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EQUIDISTRIBUTION RESULTS FOR SINGULAR
METRICS ON LINE BUNDLES

 D COMAN  G MARINESCU

A. – Let (L, h) be a holomorphic line bundle with a positively curved singular Hermitian
metric over a complex manifoldX. One can define naturally the sequence of Fubini-Study currents γp

associated to the space of L2-holomorphic sections of L⊗p. Assuming that the singular set of the
metric is contained in a compact analytic subset Σ ofX and that the logarithm of the Bergman density
function of L⊗p|X\Σ grows like o(p) as p→∞, we prove the following:

1) the currents γk
p converge weakly on the whole X to c1(L, h)k, where c1(L, h) is the curvature

current of h.

2) the expectations of the common zeros of a random k-tuple of L2-holomorphic sections converge
weakly in the sense of currents to c1(L, h)k.

Here k is so that codim Σ ≥ k. Our weak asymptotic condition on the Bergman density function is
known to hold in many cases, as it is a consequence of its asymptotic expansion. We also prove it here
in a quite general setting. We then show that many important geometric situations (singular metrics
on big line bundles, Kähler-Einstein metrics on Zariski-open sets, arithmetic quotients) fit into our
framework.

R. – Considérons un fibré holomorphe en droites L muni d’une métrique singulière h
au-dessus d’une variété complexe X. Soit γp le courant de Fubini-Study associé naturellement à
l’espace des sections holomorphes de carré intégrable de L⊗p. En supposant que le lieu singulier de
la métrique h est contenu dans un ensemble analytique compact Σ ⊂ X tel que codim Σ ≥ k et que
le logarithme du noyau de Bergman associé à L⊗p|X\Σ a l’ordre de croissance o(p), p → ∞, nous
prouvons que :

1) Les courants γk
p convergent faiblement sur X vers c1(L, h)k, où c1(L, h) est le courant de

courbure de h.

2) Les moyennes des zéros communs d’un k-vecteur aléatoire de sections holomphes L2-intégrables
convergent faiblement dans le sens des courants vers c1(L, h)k.

D. Coman was partially supported by the NSF Grants DMS-0900934 and DMS-1300157. G. Marinescu was
partially supported by DFG funded projects SFB/TR 12, MA 2469/2-1.
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498 D. COMAN AND G. MARINESCU

L’hypothèse de croissance du noyau de Bergman est la conséquence de son développement asymp-
totique dans le cas d’une métrique lisse h. Nous la démontrons ici sous des conditions assez géné-
rales. Nous montrons ensuite que nos résultats s’appliquent à nombre de situations géométriques (mé-
triques singulières sur un fibré gros, métriques de Kähler-Einstein sur des ouverts de Zariski, quotients
arithmétiques...).

1. Introduction

Let X be a compact complex manifold of dimension n, L −→ X be a positive holomor-
phic line bundle, and h be a smooth Hermitian metric on L whose curvature c1(L, h) is a
positive (1,1) form on X. Let Φp : X −→ Pdp−1 be the Kodaira map defined by an ortho-
normal basis of H0(X,Lp) with respect to the inner product given by the metric induced
by h on Lp := L⊗p and a fixed volume form on X, where dp = dimH0(X,Lp). The pull-
back Φ?p(ωFS) of the Fubini-Study formωFS is a smooth (1,1) form for all p sufficiently large,
since Φp is an embedding by Kodaira’s embedding theorem. A theorem of Tian [59] (with im-
provements by Ruan [50]) asserts that 1

p Φ?p(ωFS)→ c1(L, h) as p→∞, in the C∞ topology
on X.

Tian’s theorem is a consequence of the asymptotic expansion of the Bergman density
function associated to the inner product on H0(X,Lp) mentioned above. In the context of
positive line bundles this asymptotic expansion is proved in various forms in [59, 11, 62,
17, 42, 43, 44, 6]. For line bundles endowed with arbitrary smooth Hermitian metrics the
Bergman density function behavior and important consequences are studied in [5] and [7].

In the case of holomorphic Hermitian line bundles over complete Hermitian manifolds
the asymptotic expansion of the Bergman density function associated to the correspond-
ing spaces of L2-holomorphic sections was proved in [44] (see also [42, 43]). In particu-
lar, a version of Tian’s theorem was obtained for a big line bundle L over a (compact)
manifold X. Such a line bundle admits a singular Hermitian metric h, smooth outside
a proper analytic subvariety Σ ⊂ X, and whose curvature current c1(L, h) is strictly
positive. It is shown in [43, Section 6.2] that there exist a smooth positively curved Hermi-
tian metric hε on L|X\Σ, which is a small perturbation of h, and a smooth positive (1,1)
form Θ defining a generalized Poincaré metric on X \ Σ, so that the following hold.
If H0

(2)(X \ Σ, Lp) is the space of L2-holomorphic sections of Lp|X\Σ relative to the met-
rics hε and Θ then H0

(2)(X \ Σ, Lp) ⊂ H0(X,Lp), so a Kodaira map Φp : X 99K Pdp−1

can be defined by using an orthonormal basis of H0
(2)(X \ Σ, Lp). Let γp = Φ?p(ωFS)

and ω = c1(L|X\Σ, hε). Then 1
p γp → ω as p → ∞, locally uniformly in the C∞ topology

on X \ Σ.
Since γp are currents on X it is natural to try and study the weak convergence of the

sequence {γp/p}, and to ask whether a global version of Tian’s theorem holds in this setting.
We will show that this is indeed the case.

Let us work in the following more general setting:

(A) X is a complex manifold of dimension n (not necessarily compact), Σ is a compact
analytic subvariety of X, and Ω is a smooth positive (1, 1) form on X.
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EQUIDISTRIBUTION RESULTS FOR SINGULAR METRICS ON LINE BUNDLES 499

(B) (L, h) is a holomorphic line bundle on X with a singular (semi)positively curved
Hermitian metric h which is continuous on X \ Σ. We denote by hp the Hermitian
metric induced by h on Lp := L⊗p.

(C) The volume form on X \ Σ is fΩn, where f ∈ L1
loc(X \ Σ,Ωn) verifies f ≥ cx > 0 Ωn-a.e.

in a neighborhood Ux of each x ∈ (X \ Σ) ∪ Σn−1
reg . Here Σn−1

reg is the set of regular
points y where dimy Σ = n− 1.

We denote the curvature current of h by γ = c1(L, h) and consider the space H0
(2)(X \ Σ, Lp)

of L2-holomorphic sections of Lp|X\Σ relative to the metric hp on Lp and the volume
form fΩn on X \ Σ, endowed with the inner product

(S, S′)p =

∫
X\Σ
〈S, S′〉hp fΩn , where 〈S, S′〉hp = hp(S, S

′), S, S′ ∈ H0
(2)(X \ Σ, Lp).

We let ‖S‖2p = (S, S)p. Since H0
(2)(X \ Σ, Lp) is separable, let {Spj }j≥1 be an orthonormal

basis and denote by Pp the Bergman density function defined by

(1) Pp(x) =
∞∑
j=1

|Spj (x)|2hp , |S
p
j (x)|2hp := 〈Spj (x), Spj (x)〉hp , x ∈ X \ Σ.

Note that this definition is independent of the choice of basis, and the function Pp is contin-
uous on X \ Σ (see Section 3).

Next we define the Fubini-Study currents γp on X \ Σ by

(2) γp|U =
1

2
ddc log

 ∞∑
j=1

|spj |
2

 , U ⊂ X \ Σ open ,

where dc = 1
2πi (∂ − ∂), Spj = spje

⊗p, and e is a local holomorphic frame for L on U .
One of our main results is the following:

T 1.1. – If X,Σ, (L, h), f,Ω verify assumptions (A)-(C) then H0
(2)(X \ Σ, Lp) ⊂

H0(X,Lp) and γp extends to a positive closed current on X defined locally by Formula (2) and
which is independent of the choice of basis {Spj }j≥1. Assume further that

(3) lim
p→∞

1

p
logPp(x) = 0, locally uniformly on X \ Σ.

Then 1
p γp → γ weakly on X. If, in addition, dim Σ ≤ n − k for some 2 ≤ k ≤ n, then the

currents γk and γkp are well defined onX, respectively on each relatively compact neighborhood
of Σ, for all p sufficiently large. Moreover, 1

pk
γkp → γk weakly on X.

This theorem is proved in Section 3. The proof relies on a local continuity property of the
complex Monge-Ampère operator which is of independent interest (see Theorem 3.4). Some
background material about singular Hermitian metrics and pluripotential theory needed in
the paper is recalled in Section 2. We note here that if codim Σ < k the current γk cannot be
defined (see [9, 10]), so the assumption on the dimension in Theorem 1.1 is optimal.

We examine in Section 6 a series of important situations where condition (3) of Theo-
rem 1.1 holds, as it is an immediate consequence of deep results regarding the asymptotic
expansion of the Bergman density function Pp(x) ∼ b0(x)pn + b1(x)pn−1 + · · · . Espe-
cially, Theorem 1.1 yields equidistribution results for singular metrics on big line bundles

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



500 D. COMAN AND G. MARINESCU

(Sections 6.1, 6.2), on Zariski-open sets of bounded negative Ricci curvature (Section 6.3),
on toroidal compactifications of arithmetic quotients (Section 6.4), and finally on 1-convex
manifolds (Sections 6.5, 6.6).

The point of view adopted in Theorem 1.1 is that once some information is known on the
asymptotic behavior of Pp on the set where the metric is continuous, then the global weak
convergence onX of the currents γp/p and their powers follows. Hypothesis (3) is obviously
a much weaker condition than the asymptotic expansion of Pp mentioned above. Indeed, in
Section 5 we give a simple proof that (3) holds in the case of line bundles over compact Kähler
manifolds endowed with metrics that are assumed to be only continuous outside of Σ (see
Theorems 5.3 and 5.4). In this case the asymptotic expansion of Pp is not known.

We also prove in Theorem 5.1 that Tian’s theorem [59] holds for any singular metric with
strictly positive curvature. Namely, let (X,Ω) be a compact Kähler manifold and (L, h) be
a holomorphic line bundle on X with a singular metric h so that c1(L, h) is a strictly
positive current. If γp are the Fubini-Study currents defined by (2) for the spaces of L2-holo-
morphic sections of Lp relative to the metric induced by h and the volume form Ωn,
then 1

p γp → c1(L, h) in the weak sense of currents on X. The proofs of Theorems 5.1 and
5.3 rely on techniques developed by Demailly [19, 22].

In a series of papers including [54, 55, 56, 53], Shiffman and Zelditch describe the asymp-
totic distribution of zeros of random holomorphic sections of a positive line bundle over a
projective manifold endowed with a smooth positively curved metric. They also study the
distribution of zeros of quantum ergodic eigenfunctions. To prove these results they develop
interesting new techniques, based in part on methods in complex dynamics from [29].

Later, using different methods, Dinh and Sibony [24] obtain sharper estimates for the
speed of convergence in the asymptotic distribution of zeros of random holomorphic sec-
tions. In [23] these results are generalized to the case of complete Hermitian manifolds. The
problem of the distribution of zeros of random sections of line bundles appears in other
contexts as well. For example, the case of canonical line bundles over towers of covers is
studied in [60].

We show here how some of the important results of Shiffman and Zelditch can be obtained
in our setting from Theorem 1.1, assuming in addition that X is compact. More precisely,
following the framework in [54], we let λp be the normalized surface measure on the unit
sphere Sp of H0

(2)(X \Σ, Lp), defined in the natural way by using a fixed orthonormal basis
(see Section 4). We denote by λkp the product measure on ( Sp)k, and by [S = 0] the current
of integration (with multiplicities) over the analytic hypersurface {S = 0} determined by
a nontrivial section S ∈ H0(X,Lp). We prove in Section 4 the following generalization of
some results of Shiffman and Zelditch [54, 56] to our situation:

T 1.2. – In the setting of Theorem 1.1, assume thatX is compact, dim Σ ≤ n− k
for some 1 ≤ k ≤ n, and that (3) holds. Then, for all p sufficiently large:

(i) [σ = 0] := [σ1 = 0] ∧ · · · ∧ [σk = 0] is a well defined positive closed current of
bidegree (k,k) on X, for λkp-a.e. σ = (σ1, . . . , σk) ∈ ( Sp)k.

(ii) The expectation Ekp [σ = 0] of the current-valued random variable σ → [σ = 0], given by

〈Ekp [σ = 0], ϕ〉 =

∫
( Sp)k

〈[σ = 0], ϕ〉 dλkp,
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where ϕ is a test form on X, is a well defined current and Ekp [σ = 0] = γkp .
(iii) We have 1

pk
Ekp [σ = 0]→ γk as p→∞, weakly in the sense of currents on X.

In particular, this theorem together with [54, Lemma 3.3] or [43, Section 5.3], yields an
equidistribution result for the zeros of a random sequence of sections {σp}p≥1 ∈

∏∞
p=1 Sp,

i.e., 1
p [σp = 0]→ γ as p→∞, in the weak sense of currents on X (see Theorem 4.3).

The kind of results proved in the present paper can be extended to the case of
orbifolds [15]. Theorem 1.2 has applications to the approximation of γk by currents of
integration on analytic varieties [16].

Acknowledgements. – Dan Coman is grateful to the Alexander von Humboldt Foundation
for their support and to the Mathematics Institute at the University of Cologne for their
hospitality. The authors thank the referee for carefully reading the paper and for suggestions
which led to the improvement of the exposition.

2. Preliminaries

We recall here a few of the notions that we will need. We start with the notion of singular
Hermitian metric in Section 2.1 and some necessary notions about desingularization in
Section 2.2. In Section 2.3 we introduce the generalized Poincaré metric on a manifold and
an associated metric on a line bundle with strictly positive curvature current. In Section 2.4
we recall a few facts regarding the definition of complex Monge-Ampère operators.

2.1. Singular Hermitian metrics on line bundles

Let L −→ X be a holomorphic line bundle over a complex manifold X and fix an open
cover X =

⋃
Uα for which there exist local holomorphic frames eα : Uα −→ L. The

transition functions gαβ = eβ/eα ∈ O?X(Uα∩Uβ) determine the Čech 1-cocycle {(Uα, gαβ)}.
Let h be a smooth Hermitian metric on L. If |eα(x)|2h = h(eα(x), eα(x)) for x ∈ Uα, we

recall that the curvature form c1(L, h) of h is defined by

c1(L, h)|Uα = −ddc log |eα|h =
i

2π
RL,

where RL is the curvature of the holomorphic Hermitian connection∇L on (L, h).
If h is a singular Hermitian metric on L then (see [20], also [43, p. 97]) h(eα, eα) = e−2ϕα ,

where the functions ϕα ∈ L1
loc(Uα) are called the local weights of the metric h. One has

ϕα = ϕβ + log |gαβ | on Uα ∩ Uβ , and the curvature of h,

c1(L, h)|Uα = ddcϕα,

is a well defined closed (1,1) current on X. We say that the metric h is (semi)positively
curved if c1(L, h) is a positive current. Equivalently, the weights ϕα can be chosen to be
plurisubharmonic (psh) functions.

Let L′ −→ X be a holomorphic line bundle isomorphic to L. A metric hL on L induces
a metric hL

′
on L′ with curvature current c1(L, hL) = c1(L′, hL

′
).

Suppose now that M is a complex manifold and f : M −→ X is a locally biholomor-
phic map. A metric hL on L induces a metric f?hL on f?L whose curvature current is
c1(f?L, f?hL) = f?

(
c1(L, hL)

)
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



502 D. COMAN AND G. MARINESCU

2.2. Desingularization

We recall here Hironaka’s embedded resolution of singularities theorem (see e.g., [8], [43,
Theorem 2.1.13]). LetX be a complex manifold and Σ ⊂ X be a compact analytic subvariety
of X. Then there exists a finite sequence of blow up maps σj+1 : Xj+1 −→ Xj with smooth
centers Yj ,

Xm
σm−→

Σm

Em

Xm−1 −→ · · ·
Σm−1

Em−1

−→ Xj+1
σj+1−→

Σj+1

Ej+1

Xj −→ · · ·
Σj

Ej

−→ X1
σ1−→

Σ1

E1

X0 = X

Σ0 = Σ

E0 = ∅,

such that:

(i) Yj is a compact submanifold of Xj with dimYj ≤ dimX − 2 and Yj ⊂ Σj ,
(ii) Σj+1 = Σ′j is the strict transform of Σj by σj+1,

(iii) Ej+1 = E′j ∪ σ
−1
j+1(Yj) is the set of exceptional hypersurfaces in Xj+1,

(iv) Σm is a smooth hypersurface and Σm ∪ Em is a divisor with normal crossings.

Let τj = σ1 ◦ · · · ◦ σj : Xj −→ X. Since σj+1 : Xj+1 \ Ej+1 −→ Xj \ (Ej ∪ Yj) is a
biholomorphism, it follows that

τm : Xm \ Em −→ τm(Xm \ Em) = X \ Y

is a biholomorphism, where

Y = Y0 ∪ τ1(Y1) ∪ τ2(Y2) ∪ · · · ∪ τm−1(Ym−1).

As Yj ⊂ Σj and σj(Σj) ⊂ Σj−1, we have τj(Yj) ⊂ Σ for every j = 1, . . . ,m− 1. Since Yj is
compact τj : Yj −→ X is proper, so τj(Yj) is an analytic subvariety of X of dimen-
sion ≤ dimYj . Hence Y is an analytic subvariety of X, Y ⊂ Σ and dimY ≤ dimX − 2.

In conclusion, setting X̃ = Xm, E = Em, and π = τm : X̃ −→ X, we have:

T 2.1 (Hironaka). – Let X be a complex manifold and Σ ⊂ X be a compact
analytic subvariety ofX. Then there exist a complex manifold X̃, an analytic subvariety Y ⊂ Σ

with dimY ≤ dimX − 2, and a proper surjective holomorphic map π : X̃ −→ X with the
following properties:

(i) π : X̃ \ E −→ X \ Y is a biholomorphism, where E = π−1(Y );
(ii) the strict transform Σ′ = π−1(Σ \ Y ) is smooth and π−1(Σ) = Σ′ ∪ E is a divisor with

normal crossings.

2.3. Special metrics

Let X be a complex manifold of dimension n. Assume that L −→ X is a holomorphic
line bundle with a singular Hermitian metric hwhich is continuous outside a proper compact
analytic subvariety Σ ⊂ X, and whose curvature γ = c1(L, h) is a strictly positive closed (1,1)
current on X (i.e., it dominates a smooth positive (1,1) form on X). We write

Σ = Z1 ∪ Z2,

where Z1, Z2 are analytic subvarieties of X, Z1 has pure dimension n− 1, and dimZ2 ≤ n− 2.
Let π : X̃ −→ X be a resolution of singularities of Σ as in Theorem 2.1. Then π : X̃\E −→ X\Y
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is a biholomorphism, where Y ⊂ Σ is an analytic subvariety with dimY ≤ n− 2, E = π−1(Y ),
Z2 ⊂ Y , Σ′ = Z ′1 is smooth, and π−1(Σ) = Z ′1 ∪ E is a divisor with normal crossings.

2.3.1. The metric Θ. – We recall here the construction and properties of the generalized
Poincaré metric on X \ Σ (cf. [43, Lemma 6.2.1]). Let Ω̃ be a smooth positive (1,1) form
on X̃. When X is not compact we take Ω̃ so that the associated metric is complete on X̃.

Let Σ1, . . . ,ΣN be the irreducible components of π−1(Σ), so Σj is a smooth hypersurface
in X̃. Let σj be a holomorphic section of the associated holomorphic line bundle OX̃(Σj)

vanishing to first order on Σj and let | · |j be a smooth Hermitian metric on OX̃(Σj)

so that |σj |j < 1 and |σj |j = 1/e outside a relatively compact open set containing π−1(Σ).
We define

(4) Θ̃δ = Ω̃ + δddcF, where δ > 0, F = −1

2

N∑
j=1

log(− log |σj |j).

If δ is small enough, Θ̃δ defines a complete Hermitian metric on X̃ \ π−1(Σ) and we
have Θ̃δ ≥ Ω̃/2 in the sense of currents on X̃. Moreover, ifX is compact then so is X̃ and we
have that Θ̃δ has finite volume (see [43, Lemma 6.2.1]). Fixing such a δ, we define the Poincaré
metric on X \ Σ as the metric associated to the (1, 1) form

Θ = (π−1)?Θ̃δ.

This metric has the same properties on X \ Σ as Θ̃δ does on X̃ \ π−1(Σ).

Let nowx ∈ Σn−1
reg and local coordinates z1, . . . , zn be chosen so thatx = 0, Σ = {z1 = 0}.

Then Θn ∼ (|z1| log |z1|)−2 dλ near x, where λ is the Lebesgue measure in coordinates (see
[43, (6.2.11)]). In particular, we have that Θn = fΩn, where the function f verifies assump-
tion (C) stated in the introduction.

2.3.2. The metric hε. – It is necessary to perturb the original metric h of L in order to
obtain a metric on L|X\Σ whose curvature current dominates a small multiple of Θ. By
[43, Lemma 6.2.2] there exists a holomorphic line bundle L̃ −→ X̃ which has a singu-
lar Hermitian metric hL̃, continuous on X̃ \ π−1(Σ), and such that L̃|X̃\E is isomorphic

to π?
(
Lk|X\Y

)
, for some k ∈ N. Moreover, c1(L̃, hL̃) = k π?γ + θ is a strictly positive

current on X̃, where θ is a smooth real closed (1, 1) form supported in a neighborhood of E
and strictly positive along E.

Since L̃|X̃\E ∼= π?
(
Lk|X\Y

)
the metric hL̃ induces a singular Hermitian metric hL

′

on L′ = π?
(
L|X\Y

)
with curvature current γ′ = π?γ + θ′, where θ′ = θ/k. For ε > 0,

hL
′

ε = hL
′
N∏
j=1

(− log |σj |j)ε

is a singular Hermitian metric on L′ with curvature current

γ′ε = γ′ + εddcF = π?γ + θ′ + εddcF,

where F is given in (4). Since γ′ is a strictly positive current it follows by the above choice
of |σj |j that γ′ε is a strictly positive current on X̃, provided that ε is sufficiently small (cf. [43,
Lemma 6.2.1]). We fix such an ε and note that, as π : X̃ \E −→ X \Y is a biholomorphism,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



504 D. COMAN AND G. MARINESCU

the metric hL
′

ε on L′ induces a singular metric hε on L|X\Y which is continuous on X \ Σ.
When X is compact the curvature current of hε dominates a small multiple of Θ on X \ Σ.

2.4. Wedge products of singular currents

We recall here a few facts that we need regarding the definition of complex Monge-Ampère
operators. Let T be a positive closed current of bidimension (l, l), l > 0, on an open set U
inCn. The coefficients ofT are complex Radon measures and their total variations are locally
dominated, up to multiplicative constants, by the trace measure of T , |T | = T∧Ωl, where Ω is
any fixed smooth positive (1, 1) form onU . If u is a psh function onU so that u ∈ L1

loc(U, |T |)
we say that the wedge product ddcu∧ T is well defined. This is the positive closed current of
bidimension (l − 1, l − 1) defined by ddcu ∧ T = ddc(uT ).

If u1, . . . , uq are psh functions on U we say that ddcu1 ∧ · · · ∧ ddcuq is well defined if one
can define inductively as above all intermediate currents

ddcuj1 ∧ · · · ∧ ddcujl = ddc(uj1dd
cuj2 ∧ · · · ∧ ddcujl), 1 ≤ j1 < · · · < jl ≤ q.

The wedge product is well defined for locally bounded psh functions [3, 4], for psh functions
that are locally bounded outside a compact subset of a pseudoconvex open set U , or when
the mutual intersection of their unbounded loci is small in a certain sense [57, 21, 30]. We
recall here one such situation [21, Corollary 2.11]: if u1, . . . , uq are psh functions on U so
that uj is locally bounded outside an analytic subsetAj of U and codim (Aj1 ∩· · ·∩Ajl) ≥ l
for each l, 1 ≤ j1 < · · · < jl ≤ q, then ddcu1 ∧ · · · ∧ ddcuq is well defined. We also note that
the natural domain of definition of the Monge-Ampère operator u→ (ddcu)n is completely
described in [9, 10, 12].

If T is a positive closed current of bidegree (1, 1) on a complex manifold X then lo-
cally T = ddcu for a psh function u [41, Theorem 2.28]. Hence defining T1∧· · ·∧Tq for such
currents Tj amounts to verifying locally one of the conditions mentioned above for their psh
potentials uj . We conclude this brief overview by noting that whenX is compact the class of
currents for which the wedge product can be globally defined so that it has good continuity
properties is larger than the one for which it is well defined by local considerations as above
(see e.g., [32, 33, 14]).

3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. We start with a rather elementary
property of the Bergman density function Pp in Lemma 3.1 and show in Lemma 3.2 that
logPp is, locally on X, the difference of two psh functions. Moreover, the Fubini-Study
currents γp are well defined, and if the codimension of Σ is bigger than k ≥ 2, then
also the wedge products γkp are well defined (Lemma 3.3). We continue with the crucial
Theorem 3.4 about the local continuity properties of the Monge-Ampère operator. This
result is of independent interest. With these preparations we can then prove Theorem 1.1.

For the convenience of the reader, we include a proof of the following properties of the
function Pp in our setting.

L 3.1. – If Pp is the Bergman density function defined in (1) then the definition is
independent of the basis {Spj }j≥1 and the function Pp is continuous on X \ Σ.
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Proof. – By the Riesz-Fischer theorem we have that S ∈ H0
(2)(X \ Σ, Lp) if and only

if there exists a sequence a = {aj} ∈ l2 so that S = Sa, where Sa =
∑∞
j=1 ajS

p
j and

‖Sa‖p = ‖a‖2.
Fix x ∈ X \ Σ and a neighborhood Uα b X \ Σ of x with a holomorphic frame eα of L

over Uα and so that f ≥ c > 0 on Uα. We write Sa = sae
⊗p
α , Spj = spje

⊗p
α , and we let ψα be a

continuous psh weight of h on Uα. It follows that sa =
∑∞
j=1 ajs

p
j and the series converges

locally uniformly on Uα. As this holds for every sequence a ∈ l2 we have that {spj (z)} ∈ l2
for all z ∈ Uα.

We fix compacts Ki so that x ∈ intK1, K1 b K2 b K3 ⊂ Uα. For z ∈ K2 consider the
sections Sz =

∑∞
j=1 s

p
j (z)S

p
j ∈ H0

(2)(X \ Σ, Lp), and write Sz = sze
⊗p
α . Then ∞∑

j=1

|spj (z)|
2

2

= |sz(z)|2 ≤ C1

∫
K3

|sz|2e−2pψα fΩn ≤ C1‖Sz‖2p = C1

∞∑
j=1

|spj (z)|
2,

for some constant C1. This implies that
∞∑
j=1

|spj (z)|
2 ≤ C1, ∀ z ∈ K2.

We have

|spj (y)|2 ≤ C2

∫
K2

|spj |
2Ωn, ∀ y ∈ K1,

where C2 is a constant. Therefore

(5)
∞∑
j=1

max
K1

|spj |
2 ≤ C2

∫
K2

 ∞∑
j=1

|spj |
2

Ωn ≤ C1C2

∫
K2

Ωn,

so the series
∑∞
j=1 |s

p
j |2 converges uniformly on K1. This shows that the function

Pp =
∑∞
j=1 |s

p
j |2e−2pψα is continuous near x.

To see that Pp does not depend on the choice of basis, observe that

Pp(x) = max{|S(x)|2hp : S ∈ H0
(2)(X \ Σ, Lp), ‖S‖p = 1}.

Indeed, using the above notations we have for a ∈ l2 with ‖a‖2 = 1,

|Sa(x)|2hp =

∣∣∣∣∣∣
∞∑
j=1

ajs
p
j (x)

∣∣∣∣∣∣
2

e−2pψα(x) ≤

 ∞∑
j=1

|spj (x)|2
 e−2pψα(x) = Pp(x).

Moreover, if

a =
{
c−1 spj (x)

}
j≥1

, c :=

 ∞∑
j=1

|spj (x)|2
1/2

,

then ‖a‖2 = 1, Sa(x) = ce⊗pα , so |Sa(x)|2hp = Pp(x).

We start the proof of Theorem 1.1 with two lemmas.

L 3.2. – If X, Σ, (L, h), f, Ω are as in Theorem 1.1 then:

(i) H0
(2)(X \ Σ, Lp) ⊂ H0(X,Lp).
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(ii) γp extends to a positive closed current of bidegree (1, 1) on X defined locally by For-
mula (2) and which is independent of the choice of basis {Spj }.

(iii) logPp ∈ L1
loc(X,Ωn) and ddc logPp = 2γp − 2pγ as currents on X.

Proof. – (i) Let x ∈ Σn−1
reg and let eα be a holomorphic frame of L on a neighborhood Uα

of x. A section S ∈ H0
(2)(X \ Σ, Lp) can be written on Uα as S = se⊗pα where s is a holomor-

phic function on Uα \Σ. We may assume that h has a psh weight ψα which is bounded above
on Uα and that f ≥ c > 0 on Uα for some constant c. Then∫

Uα\Σ
|s|2 Ωn ≤ C

∫
Uα\Σ

|s|2e−2pψα fΩn ≤ C‖S‖2p <∞.

By Skoda’s lemma [43, Lemma 2.3.22], this implies that S extends holomorphically near x.

Thus any section S ∈ H0
(2)(X \ Σ, Lp) extends holomorphically to a section of Lp

over X \ Y , where Y = Σ \ Σn−1
reg , and hence to a holomorphic section of Lp since Y is an

analytic subvariety of X of codimension ≥ 2.

(ii) Let Uα be an open set in X on which there exists a holomorphic frame eα of L and
set Spj = spje

⊗p
α , where by (i) spj are holomorphic on Uα. Let

up := log

 ∞∑
j=1

|spj |
2

 on Uα.

It follows by (5) that the series
∑∞
j=1 |s

p
j |2 converges locally uniformly on Uα \ Σ. If y ∈ Σ ∩ Uα

we fix local coordinates (z1, . . . , zn) so that y = 0 and Uα ∩ Σ is contained in the
cone {|zn| ≤ max(|z1|, . . . , |zn−1|)}. Applying the maximum principle on complex lines
parallel to the zn axis, we see that there exist a neighborhood V ⊂ Uα of y and a compact
set K ⊂ Uα \ Σ so that supz∈V |s

p
j |2 ≤ maxz∈K |spj |2. By (5),

∞∑
j=1

sup
V
|spj |

2 ≤
∞∑
j=1

max
K
|spj |

2 < +∞.

We conclude that the series
∑∞
j=1 |s

p
j |2 converges locally uniformly on Uα, hence up is a

psh function and γp is a positive closed current on X defined locally by (2). Since the
function Pp is independent on the choice of basis {Spj }, so is the current γp.

(iii) If Uα is as above, then by (ii) up is psh on Uα and logPp = up− 2pψα, Ωn-a.e. on Uα.
Since psh functions are locally integrable (see e.g., [37, Corollary 3.2.8]), this implies that
logPp ∈ L1

loc(X,Ωn).

L 3.3. – If dim Σ ≤ n − k for some 2 ≤ k ≤ n and Hypothesis (3) holds then the
currents γk and γkp are well defined onX, respectively on each relatively compact neighborhood
of Σ, for all p sufficiently large.

Proof. – The current γk is well defined by [21, Corollary 2.11], since dim Σ ≤ n− k.

Let Ap = {x ∈ X : Spj (x) = 0, ∀ j ≥ 1}. Lemma 3.2 shows that the current γp has local
psh potentials which are continuous away from Ap ∪Σ. By [21, Corollary 2.11], it suffices to
show that given any relatively compact neighborhood U of Σ we have dim(Ap ∩U) ≤ n− k
for all p sufficiently large.
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Assuming the contrary, there exist m > n − k and a sequence pj → ∞ so that each
analytic set Apj ∩ U has an irreducible component Yj of dimension m. It follows from (3)
that, given any ε-neighborhood Vε of Σ, Yj ⊂ Apj ∩ U ⊂ Vε for all j sufficiently large,
hence Yj are compact. Let |Yj | =

∫
Yj

Ωm and Tj = [Yj ]/|Yj |, where [Yj ] denotes the current
of integration on Yj . Since Tj have unit mass, we may assume by passing to a subsequence
that Tj converges weakly to a positive closed current T of bidimension (m,m). But T is
supported by Σ, so T = 0 by Federer’s support theorem as dim Σ ≤ n−k < m (see e.g., [35,
Theorem 1.7] and references therein). On the other hand 〈T,Ωm〉 = limj→∞〈Tj ,Ωm〉 = 1,
a contradiction.

We will need the following local property of the complex Monge-Ampère operator:

T 3.4. – Let U be an open set in Cn, Σ be a proper analytic subvariety of U , and v
be a psh function on U which is continuous on U \Σ. Assume that vp, p ≥ 1, are psh functions
on U so that vp → v locally uniformly on U \ Σ. Then:

(i) The sequence {vp} is locally uniformly upper bounded in U .
(ii) Assume that dim Σ ≤ n − k and the currents (ddcvp)

k are well defined on U for
some k ≥ 1. Then (ddcvp)

k → (ddcv)k weakly in the sense of currents on U .

Proof. – (i) The sequence {vp} is clearly locally uniformly upper bounded in U \ Σ.
If x ∈ Σ we may assume that there exist coordinates (z1, . . . , zn) on some neighborhood V
of x = 0 so that V ∩ Σ is contained in the cone {|zn| ≤ max(|z1|, . . . , |zn−1|)}. Applying
the maximum principle on complex lines parallel to the zn axis, we see that there exist a
neighborhood V1 ⊂ V of x and a compact set K ⊂ V \ Σ so that supV1

vp ≤ supK vp.
Hence {vp} is uniformly upper bounded on V1.

(ii) Recall that the current (ddcv)k is well defined on U since dim Σ ≤ n − k [21,
Corollary 2.11]. Since vp → v locally uniformly on U \ Σ and v is continuous there we have
that (ddcvp)

k → (ddcv)k weakly in the sense of currents on U \ Σ (see e.g., [3, 4], also [21,
Corollary 1.6]). We divide the proof into three steps.

Step 1. – We prove here assertion (ii) when k = n. Then Σ consists of isolated points of U .
Let x ∈ Σ and χ ≥ 0 be a smooth function with compact support in U so that χ = 1 near x
and suppχ ∩ Σ = {x}. Then∫

χ (ddcvp)
n =

∫
vp(dd

cvp)
n−1 ∧ ddcχ→

∫
v(ddcv)n−1 ∧ ddcχ =

∫
χ (ddcv)n,

since vp → v locally uniformly in a neighborhood of supp ddcχ and v is continuous there
[21, Corollary 1.6]. This shows that the sequence of positive measures (ddcvp)

n has lo-
cally bounded mass on U and that if ν is any weak limit point of this sequence then
ν({x}) = (ddcv)n({x}) for each x ∈ Σ. It follows that (ddcvp)

n → (ddcv)n weakly in the
sense of measures on U .

We assume in the sequel that 1 ≤ k ≤ n− 1.
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Step 2. – We show that the currents (ddcvp)
k have locally uniformly bounded mass inU (see

e.g., [30] for the definition of mass of positive, or negative, currents). Note that we only have
to show this near points x ∈ Σ. The proof is quite standard in the case k = 1 and when k > 1

it follows from Oka’s inequality for currents due to Fornæss and Sibony [30].
Consider first the case k = 1. Fix V ⊂ U a relatively compact neighborhood of x and

compacts Kj ⊂ V so that x ∈ intK1, K1 ⊂ intK2, and K3 ⊂ V \ Σ is any compact
set of positive Lebesgue measure. Subtracting a constant we may assume that vp, v < 0

on V . There exists a constant C(K1,K2) so that ‖ddcvp‖K1 ≤ C(K1,K2)
∫
K2
|vp| for

every p (see e.g., [21, Remark 1.4]). Here ‖ddcvp‖K1 denotes the mass of the current ddcvp
on the compact set K1. By [37, Theorem 3.2.12], the family of psh functions u on V so
that u < 0 and

∫
K3
|u| = 1 is compact in L1

loc(V ). Hence there exists a constant C(K2,K3)

so that
∫
K2
|vp| ≤ C(K2,K3)

∫
K3
|vp| for every p. We conclude that the currents ddcvp have

uniformly bounded mass on K1.
Asume next that 2 ≤ k ≤ n− 1. Let x be a regular point of Σ so that dimx Σ = n− k. By

a change of coordinates near x we may assume that

x = (1/2, . . . , 1/2) ∈ ∆
n ⊂ U , Σ ∩∆

n
= {z = (z1, . . . , zn) : z1 = · · · = zk = 1/2},

where ∆ is the unit disc in C. We may also assume that vp, v < 0 near ∆
n

. Consider the
(k − 1, n− k + 1) Hartogs figure

H = {(z′, z′′) ∈ Ck−1 × Cn−k+1 : ‖z′‖ ≤ 1, ‖z′′‖ ≤ 1/4}

∪ {(z′, z′′) ∈ Ck−1 × Cn−k+1 : 3/4 ≤ ‖z′‖ ≤ 1, ‖z′′‖ ≤ 1},

where ‖z′‖ = max(|z1|, . . . , |zk−1|). The current T = vp(dd
cvp)

k−1 is a negative current
near ∆

n
of bidegree (k − 1, k − 1) and ddcT = (ddcvp)

k ≥ 0. By Oka’s inequality applied
to T [30, Theorem 2.4],

‖vp(ddcvp)k−1‖K + ‖(ddcvp)k‖K ≤ C‖vp(ddcvp)k−1‖H
for some absolute constant C, where K = ∆

n

3/4 is the polydisc of radius 3/4. Note
that x ∈ intK. Since H ∩ Σ = ∅ we have vp(ddcvp)k−1 → v(ddcv)k−1 near H [21, Corol-
lary 1.6]. It follows that ‖(ddcvp)k‖K are uniformly bounded.

Therefore we showed that the currents (ddcvp)
k have locally bounded mass on U \ Y ,

where Y ⊂ Σ is an analytic set of codimension ≥ k + 1. Oka’s inequality applied to the
currents (ddcvp)

k implies that they have locally uniformly bounded mass near each y ∈ Y

(see also [30, Corollary 2.6]).

Step 3. – We now prove that (ddcvp)
k → (ddcv)k weakly on U . Since the currents (ddcvp)

k

have locally uniformly bounded mass on U , it suffices to prove that any weak limit point T
of (ddcvp)

k is equal to (ddcv)k. Let us write

Σ = Y ∪
⋃
j≥1

Yj ,

where Yj are the irreducible components of dimension n − k and dimY ≤ n − k − 1.
Recall that T = (ddcv)k on U \ Σ. Hence by Federer’s support theorem ([26], see also [35,
Theorem 1.7]), T = (ddcv)k on D = U \ ∪j≥1Yj , since Y is an analytic subvariety of D of
dimension ≤ n− k − 1.
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By Siu’s decomposition formula ([58], see also [21, Theorem 6.19]) we write

T = R+
∑
j≥1

cj [Yj ] , (ddcv)k = S +
∑
j≥1

dj [Yj ] ,

where [Yj ] denotes the current of integration on Yj , cj , dj ≥ 0, and R,S are positive closed
currents of bidegree (k, k) on U which do not charge any Yj (i.e., the trace measure of R is 0
on Yj). It follows by above that R = S. To conclude the proof we have to show that cj = dj
for each j. This will be done using slicing.

Without loss of generality, let j = 1 and x ∈ Y1 be a regular point of Σ. By a change
of coordinates z = (z′, z′′) near x we may assume that x = 0 ∈ ∆

n ⊂ U and Σ ∩ ∆n =

Y1 ∩ ∆n = {z′ = 0}, where z′ = (z1, . . . , zk), z′′ = (zk+1, . . . , zn). Since vp → v locally
uniformly onU\Σ and v is continuous there, it follows that for each z′′ ∈ ∆n−k the functions
vp,z′′(z

′) = vp(z
′, z′′), vz′′(z′) = v(z′, z′′), are locally bounded near the boundary of ∆k,

so their Monge-Ampère measures (ddcvp,z′′)
k, (ddcvz′′)

k are well defined on ∆k (see [21,
Corolary 2.3]). Arguing as in the proof of Step 1, it follows that (ddcvp,z′′)

k → (ddcvz′′)
k

weakly on ∆k as p→∞, for each z′′ ∈ ∆n−k.
Let χ1(z′) ≥ 0 (resp. χ2(z′′) ≥ 0) be a smooth function with compact support in ∆k (resp.

∆n−k) so that χ1 = 1 near 0 ∈ Ck (resp. χ2 = 1 near 0 ∈ Cn−k). Let β = i/2
∑n
j=k+1 dzj ∧ dzj

be the standard Kähler form in Cn−k. One has the slicing formula (see e.g., [25, formula
(2.1)])∫

∆n

χ1(z′)χ2(z′′)(ddcvp)
k ∧ βn−k =

∫
∆n−k

(∫
∆k

χ1(z′)(ddcvp,z′′)
k

)
χ2(z′′)βn−k,

and similarly for (ddcv)k. Note that∫
χ1 (ddcvp,z′′)

k =

∫
vp,z′′(dd

cvp,z′′)
k−1 ∧ ddcχ1.

Since ddcχ1 is supported away from Σ, the Chern-Levine-Nirenberg estimates [21, (1.3)]
imply that this integral is locally uniformly bounded as a function of z′′. Letting p → ∞
we infer by above that∫

∆n

χ1(z′)χ2(z′′)T ∧ βn−k =

∫
∆n

χ1(z′)χ2(z′′)(ddcv)k ∧ βn−k.

By Siu’s decomposition formulas of T and (ddcv)k, and since R = S, this implies that

c1

∫
{z′=0}

χ2(z′′)βn−k = d1

∫
{z′=0}

χ2(z′′)βn−k.

As
∫
{z′=0} χ2(z′′)βn−k > 0 we see that c1 = d1, and the proof is complete.

We finish now the proof of Theorem 1.1 by showing that 1
pk
γkp → γk weakly on X. Since

this is local, we fix x ∈ X and let Uα be a relatively compact neighborhood of x such that
there exists a holomorphic frame eα of L over Uα. Let ψα be a psh weight of h on Uα and let

vp =
1

2p
log

 ∞∑
j=1

|spj |
2

 , where Spj = spje
⊗p
α , spj ∈ OX(Uα).

By Lemma 3.2 the function vp is psh on Uα and we have 1
p γp = ddcvp, γ = ddcψα.

Moreover, Lemma 3.3 shows that the currents (ddcvp)
k are well defined on Uα for all p
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sufficiently large. Note that ψα is continuous on Uα \ Σ. Since 1
2p logPp = vp − ψα,

Hypothesis (3) implies that vp → ψα locally uniformly on Uα \ Σ. It follows by Theo-
rem 3.4 that 1

pk
γkp = (ddcvp)

k → (ddcψα)k = γk weakly on Uα. This concludes the proof
of Theorem 1.1.

R 3.5. – In the setting of Theorem 1.1, assume that dim Σ ≤ n − k and that (3)
holds. The proof of Lemma 3.3 shows that all currents γjp∧γl, j+ l ≤ k are well defined positive
closed currents on X. By Lemma 3.2 logPp ∈ L1

loc(X,Ωn) and ddc logPp = 2γp − 2pγ is a
current of order 0 onX. It follows that (ddc logPp)

j , j ≤ k, are currents of order 0 onX which
can be defined inductively by

(ddc logPp)
j+1 = ddc

(
logPp (ddc logPp)

j
)
, j < k,

since locally, logPp is integrable with respect to the measure coefficients of (ddc logPp)
j .

Moreover, we have(
1

2p
ddc logPp

)k
=

(
1

p
γp − γ

)k
=

k∑
j=0

(
k

j

)
(−1)k−j

pj
γjp ∧ γk−j .

A straightforward adaptation of the proof of Theorems 1.1 and 3.4 shows that

p−jγjp ∧ γk−j → γk , as p→∞,

weakly on X. Hence p−j(ddc logPp)
j → 0 as p→∞ in the weak sense of currents of order 0

on X, for all 1 ≤ j ≤ k.

R 3.6. – Observe that the hypothesis f ≥ cx > 0 Ωn-a. e. in a neighborhood Ux
of each x ∈ Σn−1

reg was only needed in the proof of Lemma 3.2 (i), i.e., to show that
H0

(2)(X \ Σ, Lp) ⊂ H0(X,Lp). Therefore, Theorem 1.1 also holds provided that X, Σ, (L, h),
f , Ω verify assumptions (A), (B), (C′) and (D), where:

(C′) The volume form onX \Σ is fΩn, where f ∈ L1
loc(X \Σ,Ωn) verifies f ≥ cx > 0 Ωn-a.e.

in a neighborhood Ux of each x ∈ X \ Σ.
(D) H0

(2)(X \ Σ, Lp) ⊂ H0(X,Lp) for every p ≥ 1.

This variant of Theorem 1.1 will be useful to us for some applications in Section 6, where the
fact that the sections in H0

(2)(X \ Σ, Lp) extend holomorphically to sections of Lp over X is
known to hold by other considerations (see Sections 6.3 and 6.4).

4. Distribution of zeros of random sections

The purpose of this section is to give the proof of Theorem 1.2. As a consequence we show
in Theorem 4.3 that zeros of random holomorphic sections are equidistributed with respect
to the curvature current.

Let X,Σ, (L, h), f,Ω verify assumptions (A)-(C) stated in the introduction. In addition,
we assume in this section that X is compact. By Lemma 3.2, H0

(2)(X \Σ, Lp) ⊂ H0(X,Lp).
Let

dp = dimH0
(2)(X \ Σ, Lp), {Spj }1≤j≤dp a fixed orthonormal basis of H0

(2)(X \ Σ, Lp).
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The currents γp can now be described as pullbacks γp = Φ?p(ωFS), where Φp : X 99K Pdp−1

is the Kodaira map defined by {Spj } and ωFS is the Fubini-Study form on Pdp−1. Recall that
if Spj = spje

⊗p
α where eα is a holomorphic frame for L on an open set Uα then

Φp(x) = [sp1(x) : · · · : spdp(x)], x ∈ Uα.

Following the framework in [54], we identify the unit sphere Sp of H0
(2)(X \Σ, Lp) to the

unit sphere S2dp−1 in Cdp by

a = (a1, . . . , adp) ∈ S2dp−1 −→ Sa =

dp∑
j=1

ajS
p
j ∈ Sp,

and we let λp be the probability measure on Sp induced by the normalized surface measure
on S2dp−1, denoted also by λp (i.e., λp(S2dp−1) = 1). We let λkp denote the product measure
on ( Sp)k determined by λp. Given a nontrivial section S ∈ H0(X,Lp) we denote by [S = 0]

the current of integration (with multiplicities) over the analytic hypersurface {S = 0} of X.
We give now the proof of Theorem 1.2. Let us note that some of the main ideas involved in

proving this theorem are similar to those in [54, 56], however special attention has to be given
as we have to work with currents rather than smooth forms and the subspaces of sections we
consider have nonempty base locus. To prove assertion (i) we will need the following version
of Bertini’s theorem:

P 4.1. – Let L −→ X be a holomorphic line bundle over a compact complex
manifold X of dimension n. Assume that:

(i) V is a vector subspace of H0(X,L) with basis S1, . . . , Sd, and with base locus Bs(V ) =

{S1 = · · · = Sd = 0} ⊂ X so that dim Bs(V ) ≤ n− k.
(ii) Z(h) := {x ∈ X :

∑d
j=1 hjSj(x) = 0}, where h = [h1 : · · · : hd] ∈ Pd−1.

(iii) νl is the product measure on (Pd−1)l induced by the Fubini-Study volume µd−1 on Pd−1.

Then for νk-a.e. (h1, . . . , hk) ∈ (Pd−1)k we have that dimZ(hi1)∩ · · · ∩Z(hil) ≤ n− l for
every l ≤ k and i1 < · · · < il in {1, . . . , k}.

The proof is included at the end of this section for the convenience of the reader, since
we could not find it in the literature. Assertion (ii) of Theorem 1.2 is proved by repeated
application of the following proposition:

P 4.2. – Let L −→ X, V, S1, . . . , Sd, be as in Proposition 4.1. Assume that:

(i) S :=
{∑d

j=1 ajSj :
∑d
j=1 |aj |2 = 1

}
is endowed with the probability measureλ induced

via the natural identification by the normalized surface measure on S2d−1.
(ii) β := Φ?(ωFS), where Φ : X 99K Pd−1 is the Kodaira map defined by {Sj}.

(iii) T is a positive closed current on X of bidimension (l, l), l > 0, such that the current
[S = 0] ∧ T is well defined for λ-a.e. S ∈ S.

Then the current β ∧ T is well defined on X. Moreover, if ϕ is a smooth (l − 1, l − 1) form
on X the function S → 〈[S = 0] ∧ T, ϕ〉 is in L1( S, λ) and∫

S
〈[S = 0] ∧ T, ϕ〉 dλ(S) = 〈β ∧ T, ϕ〉.
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We postpone for the time being the proof of Proposition 4.2, and we continue with the
proof of Theorem 1.2.

Proof of Theorem 1.2. – (i) Lemma 3.3 (and its proof) show that

dim Bs(H0
(2)(X \ Σ, Lp)) ≤ n− k,

for all p sufficiently large. It follows from Prop. 4.1 that, for λkp-a.e. σ = (σ1, . . . , σk) ∈ ( Sp)k,
the analytic subset {σi1 = 0} ∩ · · · ∩ {σil = 0} has dimension ≤ n − l for every l ≤ k and
i1 < · · · < il in {1, . . . , k}. Therefore the current [σ = 0] is well defined [21, Corollary 2.11],
and it equals the current of integration with multiplicities along {σ1 = 0} ∩ · · · ∩ {σk = 0}
[21, Proposition 2.12].

(ii) One can show that the function σ ∈ ( Sp)k −→ 〈[σ = 0], ϕ〉 is measurable by an
approximation argument similar to that in the proof of Proposition 4.2.

Let σ = (σ1, . . . , σk) ∈ ( Sp)k be so that the analytic subset {σi1 = 0} ∩ · · · ∩ {σil = 0}
has dimension ≤ n− l for every l ≤ k and i1 < · · · < il in {1, . . . , k}. Corollary 2.11 in [21]
and the considerations from (i) show that [σi1 = 0] ∧ · · · ∧ [σil = 0] ∧ γp is a well defined
positive closed current of bidegree (l + 1, l + 1) on X, for every i1 < · · · < il in {1, . . . , k},
l < k.

By adding to ϕ a large multiple of Ωn−k we may assume that ϕ is a strongly posi-
tive (n− k, n− k) test form on X. Hence the integral in (ii) can be evaluated as an iterated
integral by Tonelli’s theorem (see e.g., [27, Theorem 2.37]). We apply Proposition 4.2 with

V = H0
(2)(X \ Σ, Lp), T = [σ2 = 0] ∧ · · · ∧ [σk = 0].

Then for λk−1
p -a.e. (σ2, . . . , σk) ∈ ( Sp)k−1,∫

Sp
〈[σ = 0], ϕ〉 dλp(σ1) = 〈T ∧ γp, ϕ〉 = 〈[σ2 = 0] ∧ · · · ∧ [σk = 0] ∧ γp, ϕ〉,

since [σ = 0] = [σ1 = 0] ∧ T . Proposition 4.1 shows that Proposition 4.2 can be applied
again for λk−2

p -a.e. (σ3, . . . , σk) ∈ ( Sp)k−2 with T = [σ3 = 0] ∧ · · · ∧ [σk = 0] ∧ γp, so∫
Sp

∫
Sp
〈[σ = 0], ϕ〉 dλp(σ1) dλp(σ2) =

∫
Sp
〈[σ2 = 0] ∧ · · · ∧ [σk = 0] ∧ γp, ϕ〉 dλp(σ2)

= 〈[σ3 = 0] ∧ · · · ∧ [σk = 0] ∧ γ2
p , ϕ〉.

Continuing like this we obtain that the k th iterated integral in (ii) equals 〈γkp , ϕ〉. This
proves (ii), and then (iii) follows at once from Theorem 1.1.

Let us now consider the probability space S∞ =
∏∞
p=1 Sp endowed with the probability

measure λ∞ =
∏∞
p=1 λp. The proof of the variance estimate from Lemma 3.3 in [54] goes

through with no change. Combined with Theorem 1.2, it implies that Theorem 1.1 of [54]
holds in our setting. Namely, we have the following:

T 4.3. – In the setting of Theorem 1.1, assume thatX is compact and that (3) holds.
Then, in the weak sense of currents on X,

lim
p→∞

1

p
[σp = 0] = γ, for λ∞-a.e. sequence {σp}p≥1 ∈ S∞.
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Note thatX is not assumed to be Kähler in Theorem 4.3. SinceX is compact, there exists
a Gauduchon form on X, i.e., a positive (n− 1, n− 1) form Ω̃ such that ddcΩ̃ = 0, cf. [31].
Hence ∫

X

[σp = 0] ∧ Ω̃ =

∫
X

γp ∧ Ω̃ = p

∫
X

γ ∧ Ω̃ .

Then Theorem 4.3 can be proved by the same arguments as those in the proof of [54,
Theorem 1.1].

Proof of Proposition 4.2. – We fix a holomorphic frame eα of L over an open set Uα,
and write S = seα, Sj = sjeα, where S =

∑d
j=1 ajSj ∈ S is chosen so that the cur-

rent [S = 0] ∧ T is well defined, hence log |s| ∈ L1
loc(Uα, |T |) (see Section 2.4). Then

log |s| = log

∣∣∣∣∣∣
d∑
j=1

ajsj

∣∣∣∣∣∣ ≤ 1

2
log

 d∑
j=1

|sj |2
 .

Since the latter function is locally bounded above on Uα and log |s| ∈ L1
loc(Uα, |T |), we

conclude that

(6) log

 d∑
j=1

|sj |2
 ∈ L1

loc(Uα, |T |) ,

so β ∧ T is well defined.
To show that the function S 3 S 7−→ 〈[S = 0] ∧ T, ϕ〉 is measurable, we may assume

by using a partition of unity that ϕ is supported in Uα. Since [S = 0] ∧ T is well defined
for λ-a.e. S ∈ S and the sequence of smooth psh functions log(|s|2 + 1/m)1/2 decreases
to log |s| as m→∞, we have

〈[S = 0] ∧ T, ϕ〉 = 〈log |s| · T, ddcϕ〉 = lim
m→∞

〈T, log(|s|2 + 1/m)1/2ddcϕ〉.

Our claim follows as S ∈ S −→ 〈T, log(|s|2 + 1/m)1/2ddcϕ〉 are continuous functions.
For S ∈ S we define the function N(S) on X by

N(S)|Uα = log
|s|√

|s1|2 + · · ·+ |sd|2
.

Note thatN(S) ∈ L1(X,Ωn), where Ω is a smooth positive (1, 1) form onX, since it is locally
the difference of psh functions. Moreover, Hypothesis (iii) in the statement of Proposition 4.2
and (6) imply that N(S) ∈ L1(X, |T |) for λ-a.e. S ∈ S. Therefore we have

[S = 0] = β + ddcN(S), [S = 0] ∧ T = β ∧ T + ddc(N(S)T ).

Indeed, the first formula follows from the definition of the function N(S), while for the
second, working locally on Uα, we have

[S = 0] ∧ T = ddc(log |s|T ) = ddc
(

log
√
|s1|2 + · · ·+ |sd|2 T

)
+ ddc(N(S)T )

= β ∧ T + ddc(N(S)T ).

Thus, for λ-a.e. S ∈ S,

〈[S = 0] ∧ T, ϕ〉 = 〈β ∧ T, ϕ〉+

∫
X

N(S)T ∧ ddcϕ,
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and the proof is finished if we show that the function S →
∫
X
N(S)T ∧ ddcϕ belongs

to L1( S, λ) and ∫
S

(∫
X

N(S)T ∧ ddcϕ
)
dλ(S) = 0 .

We may assume that ϕ is real, so ddcϕ is a real (l, l) form onX. There exists a constantM
so that ddcϕ + MΩl is a strongly positive (l, l) form, so T ∧ (ddcϕ + MΩl) is a positive
measure. It follows that we can write

T ∧ ddcϕ = µ1 − µ2 , where µ1 = T ∧ (ddcϕ+MΩl) , µ2 = M T ∧ Ωl .

Note that µj are positive measures dominated up to multiplicative constants by |T |. Since
N(S) ∈ L1(X, |T |) for λ-a.e. S ∈ S we see that N(S) ∈ L1(X,µj) for λ-a.e. S ∈ S. Note
also that N(S) ≤ 0 on X. Hence by Tonelli’s theorem,∫

S

(∫
X

N(S) dµj

)
dλ(S) =

∫
X

(∫
S
N(S) dλ(S)

)
dµj .

Recall that on Uα the function log(|s1|2 + · · · + |sd|2) is locally integrable with respect
to |T |. Hence, by the above considerations, it is locally integrable with respect to µj . Thus
|s1|2 + · · ·+ |sd|2 > 0 µj-a.e. on Uα. So

uα :=

(
s1√

|s1|2 + · · ·+ |sd|2
, . . . ,

sd√
|s1|2 + · · ·+ |sd|2

)
is a well defined function µj-a.e. on Uα with values in the unit sphere S2d−1 in Cd. We have

N(S) = N(a1S1 + · · ·+ adSd) = log |a · uα| on Uα,

where a = (a1, . . . , ad) and a · u = a1u1 + · · ·+ adud. Therefore∫
S
N(S)(x) dλ(S) =

∫
S2d−1

log |a · uα(x)| dλ(a) = Cd,

for µj-a.e. x ∈ Uα, where Cd < 0 is a dimensional constant. It follows that∫
S

(∫
X

N(S) dµj

)
dλ(S) = Cdµj(X) > −∞,

so the function S →
∫
X
N(S) dµj is in L1( S, λ), hence so is the function

S →
∫
X

N(S)T ∧ ddcϕ =

∫
X

N(S) dµ1 −
∫
X

N(S) dµ2.

Finally, since T is closed we have∫
S

(∫
X

N(S)T ∧ ddcϕ
)
dλ(S) = Cd(µ1(X)− µ2(X)) = Cd

∫
X

T ∧ ddcϕ = 0.

This concludes the proof.

Proof of Proposition 4.1. – We divide the proof into four steps.
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Step 1. – We show that for νk−1-a.e. (h1, . . . , hk−1) ∈ (Pd−1)k−1 the analytic set
Z(h1) ∩ · · · ∩ Z(hk−1) has dimension at most n− k + 1.

Consider the set I ⊂ (X \ Bs(V ))× (Pd−1)k−1 defined by

(x, h1, . . . , hk−1) ∈ I ⇐⇒
d∑
j=1

hijSj(x) = 0, 1 ≤ i ≤ k − 1,

where hi = [hi1 : · · · : hid]. If z = (x, h1, . . . , hk−1) ∈ I then x 6∈ Bs(V ), and we may assume
that for each i, hiji = 1 for some 1 ≤ ji ≤ d. For each i there exists li 6= ji so that Sli(x) 6= 0.
Indeed, otherwise Sl(x) = 0 for all l 6= ji, so

Sji(x) =
∑
l 6=ji

hilSl(x) + Sji(x) = 0,

hence x ∈ Bs(V ), a contradiction. We obtain that for z′ = (x′, ζ1, . . . , ζk−1) near z, I is the
graph

ζili = −Sji(x
′)

Sli(x
′)
−
∑
l 6=li,ji

Sl(x
′)

Sli(x
′)
ζil , 1 ≤ i ≤ k − 1.

Thus I is a submanifold of (X \ Bs(V ))× (Pd−1)k−1 of dimension n+ (k − 1)(d− 2).

Consider the projection

π2 : I −→ (Pd−1)k−1, π2(x, h1, . . . , hk−1) = (h1, . . . , hk−1) .

By Sard’s theorem, for νk−1-a.e. (h1, . . . , hk−1) ∈ (Pd−1)k−1 the set

π−1
2 (h1, . . . , hk−1) = {(x, h1, . . . , hk−1) : x ∈ Z(h1) ∩ · · · ∩ Z(hk−1) ∩ (X \ Bs(V ))}

is either empty or a submanifold of I of dimension dim I − (k − 1)(d − 1) = n − k + 1.
Since π1 : (X \Bs(V ))×{(h1, . . . , hk−1)} −→ X \Bs(V ) is a biholomorphism, we conclude
that Z(h1)∩ · · · ∩Z(hk−1)∩ (X \Bs(V )) is either empty or a submanifold of X \Bs(V ) of
dimension n− k+ 1. Hence Z(h1)∩ · · · ∩Z(hk−1) is an analytic subset of X which is either
empty or is of pure dimension n− k + 1 and smooth away from Bs(V ).

Step 2. – We show that the set Gk is open, where

Gk = {(h1, . . . , hk) ∈ (Pd−1)k : dimZ(h1) ∩ · · · ∩ Z(hk) ≤ n− k}.

Indeed, assume for a contradiction that (h1, . . . , hk) ∈ Gk but there exist sequences hiN → hi

in Pd−1, as N →∞, so that the set Z(h1
N )∩ · · · ∩Z(hkN ) has an irreducible component AN

of dimension m, for some m > n − k. Consider the currents TN = (volAN )−1[AN ], where
[AN ] is the current of integration onAN . Since TN have unit mass, we may assume by passing
to a subsequence that TN converge weakly to a positive closed current T of unit mass and
bidimension (m,m). Note that the setsAN cluster to the analytic setA = Z(h1)∩· · ·∩Z(hk),
so T is supported on A. Since dimA ≤ n − k < m, T = 0 by the support theorem, a
contradiction.
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Step 3. – We show that the complement Gck = (Pd−1)k \Gk has νk measure 0. Let

Gk−1 = {(h1, . . . , hk−1) ∈ (Pd−1)k−1 : dimZ(h1) ∩ · · · ∩ Z(hk−1) ≤ n− k + 1}.

By steps 1 and 2, the set Gk−1 is open and νk−1(Gck−1) = 0. We have

Gck ⊂
(
Gck−1 × Pd−1

)
∪
(
Gck ∩ (Gk−1 × Pd−1)

)
.

Note that νk(Gck−1 × Pd−1) = 0 and the set Fk = Gck ∩ (Gk−1 × Pd−1) is νk measurable.

For (h1, . . . , hk−1) ∈ Gk−1 consider the slice

Fk(h1, . . . , hk−1) = {h ∈ Pd−1 : (h1, . . . , hk−1, h) ∈ Fk}
= {h ∈ Pd−1 : (h1, . . . , hk−1, h) ∈ Gck}.

Since Gck is closed, the above slices are closed. We are done if we show that they have µd−1

measure 0. Indeed, since Fk is measurable this will imply that νk(Fk) = 0.

To this end, observe that if Z(h1) ∩ · · · ∩ Z(hk−1) = ∅ then Fk(h1, . . . , hk−1) = ∅.
Otherwise, we let Y := Z(h1) ∩ · · · ∩ Z(hk−1) = Y1 ∪ . . . ∪ YN , where Yl are the irreducible
components of Y . Since all of them have dimension n− k + 1 it follows that

Fk(h1, . . . , hk−1) =

N⋃
j=1

Ej , Ej := {h ∈ Pd−1 : Yj ⊂ Z(h)}.

Note that the sets Ej are closed. We will be done if we show that µd−1(Ej) = 0.

Let us fix j. The basis sections Si cannot all vanish identically on Yj , since dimYj = n− k + 1

and dim Bs(V ) ≤ n− k. We may assume that Sd 6≡ 0 on Yj . So

Ej ⊂ {ζ1 = 0} ∪Hj , Hj := {(ζ2, . . . , ζd) ∈ Cd−1 : [1 : ζ2 : · · · : ζd] ∈ Ej}.

Note that Hj is closed in Cd−1, and we are done if we show that it has Lebesgue measure 0.
This follows since for each (ζ2, . . . , ζd−1) ∈ Cd−2 the slice

Hj(ζ2, . . . , ζd−1) = {ζ ∈ C : (ζ2, . . . , ζd−1, ζ) ∈ Hj}

contains at most one element. Indeed, if ζ 6= ζ ′ ∈ Hj(ζ2, . . . , ζd−1) then

S1 + ζ2S2 + · · ·+ ζd−1Sd−1 + ζSd ≡ 0 , S1 + ζ2S2 + · · ·+ ζd−1Sd−1 + ζ ′Sd ≡ 0

on Yj , hence Sd ≡ 0 on Yj , a contradiction.

Step 4. – For l ≤ k − 1 let

Gl = {(h1, . . . , hl) ∈ (Pd−1)l : dimZ(h1) ∩ · · · ∩ Z(hl) ≤ n− l}.

The arguments in steps 1 and 2 show that, for every l ≤ k − 1, the set Gl is open and
νl(G

c
l ) = 0. Hence if l ≤ k − 1 and i1 < · · · < il in {1, . . . , k} the set

F̃i1...il = {(h1, . . . , hk) ∈ (Pd−1)k : dimZ(hi1) ∩ · · · ∩ Z(hil) > n− l}

is closed and has νk measure 0. Therefore, by step 3, the setD is open and has full νk measure,
where D = Gk \

⋃
F̃i1...il and the union is over all l ≤ k− 1 and i1 < · · · < il in {1, . . . , k}.

Note that (h1, . . . , hk) ∈ D if and only if dimZ(hi1) ∩ · · · ∩ Z(hil) ≤ n− l for every l ≤ k

and i1 < · · · < il in {1, . . . , k}, and the proof of Proposition 4.1 is complete.
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5. Asymptotic behavior of the Bergman density function

Using techniques of Demailly from [19, Proposition 3.1], [22, Section 9] we prove here
two theorems about the asymptotic behavior of the Bergman density function. The first one
hereafter holds for arbitrary singular metrics with strictly positive curvature, while the second
one, Theorem 5.3, shows that our Hypothesis (3) is satisfied in a quite general setting.

T 5.1. – Let (X,Ω) be a compact n-dimensional Kähler manifold and (L, h) be a
holomorphic line bundle on X with a singular Hermitian metric h so that c1(L, h) is a strictly
positive current. If Pp, γp are the Bergman density function, resp. the Fubini-Study currents,
defined by (1)-(2) for the spaces H0

(2)(X,L
p) of L2-holomorphic sections of Lp relative to the

metric induced by h and the volume form Ωn, then as p→∞,

1

p
logPp → 0 in L1(X,Ωn) ,

1

p
γp → c1(L, h) ,

1

p
[σp = 0]→ c1(L, h)

for λ∞-a.e. sequence {σp}p≥1 ∈ S∞, in the weak sense of currents on X, where S∞, λ∞ are
as in Theorem 4.3.

We will need the following existence theorem for ∂ in the case of singular Hermitian
metrics. The smooth case goes back to Andreotti-Vesentini and Hörmander, while the
singular case was first observed by Bombieri and Skoda and proved in generality by De-
mailly [18, Theorem 5.1].

T 5.2 (L2-estimates for ∂). – Let (M,Θ) be a complete Kähler manifold, (L, h) be
a singular Hermitian line bundle and ϕ a quasi-psh function on M . Assume that there exist
constants a > 0, C > 0 such that

c1(L, h) > 2aΘ, ddcϕ > −CΘ, c1(KM , h
KM ) < CΘ ,

where hKM is the metric induced on KM by Θ. Then there exists p0 = p0(a,C) such that for
any p ≥ p0 and for any form g ∈ L2

0,1(M,Lp) satisfying ∂g = 0 there exists u ∈ L2
0,0(M,Lp)

with ∂u = g and ∫
M

|u|2hpe
−ϕ dvM ≤

1

ap

∫
M

|g|2hpe
−ϕ dvM .

Proof of Theorem 5.1. – Let x ∈ X and Uα ⊂ X be a coordinate neighborhood of x on
which there exists a holomorphic frame eα ofL. Letψα be a psh weight ofh onUα. Fix r0 > 0

so that the (closed) ball V := B(x, 2r0) b Uα and let U := B(x, r0).

We show that there exist constants C1 > 0, p0 ∈ N so that

(7) − logC1

p
≤ 1

p
logPp(z) ≤

log(C1r
−2n)

p
+ 2

(
max
B(z,r)

ψα − ψα(z)

)
holds for all p > p0, 0 < r < r0 and z ∈ U with ψα(z) > −∞.
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For the upper estimate, fix z ∈ U with ψα(z) > −∞ and r < r0. Let S ∈ H0
(2)(X,L

p)

with ‖S‖p = 1 and write S = se⊗pα . Repeating an argument of Demailly we obtain

|S(z)|2hp = |s(z)|2e−2pψα(z) ≤ e−2pψα(z) C1

r2n

∫
B(z,r)

|s|2 Ωn

≤ C1

r2n
exp

(
2p

(
max
B(z,r)

ψα − ψα(z)

))∫
B(z,r)

|s|2e−2pψα Ωn

≤ C1

r2n
exp

(
2p

(
max
B(z,r)

ψα − ψα(z)

))
,

where C1 is a constant that depends only on x. Hence

1

p
logPp(z) =

1

p
max
‖S‖p=1

log |S(z)|2hp ≤
log(C1r

−2n)

p
+ 2

(
max
B(z,r)

ψα − ψα(z)

)
.

Note that this estimate holds for all p and it does not require the strict positivity of the
current c1(L, h), nor the hypotheses that X is compact or Ω is a Kähler form.

For the lower estimate in (7), we proceed as in [22, Section 9] to show that there exist a
constant C1 > 0 and p0 ∈ N such that for all p > p0 and all z ∈ U with ψα(z) > −∞ there
is a section Sz,p ∈ H0

(2)(X,L
p) with Sz,p(z) 6= 0 and

‖Sz,p‖2p ≤ C1|Sz,p(z)|2hp .

Observe that this implies that

1

p
logPp(z) =

1

p
max
‖S‖p=1

log |S(z)|2hp ≥ −
logC1

p
.

Let us prove the existence of Sz,p as above. By the Ohsawa-Takegoshi extension theo-
rem [49] there exists a constant C ′ > 0 (depending only on x) such that for any z ∈ U and
any p there exists a function vz,p ∈ OX(V ) with vz,p(z) 6= 0 and∫

V

|vz,p|2e−2pψαΩn ≤ C ′|vz,p(z)|2e−2pψα(z) .

We shall now solve the ∂-equation with L2-estimates in order to extend vz,p to a section
of Lp over X. We apply Theorem 5.2 for (X,Ω) and (L, h). Let θ ∈ C∞(R) be a cut-off

function such that 0 ≤ θ ≤ 1, θ(t) = 1 for |t| ≤ 1
2 , θ(t) = 0 for |t| ≥ 1. Define the quasi-psh

function ϕz on X by

ϕz(y) =

{
2nθ

( |y−z|
r0

)
log |y−z|r0

, for y ∈ Uα ,
0, for y ∈ X \B(z, r0) .

Note that the function ϕz is psh, hence ddcϕz ≥ 0, on {y : |y− z| < r0/2}. Since V b Uα it
follows that there exists a constant c > 0 so that for all z ∈ U we have ddcϕz ≥ −cΩ on X.
Therefore there exist a > 0, C > 0 such that the hypotheses of Theorem 5.2 are satisfied
for (X,Ω), (L, h) and all ϕz, z ∈ U . Let p0 be as in Theorem 5.2. Consider the form

g ∈ L2
0,1(X,Lp), g = ∂

(
vz,pθ

( |y−z|
r0

)
e⊗pα
)
.

By Theorem 5.2, for each p > p0 there exists u ∈ L2
0,0(X,Lp) such that ∂u = g and∫

X

|u|2hpe
−ϕz Ωn ≤ 1

ap

∫
X

|g|2hpe
−ϕzΩn <∞ .
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Here the second integral is finite since ψα(z) > −∞ and∫
X

|g|2hpe
−ϕzΩn =

∫
V

|vz,p|2|∂θ( |y−z|r0
)|2e−2pψαe−ϕzΩn ≤ C ′′

∫
V

|vz,p|2e−2pψαΩn,

where C ′′ > 0 is a constant that depends only on x. Near z, e−ϕz(y) = r2n
0 |y − z|−2n is not

integrable, thus u(z) = 0. Define

Sz,p := vz,pθ
( |y−z|

r0

)
e⊗pα − u.

Then ∂Sz,p = 0, Sz,p(z) = vz,p(z)e
⊗p
α (z) 6= 0, Sz,p ∈ H0

(2)(X,L
p). Since ϕz ≤ 0 on X,

‖Sz,p‖2p ≤ 2

(∫
V

|vz,p|2e−2pψαΩn +

∫
X

|u|2hpe
−ϕz Ωn

)
≤ 2C ′

(
1 +

C ′′

ap

)
|vz,p(z)|2e−2pψα(z) ≤ C1|Sz,p(z)|2hp ,

with a constant C1 > 0 that depends only on x. This concludes the proof of (7).

Recall that logPp ∈ L1(X,Ωn), as it is locally the difference of psh functions. Observe
that, by the upper semicontinuity of ψα, (7) implies that 1

p logPp → 0 as p → ∞, Ωn-a.e.
on X. Since ψα is psh on Uα, it is integrable on U b Uα [37, Corollary 3.2.8]. By dominated
convergence, (7) implies that 1

p logPp → 0 in L1(U,Ωn), hence in L1(X,Ωn), so

γp − c1(L, h) =
1

2p
ddc logPp → 0 weakly on X.

The conclusion about the equidistribution of zeros of random sequences of sections now
follows as in [54, Theorem 1.1] (see Section 4 and Theorem 4.3).

We return to the main setting of the paper, given by assumptions (A)-(C) stated in the
introduction, and we take here f ≡ 1.

T 5.3. – Let X,Σ, (L, h),Ω verify (A)-(B) and assume that X is compact, Ω is a
Kähler form, and c1(L, h) is a strictly positive current on X. Then (3) holds for the Bergman
density function Pp defined in (1) for the space H0

(2)(X \ Σ, Lp).

Proof. – Let x ∈ X\Σ,Uα ⊂ X\Σ,ψα, V ,U , be as in the proof of Theorem 5.1. Then (7)
shows that 1

p logPp → 0 as p→∞ uniformly on U , thanks to the uniform continuity of ψα
on V .

Combining Theorems 1.1, 5.3 and 1.2 we obtain the following equidistribution theorem
for big line bundles:

T 5.4. – Let (L, h) be a line bundle over the compact Kähler manifold (X,Ω)

endowed with a singular Hermitian metric h which is continuous outside a proper analytic
subset Σ and so that γ := c1(L, h) is a strictly positive current. If γp is the current defined
by (2) for the space H0

(2)(X \ Σ, Lp) then 1
p γp → γ weakly on X. If dim Σ ≤ n− k for

some 2 ≤ k ≤ n, then the currents γk and γkp , for all p sufficiently large, are well defined and
1
pk
γkp → γk weakly onX. Moreover, the conclusions of Theorems 1.2 and 4.3 hold in this setting.
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Note that in Theorems 5.1 and 5.4 the bundle L is a big line bundle and X is Moishezon,
by a theorem of Ji and Shiffman [39] (cf. also [43, Theorem 2.3.28, 2.3.30]). HenceX is in fact
a projective manifold, since it is assumed to be Kähler (see e.g., [43, Theorem 2.2.26]).

6. Applications

LetX,Σ, (L, h), f,Ω verify assumptions (A)-(C) stated in the introduction and assume in
addition that γ = c1(L, h) is a strictly positive current. To emphasize the metrics that are
used, we denote throughout this section the corresponding spaces of L2-holomorphic sec-
tions by H0

(2)(X \ Σ, Lp, h, fΩn). We discuss here several important situations in which the
Bergman density function Pp defined in (1) satisfies our Hypothesis (3). In Sections 6.1, 6.2
we consider singular Hermitian metrics on big line bundles, and we deduce equidistribution
results for L2 holomorphic sections with respect to the Poincaré metric and for sections of
Nadel multiplier sheaves. In Section 6.3 we turn to Zariski-open manifolds with bounded
negative Ricci curvature, and we generalize a theorem of Tian [59, Theorem C] in our frame-
work. Natural examples of Kähler-Einstein manifolds of negative Ricci curvature are the
arithmetic quotients. We show in Section 6.4 how our results apply for toroidal compacti-
fications of such manifolds. Finally, in Sections 6.5, 6.6 we exhibit some results for 1-convex
manifolds.

6.1. Properties of hε

For some of the applications, we will have to work with the Poincaré metric Θ onX\Σ and
with a small perturbation hε of the metric h on L. Let us begin by listing certain properties
of these special metrics.

We refer to Section 2.3 for the construction of the metrics Θ, hε, and we shall use the
notations introduced there. In particular, Θn = fΩn with a function f as in (C) (see Sec-
tion 2.3.1). Note that hε is in fact a metric on L|X\Y , where Y ⊂ Σ is an analytic subset of
dimension ≤ n− 2 (Section 2.3.2). We recall the following fact:

L 6.1. – Let L be a holomorphic line bundle over a complex manifold X and Y be
an analytic subvariety of X with codimY ≥ 2. Then any positively curved singular metric hL

onL|X\Y extends to a positively curved singular metric onL. Moreover, if c1(L|X\Y , hL) ≥ δΩ
onX \Y , for some δ > 0, then the same estimate holds for the curvature current of the extended
metric on X.

Proof. – If Uα is a neighborhood of some point y ∈ Y on which L has a holomorphic
frame eα, then hL(eα, eα) = e−2ϕα for some psh function ϕα on Uα \Y . Since codimY ≥ 2

the function ϕα is locally upper bounded near the points of Uα∩Y , hence it extends to a psh
function onUα. The second conclusion follows since the current c1(L, hL) does not charge Y
by Federer’s support theorem ([26], see also [35, Theorem 1.7]).

We denote the extended metric still by hε and we let ω = c1(L, hε), so ω is a positive
closed (1, 1) current on X.
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P 6.2. – (i) We have ω = γ+π?(θ
′+ εddcF ), where F is defined in (4) and θ′

is a smooth real closed (1, 1) form on X̃.
(ii) Let A be an irreducible component of Σ of dimension n − 1. Then the generic Lelong

numbers ν(γ,A) = ν(ω,A). Moreover, any section in H0
(2)(X \ Σ, Lp, hε, fΩn) vanishes at

least to order pν(ω,A) on A.

Proof. – (i) Recall from Section 2.3.2 that the metric hε on L|X\Y was induced via the
biholomorphism π : X̃ \ E −→ X \ Y by a metric hL

′

ε on L′ = π?
(
L|X\Y

)
with

curvature current γ′ε = π?γ + θ′ + εddcF . The map π : X̃ −→ X is proper so π?γ
′
ε

is a well defined positive closed (1,1) current on X which satisfies π?γ′ε = ω on X \ Y .
As dimY ≤ n − 2, Federer’s support theorem [26] implies that π?γ′ε = ω on X. Similarly,
we have that π?π?γ = γ on X \Y , and hence on X. The formula for ω in the statement now
follows.

(ii) Fix a point x ∈ A \ Y . Then x ∈ Σn−1
reg , so we can find a neighborhood Vx ⊂ X of x

and local coordinates z1, . . . , zn on Vx so that π : π−1(Vx) −→ Vx is a biholomorphism,
x = 0, Σ ∩ Vx = A ∩ Vx = {z1 = 0}, and f ≥ c > 0 on Vx.

By (i) we have
ω = γ + (π−1)?θ′ + εddcF ◦ π−1 on Vx.

We can assume that there exist functions ϕ, u on Vx so that ϕ is psh, u is smooth, ddcϕ = γ,
ddcu = (π−1)?θ′. Then the function ϕε = ϕ+ u+ εF ◦ π−1 is psh on Vx and ddcϕε = ω. It
follows by the Definition (4) of F that near x we have F ◦ π−1 = − log(g− log |z1|) +O(1),
where g is a smooth function. Thus

ϕε = ϕ− ε log(g − log |z1|) +O(1),

which shows that the Lelong numbers ν(ϕε, x) = ν(ϕ, x). Since x ∈ A\Y was arbitrary this
implies that ν(γ,A) = ν(ω,A).

Next, let S ∈ H0
(2)(X \Σ, Lp, hε, fΩn) be defined on Vx by S = se⊗pα , where eα is a local

frame for L, and let ν = ν(ω,A). As f ≥ c we have∫
Vx\A

|s|2e−2pϕε dλ <∞,

where λ is the Lebesgue measure in coordinates. By the results of [58], ddcϕε = νddc log |z1|+ T ,
where T is a positive closed current, so T = ddcv for some psh function v on Vx. It follows
that the function ϕε − ν log |z1| − v is pluriharmonic on Vx. Hence, by shrinking Vx if
necessary, we have

ϕε ≤ ν log |z1|+O(1), hence
∫
Vx\A

|s|2|z1|−2pν dλ <∞.

This implies that s vanishes at least to order pν along A.

R 6.3. – The proof of Proposition 6.2 shows in fact that the currents ω and γ have
the same Lelong numbers at each point of Σn−1

reg . However, the Lelong numbers of ω are bigger
than those of γ at other points of Σ. For instance, if Σ is a finite set then X̃ is simply the blow-
up of X at each of the points of Σ. Then, in local coordinates z near a point x = 0 ∈ Σ, we
have π?θ′ = a ddc log ‖z‖, for some a > 0.
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6.2. Singular metrics on big line bundles

Let L be a big line bundle over the compact complex manifold X. Then X is Moishezon
and L admits a singular metric h, smooth outside a proper analytic subset Σ of X, and with
strictly positive curvature current γ = c1(L, h) (see e.g., [43, Lemma 2.3.6]).

6.2.1. Special metrics on Moishezon manifolds. – Let Θ be the Poincaré metric on X \ Σ

and hε be the small perturbation of the metric h on L constructed in Section 2.3. It is
shown in [42, 44] (see also [43, Chapter 6]) that the Bergman density function Pp of the
space H0

(2)(X \ Σ, Lp, hε,Θ
n) has a full asymptotic expansion locally uniformly on X \ Σ.

This clearly implies (3), so we have the following:

T 6.4. – The conclusions of Theorems 1.1, 1.2 and 4.3 hold for the spaces
H0

(2)(X \ Σ, Lp, hε,Θ
n) and for ω = c1(L, hε).

Note that in this case X is not assumed to be Kähler.

6.2.2. Multiplier ideal sheaves. – We recall first the notion of multiplier ideal sheaf.
Let ϕ ∈ L1(X,R). The Nadel multiplier ideal sheaf I (ϕ) is the ideal subsheaf of germs
of holomorphic functions f ∈ OX,x such that |f |2e−2ϕ is integrable with respect to the
Lebesgue measure in local coordinates near x.

If h′ is a smooth Hermitian metric onL then h = h′e−2ϕ for some functionϕ ∈ L1(X,R).
The Nadel multiplier ideal sheaf of h is defined by I (h) = I (ϕ); the definition does not
depend on the choice of h′. The space of global sections in the sheaf L⊗I (h) is given by

(8) H0(X,L⊗I (h)) =
{
s ∈ H0(X,L) :

∫
X

∣∣s∣∣2
h

Ωn =

∫
X

∣∣s∣∣2
h′
e−2ϕ Ωn <∞

}
,

where Ω is a fixed smooth positive (1, 1) form on X. We have

H0(X,Lp ⊗I (hp)) = H0
(2)(X \ Σ, Lp, h,Ωn),

where hp is the metric induced by h on Lp. If {Spj } is an orthonormal basis of H0(X,Lp ⊗I (hp))

we define the Fubini-Study currents γp on X as in (2).

T 6.5. – Let L be a big line bundle over a compact Kähler manifold X and h be
a singular Hermitian metric on L, smooth outside a proper analytic subset Σ of X, and with
strictly positive curvature current γ = c1(L, h). The conclusions of Theorems 1.1, 1.2 and 4.3
hold for the spaces H0(X,Lp ⊗I (hp)) and for γ.

Proof. – Conditions (A)-(C) are obviously verified in the present situation. Moreover, (3)
follows from Theorem 5.3. It can also be seen as a consequence of the full asymptotic
expansion of the Bergman density function proved in [38]. Therefore, Theorem 1.1 implies
the desired conclusion.

Note that X is in fact a projective manifold, since it is Moishezon and Kähler (see e.g.,
[43, Theorem 2.2.26]).
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6.3. Zariski-open manifolds with bounded negative Ricci curvature

Let (M,J, ω) be a Kähler manifold, let gTM be the Riemannian metric associated to ω
by gTM (Ju, Jv) = gTM (u, v) for all u, v ∈ TxM , x ∈ M . Let Ric be the Ricci curvature
of gTM . The Ricci form Ricω is defined as the (1, 1)-form associated to Ric by

Ricω(u, v) = Ric(Ju, v) , for any u, v ∈ TxM , x ∈M.

The volume form ωn induces a metric hK
∗
M on K∗M , whose dual metric on KM is denoted

by hKM . Since the metric gTM is Kähler, we have (see e.g., [43, Prob. 1.7])

Ricω = iRK
∗
M = −iRKM .

We denote by H0
(2)(M,Kp

M ) the space of L2-pluricanonical sections with respect to the

metric hK
p
M and the volume form ωn.

We consider in this section the following setting:

(I) X is a compact complex manifold of dimension n, Σ is an analytic subvariety of X,
M := X \ Σ.

(II) M admits a complete Kähler metricω such that Ricω ≤ −λω, for some constant λ > 0.

Note that KM = KX |M . Moreover, condition (II) implies that the volume form ωn is
integrable overX; indeed, by Yau’s Schwarz lemma [61, Theorem 3] it follows that ωn . Θn,
where Θ is the generalized Poincaré metric on M (see e.g., [48, Proposition 1.10]) and Θn is
integrable over X (see also [43, Lemma 6.2.1]). We have the following:

T 6.6. – LetX, Σ, M, ω be as in (I), (II), and assume that dim Σ ≤ n−k, k ≥ 2.
Then the following hold:

(i) H0
(2)(M,Kp

M ) ⊂ H0(X,Kp
X).

(ii) The currents (−Ricω)j , γjp, 1 ≤ j ≤ k, are well defined on X for p sufficiently large,
where γp are the Fubini-Study currents defined by (2) for H0

(2)(M,Kp
M ).

(iii) 1
pj γ

j
p → (− 1

2π Ricω)j weakly on X as p→∞, for 1 ≤ j ≤ k.

Proof. – We only have to check condition (B). Since codim Σ ≥ 2, Lemma 6.1 implies
that the metric hKM extends to a positively curved (singular) metric on KX over X, which
we denote by h. Moreover,

−Ricω = iRKM = 2πc1(KM , h
KM ) = 2πc1(KX , h)|M

extends to a positive closed current on X.
Condition (3) holds, as shown by Tian [59, Theorem 4.1] (this follows also from the

more general result in [43, Theorem 6.1.1]). Therefore, Theorem 1.1 implies the desired
conclusion.

Note that Tian [59, §5] considered the situation whenX, Σ, M verify assumptions (I), (II),
X is projective and k = 1. In that case he shows that the sections of H0

(2)(M,Kp
M ) extend

meromorphically to X, with poles of order at most p − 1 along Σ, and −Ricω extends to a
positive closed current on X [59, Theorem C].

This situation is more difficult, as the metric hKM does not extend to a positively curved
metric on KX . Nevertheless, we shall now show how this case fits into our framework
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from Theorem 1.1. In view of Theorem 6.6 (and its proof), we may assume without loss of
generality that

(III) Σ has pure dimension n− 1.

For this purpose, consider the line bundle L := KX ⊗ OX(Σ), where OX(Σ) is the line
bundle associated to the divisor Σ. Let σ be the canonical section of OX(Σ) (cf. [43, p. 71])
and denote by hσ the metric induced by σ on OX(Σ) (cf. [43, Example 2.3.4]). Note also
that c1(OX(Σ), hσ) = [Σ] by [43, (2.3.8)]. Consider the metric naturally defined by hKM ,

(9) hM,σ := hKM ⊗ hσ on L|M = KM ⊗ OX(Σ)|M ∼= KM .

We recall the following simple fact, whose proof is left to the reader.

L 6.7. – Let X, Σ, M verify assumptions (I) and (III). Assume that (E, hE) is a
singular Hermitian line bundle on X and p ≥ 1. Then

I σ : H0(M,E|M ) −→ H0(M, (E ⊗ OX(Σ)p)|M ), I σ(S) = S ⊗ σ⊗p,

is an isomorphism and we have |S|2hE = | I σ(S)|2
hE⊗hpσ pointwise on M , where hpσ is the metric

induced by hσ on OX(Σ)p.

L 6.8. – LetX, Σ, M, ω verify assumptions (I)-(III). The metric hM,σ defined in (9)
extends uniquely to a positively curved metric h on L over X. The curvature current c1(L, h) is
independent of the choice of σ and we have c1(L, h)|M = − 1

2π Ricω.

Proof. – By Lemma 6.1 it suffices to show that the metric hM,σ extends near each regular
point x ∈ Σ. We follow at first the argument of Tian from [59, Lemma 5.1] to estimate the
volume of ω as in [59, (5.3)]. Let D be the unit disc in C. Then x ∈ Σ has a coordinate
neighborhood Ux such that

Ux ∼= Dn, x = 0, Ux ∩ Σ ∼= {z = (z1, . . . , zn) : z1 = 0}, Ux ∩M ∼= D? × Dn−1.

Consider the complete hyperbolic metric gx on D? × Dn−1 given by the product of the
Poincaré metrics onD? andD. By (II) and Yau’s Schwarz lemma [61, Theorem 3], the volume
of ω is dominated on Ux ∩ M by a constant multiple of the volume of gx. On a smaller
polydisc D?r × Dn−1

r , r < 1, the volume of gx is ∼ (|z1| log |z1|)−2. It follows that

det[gjk] ≤ C(|z1| log |z1|)−2 on D?r × Dn−1
r , where ω = i

n∑
j,k=1

gjkdzj ∧ dzk,

for some constant C > 0.
Note that L is trivial over Ux and the metric hM,σ has a weight ϕ on Ux∩M ∼= D?×Dn−1

given by e2ϕ = |z1|2 det[gjk]. So ddcϕ = − 1
2π Ricω > 0 andϕ is psh onUx∩M . By the above

estimate,
e2ϕ = |z1|2 det[gjk] ≤ C(log |z1|)−2 on D?r × Dn−1

r ,

which implies that ϕ(z) → −∞ as z → Σ, so ϕ is upper bounded near x. Hence ϕ extends
to a psh function on Ux, and hM,σ extends uniquely to a positively curved metric h on L.
Moreover,

c1(L, h)|M = c1(KM , h
KM ) + c1(OX(Σ)|M , hσ) = − 1

2π
Ricω .
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SinceX is compact, any section σ′ of OX(Σ) that vanishes on Σ is a constant multiple of σ,
hence the metric hσ′ is a constant multiple of hσ. This shows that c1(L, h) is independent of
the choice of σ.

T 6.9. – Let X, Σ, M, ω verify assumptions (I)-(III). Let hKM be the metric
induced by ω onKM andH0

(2)(M,Kp
M ) be the space of L2-pluricanonical sections with respect

to the metric hK
p
M and the volume form ωn. Then we have:

(i) The Fubini-Study currents γp of H0
(2)(M,Kp

M ) extend naturally as closed currents of
order 0 on X defined locally by Formula (2), and 1

p γp + [Σ] ≥ 0 on X.
(ii) 1

p γp + [Σ] converge weakly on X to a positive closed current T so that T |M = − 1
2π Ricω

and T = c1(L, h) for a singular Hermitian metric h on L = KX ⊗ OX(Σ).

Proof. – By [48, Proposition 1.11] (see also [59, Lemma 5.1]) the sections inH0
(2)(M,Kp

M )

extend to meromorphic sections of Kp
X over X, with poles in Σ of order at most p− 1. This

yields (i).

Let hM,σ be the metric defined in (9) on L|M , and h be its extension to L provided in
Lemma 6.8, so c1(L, h)|M = − 1

2π Ricω. It follows from Lemma 6.7 and [48, Proposi-
tion 1.11] that I σ(H0

(2)(M,Kp
M )) = H0

(2)(M,Lp, h, ωn) ⊂ H0(X,Lp). So X, Σ, (L, h) and
the volume form ωn verify assumptions (A), (B), (C′), (D) (see Remark 3.6).

Lemmas 6.7 and 6.8 imply that I σ maps an orthonormal basis of H0
(2)(M,Kp

M ) onto an
orthonormal basis of H0

(2)(M,Lp, h, ωn) and that the Bergman kernel functions Pp defined
by (1) for these spaces are equal. Condition (3) holds, as shown by [59, §4] or [43, Theo-
rem 6.1.1]. By Theorem 1.1 and Remark 3.6 we have 1

p γ
′
p → c1(L, h) weakly on X, where

γ′p are the Fubini-Study currents defined by (2) for H0
(2)(M,Lp, h, ωn).

Observe that Lemmas 6.7 and 6.8 imply γ′p = γp + p[Σ] on X. This completes the
proof.

R 6.10. – Note that assumptions (I) -(III) are verified if X is a compact projective
manifold, Σ is an effective divisor of X, and L = KX ⊗ OX(Σ) is ample, due to a result
by R. Kobayashi [40] about the existence of Kähler-Einstein metrics on X \ Σ. Conversely,
let X, Σ, M, ω verify assumptions (I)-(III) as in Theorem 6.9. By the proof of [48, Proposi-
tion 1.12] we see that the following properties hold:

(a) There exists p0 such thatH0(X,Lp0) separates the points ofM and gives local holomor-
phic coordinates on M ,

(b) M is biholomorphic to a quasiprojective manifold; in fact the meromorphic Kodaira map
Φp0 : X 99K PN defined by H0(X,Lp0) induces a birational morphism to a normal
projective variety Y such that Φp0(M) is Zariski open in Y and Φp0 : M −→ Φp0(M) is
biholomorphic,

(c) L is big and X is Moishezon.

Note that L is not necessarily ample in the case of toroidal compactifications considered in the
Section 6.4.
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6.4. Arithmetic quotients

Let D be a bounded symmetric domain in Cn and let Γ be a neat arithmetic group acting
properly discontinuously onD (see [47, p. 253]). ThenU := D/Γ is a smooth quasi-projective
variety, called an arithmetic variety. By [2], U admits a smooth toroidal compactificationX.
In particular, Σ := X \ U is a divisor with normal crossings. The Bergman metric ω B

D

on D descends to a complete Kähler metric ω := ω B
U on U . Moreover, ω is Kähler-Einstein

with Ricω = −ω (since the metric ω B
D has this property). We denote by hKU the Hermitian

metric induced by ω on KU . We wish to study the spaces H0
(2)(U,K

p
U ) of L2-pluricanonical

sections with respect to the metric hK
p
U and the volume form ωn.

As in Section 6.3, consider the line bundle L := KX ⊗OX(Σ) and the metric hU,σ on L|U
defined in (9). By Lemma 6.8 hU,σ extends uniquely to a positively curved metric h on L

and c1(L, h)|U = ω
2π . Clearly, Theorem 6.9 holds in this setting:

T 6.11. – Let X be a smooth toroidal compactification of an arithmetic quo-
tient U = D/Γ and set Σ = X \ U , L = KX ⊗OX(Σ). Let ω be the induced Bergman metric
on U and let hKU be the metric induced by ω on KU . Then we have:

(i) The metric hKU defines a singular metric h on L such that c1(L, h) is a positive current
on X which extends ω

2π .
(ii) H0

(2)(U,L
p, h, ωn) ⊂ H0(X,Lp) for all p ≥ 1, so the currents γp given by (2)

for H0
(2)(U,L

p, h, ωn) extend naturally to positive closed currents on X.
(iii) 1

p γp → c1(L, h) and 1
p [σp = 0] → c1(L, h) in the weak sense of currents on X,

for λ∞-a.e. sequence {σp}p≥1 ∈ S∞, where S∞, λ∞ are as in Theorem 4.3.

By Lemma 6.7, H0
(2)(U,K

p
U ) ∼= H0

(2)(U,L
p, h, ωn). Let us describe this space in more

detail. By [47, Proposition 3.3, 3.4(b)],

H0(X,Lp) ∼=
{

modular forms with respect to the p th power

of the canonical automorphy factor
}
,

so H0
(2)(U,K

p
U ) ⊂ H0(X,Lp) are modular forms. The space

H0(X,Lp ⊗ OX(Σ)−1) = H0(X,Kp
X ⊗ OX(Σ)p−1)

of modular forms vanishing on the boundary is called the space of cusp forms.

We will need the following definition from Mumford [47, p. 242]. Let D be the unit disc
in C. Every x ∈ Σ has a coordinate neighborhood Vx ∼= Dn such that for some 1 ≤ l ≤ n,

(10) Vx ∼= Dn, x = 0, Vx ∩ Σ ∼= {z = (z1, . . . , zn) : z1z2 . . . zl = 0}.

D 6.12. – A smooth Hermitian metric h on L|U is said to be good on X if for
all x ∈ Σ and all holomorphic frames e of L in a neighborhood Vx ∼= Dn of x as in (10) we have

(i) |e|2h, |e|
−2
h ≤ C

∣∣∣∑l
k=1 log |zk|

∣∣∣2α, for some C > 0, α ≥ 1,

(ii) the forms η = ∂ log |e|2h and dη have Poincaré growth on Vx.
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Examples of Hermitian line bundles with good metrics are provided by the following class
of line bundles over arithmetic quotients considered by Mumford in [47, p. 256]. Namely,
if D is a bounded symmetric domain, then D ∼= K\G, where G is a semi-simple adjoint
group (i.e., isomorphic to its adjoint group) and K a maximal compact subgroup (see e.g.,
[2, p. 106]). Let E0 be a G-equivariant holomorphic line bundle over D. Let U = D/Γ be an
arithmetic quotient and X be a smooth toroidal compactification of U . Then Γ acts on E0

andEU = E0/Γ is a holomorphic line bundle onU . Moreover,E0 carries aG-invariant Her-
mitian metric h0 which induces a Hermitian metric hU on EU . By [47, Main Theorem 3.1],
EU admits a unique extension to a holomorphic line bundle E over X such that the metric
hU on E|U = EU is good on X.

Consider the G-invariant line bundle (E0, h0) = (KD, h
KD ) on D, where hKD is in-

duced by ω B
D. Note that the Bergman metric ω B

D is G-invariant and so is hKD . Then
(EU , hU ) = (KU , h

KU ), where hKU is induced by ω B
U . By [47, Main Theorem 3.1, Proposi-

tion 3.4] the extension KU of KU satisfies the following condition: for any x ∈ Σ and any
open coordinate neighborhood Vx ∼= Dn of x as in (10), a holomorphic frame of KU |Vx is
of the form e = (z1z2 . . . zl)

−1dz1 ∧ · · · ∧ dzn. This shows that KU
∼= KX ⊗ OX(Σ) =: L

and the metric hU,σ induced by hKU (see (9)) on L|U ∼= KU is good on X. Hence we obtain
by condition (i) of Definition 6.12 that

(11) ωn &
l∏

j=1

|zj |−2
( l∑
k=1

log |zk|
)−2α

Ωn on Vx \ Σ,

where α ≥ 1 and Ω is a positive (1,1) form on X, and

(12) |e|2hU,σ .
( l∑
k=1

log |zk|
)2α

on Vx \ Σ.

L 6.13. – Let U = D/Γ be an arithmetic quotient and let X be a smooth toroidal
compactification of U . Then H0

(2)(U,K
p
U ) ∼= H0(X,Kp

X ⊗ OX(Σ)p−1), i.e., the space
of L2-pluricanonical sections is the space of cusp forms.

Proof. – By [48, Proposition 1.11] we have H0
(2)(U,K

p
U ) ⊂ H0(X,Kp

X ⊗ OX(Σ)p−1).
If S ∈ H0(X,Kp

X ⊗ OX(Σ)p−1), then S = fe⊗p, in a neighborhood Vx of x ∈ Σ as in (10),
where f ∈ OX(Vx) vanishes on Σ and e is a frame of L over Vx . Estimate (12) together with
the fact that ωn is integrable over X [48, Proposition 1.10] imply that∫

Vx\Σ
|S|2hU,σ ω

n =

∫
Vx\Σ

|f |2|e⊗p|2hU,σ ω
n .

∫
Vx\Σ

|f |2
∣∣∣∣∣
l∑

k=1

log |zk|

∣∣∣∣∣
2pα

ωn <∞,

thus S ∈ H0
(2)(U,L

p, h, ωn) ∼= H0
(2)(U,K

p
U ).

Theorem 6.11 shows that the zero-divisors of random cusp forms {σp} (where σp is a
p-pluricanonical section) are equidistributed with respect to the extension of the Bergman
metric on a smooth toroidal compactification of an arithmetic quotient. The equidistribu-
tion on the arithmetic quotient D/Γ itself was shown in [23]. In this framework the equidis-
tribution of zeros is a variant of the Quantum Unique Ergodicity conjecture of Rudnick-
Sarnak [52], cf. Rudnick [51], Holowinsky and Soundararajan [36], Marshall [46].
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The case of arithmetic quotients of dimension 1 is particularly interesting.

C 6.14. – Let Γ ⊂ SL2(Z) be a subgroup of finite index acting freely and
properly discontinuously on the hyperbolic plane H via linear fractional transformations.
Set U = H/Γ and let ω be the induced Poincaré metric on U . Let X be a compact Riemann
surface such that U ⊂ X and X \ U = Σ is a finite set. Let L = KX ⊗ OX(Σ). Then
the space S2p(Γ) of cusp forms of weight 2p of Γ is isomorphic to H0

(2)(U,K
p
U ) and asser-

tions (i)-(iii) of Theorem 6.11 hold for the Fubini-Study currents γp defined by S2p(Γ) and for
the zero-sets of random sequences of cusp forms.

We can extend the results of this section for the class of invariant line bundles considered
by Mumford [47, p. 256].

T 6.15. – Let D, U, X, (E0, h0) be as above and assume that iR(E0,h0) ≥ εω B
D

onD, for some ε > 0. Let (EU , hU ) be the induced line bundle onU andE be its unique extension
to X so that the metric hU on E|U is good on X. Then hU extends to a singular Hermitian
metric h on E such that c1(E, h) is a positive current on X which extends c1(EU , hU ), and the
conclusions of Theorems 1.1, 1.2 and 4.3 hold for the spacesH0

(2)(U,E
p, h, ωn) and for c1(E, h).

Proof. – Let x ∈ Σ and Vx be a coordinate neighborhood of x as in (10) on which there
exists a holomorphic frame e of E. Then the local weights ϕ = − log |e|hU verify

− log

∣∣∣∣∣
l∑

k=1

log |zk|

∣∣∣∣∣− logC

2α
≤ ϕ

α
≤ log

∣∣∣∣∣
l∑

k=1

log |zk|

∣∣∣∣∣+
logC

2α
on Vx \ Σ.

Since the metric hU is positively curved, the function ϕ is psh on U ∩ Vx = Vx \ Σ. Hence
ϕ is psh on Vx, in view of the previous upper bound and of Lemma 6.16 hereafter. Thus
c1(E, h) ≥ 0 and condition (B) is fulfilled.

To prove that (C) holds, we write ωn = fΩn for some fixed positive (1,1) form Ω on X.
Let x ∈ Σn−1

reg and local coordinates z1, . . . , zn be chosen so that x = 0, Σ = {z1 = 0}.
Estimate (11) implies that f & |z1|−2 |log |z1||−2α near x, where α ≥ 1. Hence f ≥ cx > 0

Ωn-a.e. in a neighborhood Ux of each x ∈ (X \ Σ) ∪ Σn−1
reg .

Condition (3) holds due to [43, Theorem 6.1.1], which applies since iR(E,h) ≥ εω B
U on U .

By Theorem 1.1 we infer the conclusion.

L 6.16. – Let V ⊂ Cn be an open set and Σ be a proper analytic subvariety of V .
Suppose that u is a psh function on V \ Σ which verifies

u(z) ≤ Cz0 log | log dist(z,Σ)|

for z ∈ V \ Σ near each point z0 ∈ Σn−1
reg , with a constant Cz0 > 0. Then u is locally upper

bounded near each point of Σ hence it extends to a psh function on V .

Proof. – It suffices to show that u is locally upper bounded near each point z0 ∈ Σn−1
reg .

We may assume that z0 = 0, Σ = {z1 = 0} ⊂ V = Dn and that u(z1, z
′) ≤ C log | log |z1||

for z ∈ V with 0 < |z1| < e−1, where C > 0 is a constant. The function u(·, z′) is
subharmonic on D \ {0}, so r → f(r; z′) := max|z1|=r u(z1, z

′) is a convex function of log r
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for r > 0 [37, Corollary 3.2.22]. If 0 < t < r < s < e−1 we have by the growth assumption
on u and the convexity property of f(r) that

f(r; z′)− C log | log t|
log r − log t

≤ f(r; z′)− f(t; z′)

log r − log t
≤ f(s; z′)− f(r; z′)

log s− log r
.

Letting t ↘ 0 it follows that f(r; z′) ≤ f(s; z′), hence the functions f(·; z′) are increasing.
This implies that u is upper bounded in a neighborhood of z0 = 0.

6.5. 1-convex manifolds

A complex manifold X is called 1-convex if there exists a smooth exhaustion func-
tion ψ : X → R which is strictly psh outside a compact set of X. This is equivalent to the
following condition (see e.g., [1]): There exist a Stein space Y , a proper holomorphic sur-
jective map ρ : X → Y satisfying ρ? OX = OY , and a finite set A ⊂ Y such that the induced
map X \ ρ−1(A)→ Y \A is biholomorphic. The Stein space Y is called the Remmert
reduction of X and Σ := ρ−1(A) the exceptional set of X.

Consider a strictly psh smooth exhaustion function ϕY of Y , such that ϕY ≥ 0 and
{ϕY = 0} = A (see e.g., [13, p. 563]). Then ϕ = ϕY ◦ ρ is a smooth psh exhaustion function
of X, such that ϕ ≥ 0, {ϕ = 0} = Σ and ϕ is strictly psh on X \ Σ.

We consider in the sequel a holomorphic line bundle (L, h) on X with singular metric h,
which is smooth outside the exceptional set Σ and has strictly positive curvature current
in a neighborhood U of Σ. By using a modification π : X̃ → X of X we construct as in
Section 2.3 the Poincaré metric Θ onX\Σ and also the metric hε onL|X\Σ. We may suppose
that Θ is complete on X \ Σ (the metric Ω̃ on X̃ may be taken to be complete, by setting
Ω̃ = Ω exp(η ◦ϕ ◦π), where Ω is an arbitrary metric on X̃ and η : R→ R is a fast increasing
function at infinity).

Let us consider a convex increasing function χ : R→ R and endow L with the Hermitian
metric hεe−χ(ϕ). Consider theL2 inner product on the space Ω0,∗

0 (X\Σ, Lp) of sections with
compact support, induced by the metrics hεe−χ(ϕ) on L and Θ on X \ Σ. Set

L2
0,∗(X \ Σ, Lp) := L2

0,∗(X \ Σ, Lp, hεe
−χ(ϕ),Θn),

H0
(2)(X \ Σ, Lp) := L2

0,0(X \ Σ, Lp) ∩ ker ∂.

We denote by ∂
∗
χ and �p,χ the adjoint of ∂ with respect to this L2 inner product and the

corresponding Kodaira Laplace operator.

Let us denote by T = [i(Θ), ∂Θ] the Hermitian torsion of the Poincaré metric Θ.
Set L̃p = Lp ⊗K∗X . There exists a natural isometry

Ψ = ∼ : Λ0,q(T ∗X)⊗ Lp −→ Λn,q(T ∗X)⊗ L̃p,

Ψ s = s̃ = (w1 ∧ · · · ∧ wn ∧ s)⊗ (w1 ∧ · · · ∧ wn),

where {wj}nj=1 is a local orthonormal frame of T (1,0)X and {wj}nj=1 is the dual frame. The
Bochner-Kodaira-Nakano formula [43, Cor. 1.4.17] shows that for any s ∈ Ω0,1

0 (X \ Σ, Lp)
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we have
3

2

(
‖∂s‖2 + ‖∂ ∗χs‖2

)
≥
(
RL

p⊗K∗X (wj , wk)wk ∧ iwjs, s
)

− 1

2

(
‖ T ∗s̃‖2 + ‖ T s̃‖2 + ‖ T

∗
s̃‖2
)
.

(13)

Set T = 1
2 ( T T ∗ + T

∗
T + T T

∗
). Define the continuous function

(14) τ : X \ Σ→ R , τ(x) = sup
{
〈Tα, α〉/〈α, α〉 : α ∈ Λn,1T ∗xX \ {0}

}
.

Then for any x ∈ X \ Σ, p ∈ N and α ∈ Lpx ⊗ Λn,1T ∗xX we have

〈Tα, α〉 ≤ τ(x)〈α, α〉.

Hence (13) gives for all s ∈ Ω0,1
0 (X \ Σ, Lp)

(15)
3

2

(
‖∂s‖2 + ‖∂ ∗χs‖2

)
≥
(
RL

p⊗K∗X (wj , wk)wk ∧ iwjs, s
)
−
∫
X\Σ

τ(x)|s|2.

L 6.17. – There exist an increasing convex function χ : R→ R and constants a, b > 0,
such that:

c1(L, hεe
−χ(ϕ)) ≥ aΘ,(16a)

c1(L, hεe
−χ(ϕ)) + iRK

∗
X − τΘ ≥ −bΘ,(16b)

on X \ Σ.

Proof. – We have

c1(L, hεe
−χ(ϕ)) = c1(L, hε) +

1

2
ddcχ(ϕ) = c1(L, hε) +

i

2π
(χ′(ϕ)∂∂ϕ+ χ′′(ϕ)∂ϕ ∧ ∂ϕ).

Since ϕ is psh, for any increasing convex function χ this is ≥ c1(L, hε), hence positive on U .
Thus (16a) holds on U by the construction of hε. Moreover, [43, Lemma 6.2.1] shows that
iRK

∗
X and the torsion operators of Θ, hence τ , are bounded with respect to Θ on U . Thus

(16b) also holds on U , thanks to (16a).

Consider c > 0 such that Σ ⊂ Xc b U , where Xc := {ϕ < c}. Note that ϕ is strictly psh
outside Xc. Thus we can choose χ increasing fast enough such that (16a) -(16b) are satisfied
on X \Xc.

L 6.18. – Let χ : R→ R be as in Lemma 6.17. Then:

(i) There exist constants a1, b1 > 0 such that for any p ∈ N we have

(17) ‖∂s‖2 +‖∂ ∗χs‖2 ≥ (p a1−a1− b1)‖s‖2 , s ∈ Dom(∂)∩Dom(∂
∗
χ)∩L2

0,1(X \Σ, Lp).

(ii) The spectrum of �p,χ on L2
0,0(X \ Σ, Lp) satisfies

(18) Spec(�p,χ) ⊂ {0} ∪ (p a1 − a1 − b1,+∞).

(iii) The Bergman density function Pp of H0
(2)(X \Σ, Lp) has a full asymptotic expansion on

any compact set of X \ Σ.
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Proof. – (i) Since Ω0,1
0 (X \ Σ, Lp) is dense in Dom(∂) ∩ Dom(∂

∗
χ) ∩ L2

0,1(X \ Σ, Lp)

(Andreotti-Vesentini density lemma, see [43, Lemma 3.3.1]), it suffices to prove (17)
for s ∈ Ω0,1

0 (X \ Σ, Lp). But in this case, (17) follows immediately from (15) and (16a) -(16b).
(ii) Once we have (17), the assertion about the spectrum of�p,χ onL2

0,0(X\Σ, Lp) follows
as in the proof of [43, Theorem 6.1.1].

(iii) Since the Kodaira Laplacian �p,χ on L2
0,0(X \ Σ, Lp) has a spectral gap, by the

argument in [43, §4.1.2], we can localize the problem, and we obtain the result as in the proof
of [43, Theorem 4.1.1] (cf. also [43, Theorem 6.1.1], where a similar situation is treated).

T 6.19. – Let X be a 1-convex manifold and (L, h) be a holomorphic line bundle
on X with singular metric h. Assume that h is smooth outside the exceptional set Σ and that
it has strictly positive curvature current in a neighborhood of Σ. Let Θ be a complete Poincaré
metric onX, hε be constructed in Section 2.3, and letχ be as in Lemma 6.17. The conclusions of
Theorem 1.1 hold for the spaces H0

(2)(X \Σ, Lp, hεe
−χ(ϕ),Θn) and for ω = c1(L, hεe

−χ(ϕ)).

Proof. – Conditions (A)-(C) are satisfied by construction and condition (3) follows from
Lemma 6.18.

6.6. Strongly pseudoconvex domains

We give now a variant ‘with boundary’ of the previous result. Let M be a complex
manifold and let X b M be a strongly pseudoconvex domain with smooth boundary. We
consider a defining function % ∈ C∞(M,R) of X, i.e., X = {x ∈ M : %(x) < 0} and
d% 6= 0 on ∂X. SinceX is strongly pseudoconvex, the Levi form of % is positive definite on the
complex tangent space to ∂X. It is well-known that one can modify the defining function %
such that in a neighborhood of ∂X, % is strictly psh and d% 6= 0 (see [34, Ch. 9, Sec. A,
Proposition 4]). Thus, for c ≥ 0 small enough, Xc = {x ∈ M : %(x) < c} is strongly
pseudoconvex.

Let ηc : (−∞, c) → R be a convex increasing function such that ηc(t) → ∞, as t → c.
Then ηc◦% is an exhaustion function forXc, which is strictly psh outside a compact set ofXc.
Therefore Xc is a 1-convex manifold.

Let Σ be the exceptional set of Xc (it is the same exceptional set as for X) and let ϕ : Xc → R
be a smooth psh exhaustion function of Xc, such that ϕ ≥ 0, {ϕ = 0} = Σ and ϕ is strictly
psh on Xc \ Σ.

Let (L, h) be a holomorphic line bundle on M with singular metric h which is smooth
outside the exceptional set Σ and which has strictly positive curvature current in a neighbor-
hood U of Σ. By using a modification M̃ of M we construct as in Section 2.3 the Poincaré
metric Θ on M \ Σ and also the metric hε on L|M\Σ.

Let A > 0. On the space Ω0,∗
0 (X \ Σ, Lp) of sections with compact support in X \ Σ we

introduce the L2 inner product with respect to the metrics Θ and hεe−Aϕ and set

L2
0,∗(X \ Σ, Lp) := L2

0,∗(X \ Σ, Lp, hεe
−Aϕ,Θn),

H0
(2)(X \ Σ, Lp) := L2

0,0(X \ Σ, Lp) ∩ ker ∂.

We consider the L2 ∂-Neumann problem onX \Σ and show that the ∂-Neumann Laplacian
on L2

0,1(X \Σ, Lp) has a spectral gap. Here we work with ∂-Neumann boundary conditions
at the end ∂X ofX \Σ and with a complete metric at the end corresponding to Σ. This kind
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of analysis was already used in [45] in connection to the compactification of hyperconcave
manifolds.

We denote by ∂
∗

= ∂
Lp,∗

the Hilbert space adjoint of the maximal extension of ∂
on L2

0,1(X \ Σ, Lp). Denoting by ∗ the Hodge star operator, integration by parts as in [28,
Proposition 1.3.1–2] yields

B0,1(X \ Σ, Lp) := {s ∈ Ω0,1
0 (X \ Σ, Lp) : ∗∂% ∧ ∗s = 0 on ∂X}

= Dom(∂
∗
) ∩ Ω0,1

0 (X \ Σ, Lp).

The space B0,1(X \ Σ, Lp) is dense in Dom(∂) ∩ Dom(∂
∗
) with respect to the graph

norm s 7→ (‖s‖2 + ‖∂s‖2 + ‖∂ ∗s‖2)1/2 (cf. [45, Lemma 2.2]).

Let us consider a defining function % ofX such that |d%| = 1 on ∂X. We denote by L% the
Levi form of % (cf. [43, Def. 1.4.20]). The Bochner-Kodaira-Nakano formula with boundary
term [43, Cor. 1.4.22] shows that for any s ∈ B0,1(X \ Σ, Lp) we have

3

2

(
‖∂s‖2 + ‖∂ ∗s‖2

)
≥
(
RL

p⊗K∗X (wj , wk)wk ∧ iwjs, s
)

+

∫
∂X

L%(s, s) dv∂X −
1

2

(
‖ T ∗s̃‖2 + ‖ T s̃‖2 + ‖ T

∗
s̃‖2
)
.

SinceX is strongly pseudoconvex the boundary integral is non-negative. Therefore we obtain
for all s ∈ B0,1(X \ Σ, Lp) the estimate

3

2

(
‖∂s‖2 + ‖∂ ∗χs‖2

)
≥
(
RL

p⊗K∗X (wj , wk)wk ∧ iwjs , s
)
−
∫
X\Σ

τ(x)|s|2 ,

where τ is defined on Xc \ Σ as in (14). Making use of the compactness of X we obtain:

L 6.20. – There exist constants A0, a, b > 0 such that for any A > A0 the (1, 1)

current c1(L, hεe
−Aϕ) is strictly positive on a neighborhood of X and

c1(L, hεe
−Aϕ) ≥ aΘ ,(19a)

c1(L, hεe
−Aϕ) + iRK

∗
X − τΘ ≥ −bΘ ,(19b)

on X \ Σ.

Let us now fix A > 0 as in Lemma 6.20. Using (15), (19a) and (19b), we deduce imme-
diately the estimate (17) for any s ∈ B0,1(X \ Σ, Lp) and, by density, for any
s ∈ Dom(∂) ∩Dom(∂

∗
) ∩ L2

0,1(X \ Σ, Lp). This shows that �p acting on L2
0,0(X \ Σ, Lp)

has a spectral gap as in (18). Therefore, the Bergman density function Pp of H0
(2)(X \Σ, Lp)

has a full asymptotic expansion on any compact set of X \ Σ.

The preceding discussion leads to the following:

T 6.21. – Let X be a strongly pseudoconvex domain with smooth boundary
in a complex manifold M . Let (L, h) be a holomorphic line bundle on M with singular
metric h which is smooth outside the exceptional set Σ and which has strictly positive cur-
vature current in a neighborhood U of Σ. The conclusions of Theorem 1.1 hold for the
spacesH0

(2)(X \ Σ, Lp, hεe
−Aϕ,Θn) and for ω = c1(L, hεe

−Aϕ), whereA is sufficiently large.
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R 6.22. – In the same vein, we can obtain a variant of Theorem 6.21 for Nadel
multiplier ideal sheaves. Assume that X b M is a strongly pseudoconvex domain as above.
Let (L, h) be a holomorphic line bundle on M with singular metric h which is smooth out-
side the exceptional set Σ. Assume for simplicity that the curvature current of h is strictly
positive in a whole neighborhood of X. The conclusions of Theorem 1.1 hold for the spaces
H0(X,Lp ⊗I (hp)) (defined as in (8)) and for γ = c1(L, h).
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