Elliptic estimates in composite media with smooth inclusions: an integral equation approach
[Estimations de régularité elliptique dans un milieu composite contenant des inhomogénéités de forme régulière : une approche par équations intégrales]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 453-495.

Nous étudions des milieux composites constitués d'inclusions homogènes de forme 𝒞1,α0, immergées dans une phase matrice constante. Lorsque les inclusions ne se touchent pas, la solution de l'équation de diffusion peut être représentée à l'aide de potentiels de surface, solutions d'un système d'équations intégrales. Nous étudions ce système lorsque la distance inter-inclusion tend vers 0. Nous montrons que les potentiels de surface convergent dans 𝒞0,α, 0<α<α0, vers des potentiels limites, qui permettent d'obtenir une représentation intégrale du problème limite. Nous en déduisons des estimations sur les solutions dans 𝒞1,α, uniformes par rapport à la distance inter-inclusions.

We consider a scalar elliptic equation for a composite medium consisting of homogeneous 𝒞1,α0 inclusions, 0<α01, embedded in a constant matrix phase. When the inclusions are separated and are separated from the boundary, the solution has an integral representation, in terms of potential functions defined on the boundary of each inclusion. We study the system of integral equations satisfied by these potential functions as the distance between two inclusions tends to 0. We show that the potential functions converge in 𝒞0,α, 0<α<α0 to limiting potential functions, with which one can represent the solution when the inclusions are touching. As a consequence, we obtain uniform 𝒞1,α bounds on the solution, which are independent of the inter–inclusion distances.

Publié le :
DOI : 10.24033/asens.2249
Classification : 45F15, 35J15.
Keywords: Composite media, uniform Hölder estimates.
Mot clés : Milieux composites, estimations hölderiennes uniformes.
@article{ASENS_2015__48_2_453_0,
     author = {Ammari, Habib and Bonnetier, Eric and Triki, Faouzi and Vogelius, Michael},
     title = {Elliptic estimates in composite media  with smooth inclusions:  an integral equation approach},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {453--495},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {2},
     year = {2015},
     doi = {10.24033/asens.2249},
     mrnumber = {3346176},
     zbl = {1319.35255},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2249/}
}
TY  - JOUR
AU  - Ammari, Habib
AU  - Bonnetier, Eric
AU  - Triki, Faouzi
AU  - Vogelius, Michael
TI  - Elliptic estimates in composite media  with smooth inclusions:  an integral equation approach
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 453
EP  - 495
VL  - 48
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2249/
DO  - 10.24033/asens.2249
LA  - en
ID  - ASENS_2015__48_2_453_0
ER  - 
%0 Journal Article
%A Ammari, Habib
%A Bonnetier, Eric
%A Triki, Faouzi
%A Vogelius, Michael
%T Elliptic estimates in composite media  with smooth inclusions:  an integral equation approach
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 453-495
%V 48
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2249/
%R 10.24033/asens.2249
%G en
%F ASENS_2015__48_2_453_0
Ammari, Habib; Bonnetier, Eric; Triki, Faouzi; Vogelius, Michael. Elliptic estimates in composite media  with smooth inclusions:  an integral equation approach. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 453-495. doi : 10.24033/asens.2249. http://www.numdam.org/articles/10.24033/asens.2249/

Ammari, H.; Ciraolo, G.; Kang, H.; Lee, H.; Yun, K. Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity, Arch. Ration. Mech. Anal., Volume 208 (2013), pp. 275-304 (ISSN: 0003-9527) | DOI | MR | Zbl

Ammari, H.; Kang, H., Lecture Notes in Math., 1846, Springer, Berlin, 2004, 238 pages (ISBN: 3-540-22483-1) | DOI | MR | Zbl

Ammari, H.; Kang, H.; Lee, H.; Lee, J.; Lim, M. Optimal estimates for the electric field in two dimensions, J. Math. Pures Appl., Volume 88 (2007), pp. 307-324 (ISSN: 0021-7824) | DOI | MR | Zbl

Ammari, H.; Kang, H.; Lee, H.; Lim, M.; Zribi, H. Decomposition theorems and fine estimates for electrical fields in the presence of closely located circular inclusions, J. Differential Equations, Volume 247 (2009), pp. 2897-2912 (ISSN: 0022-0396) | DOI | MR | Zbl

Ammari, H.; Kang, H.; Lim, M. Gradient estimates for solutions to the conductivity problem, Math. Ann., Volume 332 (2005), pp. 277-286 (ISSN: 0025-5831) | DOI | MR | Zbl

Anselone, P. M., Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971, 138 pages | MR | Zbl

Budiansky, B.; Carrier, G. F. High shear stresses in stiff fiber composites, J. Appl. Mech., Volume 51 (1984), pp. 733-735 | DOI | Zbl

Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Studies in Mathematics and its Applications, 5, North-Holland Publishing Co., 1978, 700 pages (ISBN: 0-444-85172-0) | MR | Zbl

Bao, E. S.; Li, Y. Y.; Yin, B. Gradient estimates for the perfect conductivity problem, Arch. Ration. Mech. Anal., Volume 193 (2009), pp. 195-226 (ISSN: 0003-9527) | DOI | MR | Zbl

Bao, E. S.; Li, Y. Y.; Yin, B. Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Comm. Partial Differential Equations, Volume 35 (2010), pp. 1982-2006 (ISSN: 0360-5302) | DOI | MR | Zbl

Bonnetier, E.; Triki, F., Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion (Contemp. Math.), Volume 577, Amer. Math. Soc., Providence, RI, 2012, pp. 81-91 | DOI | MR | Zbl

Bonnetier, E.; Vogelius, M. An elliptic regularity result for a composite medium with “touching” fibers of circular cross-section, SIAM J. Math. Anal., Volume 31 (2000), pp. 651-677 (ISSN: 0036-1410) | DOI | MR | Zbl

Citti, G.; Ferrari, F. A sharp regularity result of solutions of a transmission problem, Proc. Amer. Math. Soc., Volume 140 (2012), pp. 615-620 (ISSN: 0002-9939) | DOI | MR | Zbl

Colton, D. L.; Kress, R., Pure and Applied Mathematics, John Wiley & Sons, Inc., 1983, 271 pages (ISBN: 0-471-86420-X) | MR | Zbl

Fabes, E. B.; Jodeit, M. J.; Rivière, N. M. Potential techniques for boundary value problems on C1-domains, Acta Math., Volume 141 (1978), pp. 165-186 (ISSN: 0001-5962) | DOI | MR | Zbl

Folland, G. B., Princeton Univ. Press, Princeton, N.J., 1976, 349 pages | MR | Zbl

Kress, R., Applied Mathematical Sciences, 82, Springer, 1999, 365 pages (ISBN: 0-387-98700-2) | DOI | MR | Zbl

Li, Y.; Nirenberg, L. Estimates for elliptic systems from composite material, Comm. Pure Appl. Math., Volume 56 (2003), pp. 892-925 (ISSN: 0010-3640) | DOI | MR | Zbl

Li, Y. Y.; Vogelius, M. Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal., Volume 153 (2000), pp. 91-151 (ISSN: 0003-9527) | DOI | MR | Zbl

Markenscoff, X. Stress amplification in vanishingly small geometries, Computationnal Mechanics, Volume 19 (1996), pp. 77-83 | DOI | Zbl

Mateu, J.; Orobitg, J.; Verdera, J. Extra cancellation of even Calderón-Zygmund operators and quasiconformal mappings, J. Math. Pures Appl., Volume 91 (2009), pp. 402-431 (ISSN: 0021-7824) | DOI | MR | Zbl

Yun, K. Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections, J. Math. Anal. Appl., Volume 350 (2009), pp. 306-312 (ISSN: 0022-247X) | DOI | MR | Zbl

Cité par Sources :