[Estimations de régularité elliptique dans un milieu composite contenant des inhomogénéités de forme régulière : une approche par équations intégrales]
Nous étudions des milieux composites constitués d'inclusions homogènes de forme , immergées dans une phase matrice constante. Lorsque les inclusions ne se touchent pas, la solution de l'équation de diffusion peut être représentée à l'aide de potentiels de surface, solutions d'un système d'équations intégrales. Nous étudions ce système lorsque la distance inter-inclusion tend vers 0. Nous montrons que les potentiels de surface convergent dans , , vers des potentiels limites, qui permettent d'obtenir une représentation intégrale du problème limite. Nous en déduisons des estimations sur les solutions dans , uniformes par rapport à la distance inter-inclusions.
We consider a scalar elliptic equation for a composite medium consisting of homogeneous inclusions, , embedded in a constant matrix phase. When the inclusions are separated and are separated from the boundary, the solution has an integral representation, in terms of potential functions defined on the boundary of each inclusion. We study the system of integral equations satisfied by these potential functions as the distance between two inclusions tends to 0. We show that the potential functions converge in , to limiting potential functions, with which one can represent the solution when the inclusions are touching. As a consequence, we obtain uniform bounds on the solution, which are independent of the inter–inclusion distances.
DOI : 10.24033/asens.2249
Keywords: Composite media, uniform Hölder estimates.
Mot clés : Milieux composites, estimations hölderiennes uniformes.
@article{ASENS_2015__48_2_453_0, author = {Ammari, Habib and Bonnetier, Eric and Triki, Faouzi and Vogelius, Michael}, title = {Elliptic estimates in composite media with smooth inclusions: an integral equation approach}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {453--495}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {2}, year = {2015}, doi = {10.24033/asens.2249}, mrnumber = {3346176}, zbl = {1319.35255}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2249/} }
TY - JOUR AU - Ammari, Habib AU - Bonnetier, Eric AU - Triki, Faouzi AU - Vogelius, Michael TI - Elliptic estimates in composite media with smooth inclusions: an integral equation approach JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 453 EP - 495 VL - 48 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2249/ DO - 10.24033/asens.2249 LA - en ID - ASENS_2015__48_2_453_0 ER -
%0 Journal Article %A Ammari, Habib %A Bonnetier, Eric %A Triki, Faouzi %A Vogelius, Michael %T Elliptic estimates in composite media with smooth inclusions: an integral equation approach %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 453-495 %V 48 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2249/ %R 10.24033/asens.2249 %G en %F ASENS_2015__48_2_453_0
Ammari, Habib; Bonnetier, Eric; Triki, Faouzi; Vogelius, Michael. Elliptic estimates in composite media with smooth inclusions: an integral equation approach. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 453-495. doi : 10.24033/asens.2249. http://www.numdam.org/articles/10.24033/asens.2249/
Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity, Arch. Ration. Mech. Anal., Volume 208 (2013), pp. 275-304 (ISSN: 0003-9527) | DOI | MR | Zbl
, Lecture Notes in Math., 1846, Springer, Berlin, 2004, 238 pages (ISBN: 3-540-22483-1) | DOI | MR | Zbl
Optimal estimates for the electric field in two dimensions, J. Math. Pures Appl., Volume 88 (2007), pp. 307-324 (ISSN: 0021-7824) | DOI | MR | Zbl
Decomposition theorems and fine estimates for electrical fields in the presence of closely located circular inclusions, J. Differential Equations, Volume 247 (2009), pp. 2897-2912 (ISSN: 0022-0396) | DOI | MR | Zbl
Gradient estimates for solutions to the conductivity problem, Math. Ann., Volume 332 (2005), pp. 277-286 (ISSN: 0025-5831) | DOI | MR | Zbl
, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971, 138 pages |High shear stresses in stiff fiber composites, J. Appl. Mech., Volume 51 (1984), pp. 733-735 | DOI | Zbl
, Studies in Mathematics and its Applications, 5, North-Holland Publishing Co., 1978, 700 pages (ISBN: 0-444-85172-0) | MR | Zbl
Gradient estimates for the perfect conductivity problem, Arch. Ration. Mech. Anal., Volume 193 (2009), pp. 195-226 (ISSN: 0003-9527) | DOI | MR | Zbl
Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Comm. Partial Differential Equations, Volume 35 (2010), pp. 1982-2006 (ISSN: 0360-5302) | DOI | MR | Zbl
, Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion (Contemp. Math.), Volume 577, Amer. Math. Soc., Providence, RI, 2012, pp. 81-91 | DOI | MR | Zbl
An elliptic regularity result for a composite medium with “touching” fibers of circular cross-section, SIAM J. Math. Anal., Volume 31 (2000), pp. 651-677 (ISSN: 0036-1410) | DOI | MR | Zbl
A sharp regularity result of solutions of a transmission problem, Proc. Amer. Math. Soc., Volume 140 (2012), pp. 615-620 (ISSN: 0002-9939) | DOI | MR | Zbl
, Pure and Applied Mathematics, John Wiley & Sons, Inc., 1983, 271 pages (ISBN: 0-471-86420-X) | MR | Zbl
Potential techniques for boundary value problems on -domains, Acta Math., Volume 141 (1978), pp. 165-186 (ISSN: 0001-5962) | DOI | MR | Zbl
, Princeton Univ. Press, Princeton, N.J., 1976, 349 pages |, Applied Mathematical Sciences, 82, Springer, 1999, 365 pages (ISBN: 0-387-98700-2) | DOI | MR | Zbl
Estimates for elliptic systems from composite material, Comm. Pure Appl. Math., Volume 56 (2003), pp. 892-925 (ISSN: 0010-3640) | DOI | MR | Zbl
Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal., Volume 153 (2000), pp. 91-151 (ISSN: 0003-9527) | DOI | MR | Zbl
Stress amplification in vanishingly small geometries, Computationnal Mechanics, Volume 19 (1996), pp. 77-83 | DOI | Zbl
Extra cancellation of even Calderón-Zygmund operators and quasiconformal mappings, J. Math. Pures Appl., Volume 91 (2009), pp. 402-431 (ISSN: 0021-7824) | DOI | MR | Zbl
Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections, J. Math. Anal. Appl., Volume 350 (2009), pp. 306-312 (ISSN: 0022-247X) | DOI | MR | Zbl
Cité par Sources :