
Kähler-Einstein metric on an open algebraic manifold, Osaka J. Math., Volume 21 (1984), pp. 399-418 http://projecteuclid.org/euclid.ojm/1200777118 (ISSN: 0030-6126) | MR | Zbl
, Grundl. math. Wiss., 282, Springer, 1986, 270 pages (ISBN: 3-540-15296-2) | DOI | MR | Zbl
Mass equidistribution for automorphic forms of cohomological type on
On the compactification of hyperconcave ends and the theorems of Siu-Yau and Nadel, Invent. Math., Volume 164 (2006), pp. 233-248 (ISSN: 0020-9910) | DOI | MR | Zbl
Generalized Bergman kernels on symplectic manifolds, C. R. Math. Acad. Sci. Paris, Volume 339 (2004), pp. 493-498 (ISSN: 1631-073X) | DOI | MR | Zbl
, Progress in Math., 254, Birkhäuser, 2007, 422 pages (ISBN: 978-3-7643-8096-0) | MR | Zbl
Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008), pp. 1756-1815 (ISSN: 0001-8708) | DOI | MR | Zbl
Hirzebruch's proportionality theorem in the noncompact case, Invent. Math., Volume 42 (1977), pp. 239-272 (ISSN: 0020-9910) | DOI | MR | Zbl
On complex manifolds which can be compactified by adding finitely many points, Invent. Math., Volume 101 (1990), pp. 173-189 (ISSN: 0020-9910) | DOI | MR | Zbl
On the extension of
The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys., Volume 161 (1994), pp. 195-213 http://projecteuclid.org/euclid.cmp/1104269797 (ISSN: 0010-3616) | DOI | MR | Zbl
Canonical coordinates and Bergmann metrics, Comm. Anal. Geom., Volume 6 (1998), pp. 589-631 (ISSN: 1019-8385) | DOI | MR | Zbl
On the asymptotic distribution of zeros of modular forms, Int. Math. Res. Not., Volume 2005 (2005), pp. 2059-2074 (ISSN: 1073-7928) | DOI | MR | Zbl
Convergence of random zeros on complex manifolds, Sci. China Ser. A, Volume 51 (2008), pp. 707-720 (ISSN: 1006-9283) | DOI | MR | Zbl
Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J., Volume 52 (1985), pp. 157-197 (ISSN: 0012-7094) | DOI | MR | Zbl
Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., Volume 27 (1974), pp. 53-156 (ISSN: 0020-9910) | DOI | MR | Zbl
Random polynomials with prescribed Newton polytope, J. Amer. Math. Soc., Volume 17 (2004), pp. 49-108 (ISSN: 0894-0347) | DOI | MR | Zbl
Number variance of random zeros on complex manifolds, Geom. Funct. Anal., Volume 18 (2008), pp. 1422-1475 (ISSN: 1016-443X) | DOI | MR | Zbl
Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys., Volume 200 (1999), pp. 661-683 (ISSN: 0010-3616) | DOI | MR | Zbl
On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990), pp. 99-130 http://projecteuclid.org/euclid.jdg/1214445039 (ISSN: 0022-040X) | MR | Zbl
Distribution of zeros of sections of canonical line bundles over towers of covers, J. London Math. Soc., Volume 63 (2001), pp. 387-399 (ISSN: 0024-6107) | DOI | MR | Zbl
A general Schwarz lemma for Kähler manifolds, Amer. J. Math., Volume 100 (1978), pp. 197-203 (ISSN: 0002-9327) | DOI | MR | Zbl
Szegő kernels and a theorem of Tian, Int. Math. Res. Not., Volume 1998 (1998), pp. 317-331 (ISSN: 1073-7928) | DOI | MR | Zbl
Cité par Sources :