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ELLIPTIC ESTIMATES IN COMPOSITE MEDIA
WITH SMOOTH INCLUSIONS:
AN INTEGRAL EQUATION APPROACH

BY HaBiB AMMARI, Eric BONNETIER, Faouzi TRIKI
AND MicHAEL VOGELIUS

ABSTRACT. — We consider a scalar elliptic equation for a composite medium consisting of ho-
mogeneous &0 inclusions, 0 < ap < 1, embedded in a constant matrix phase. When the inclu-
sions are separated and are separated from the boundary, the solution has an integral representation,
in terms of potential functions defined on the boundary of each inclusion. We study the system of in-
tegral equations satisfied by these potential functions as the distance between two inclusions tends to
0. We show that the potential functions converge in §°%, 0 < a < ay to limiting potential functions,
with which one can represent the solution when the inclusions are touching. As a consequence, we ob-
tain uniform " bounds on the solution, which are independent of the inter—inclusion distances.

REsuME. — Nous étudions des milieux composites constitués d’inclusions homogénes de
forme ©'*°, immergées dans une phase matrice constante. Lorsque les inclusions ne se touchent
pas, la solution de I’équation de diffusion peut étre représentée a ’aide de potentiels de surface,
solutions d’un systéme d’équations intégrales. Nous étudions ce systeme lorsque la distance inter-
inclusion tend vers 0. Nous montrons que les potentiels de surface convergent dans %%, 0 < a < ao,
vers des potentiels limites, qui permettent d’obtenir une représentation intégrale du probléme limite.
Nous en déduisons des estimations sur les solutions dans §%'®, uniformes par rapport a la distance
inter-inclusions.

1. Introduction

In a bounded domain Q C RZ, we consider a composite medium consisting of a finite
number of inclusions embedded in a matrix phase. We assume that the inclusions and the
matrix have (different) constant, scalar conductivities. The resulting, spatially varying, piece-
wise constant conductivity is denoted by a(-). Given a current g on the boundary 952, with
i) a0 9 do = 0, we consider the solution u to the elliptic equation

V-(a(-)Vu) =0 inQ, with a(-)0,u=g ondqQ,

in other words, we consider the continuous function u, which is harmonic in each inclusion
as well as in the matrix, which satisfies the usual transmission conditions across the inclusion
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454 H. AMMARI, E. BONNETIER, F. TRIKI AND M. VOGELIUS

boundaries, and which has the prescribed co-normal derivative g on 9€2. To make u unique
we impose the condition [, u do = 0.

In this paper, we are interested in a priori estimates for the solution u, and in particular its
gradient. We assume that € has a smooth boundary, and that the imposed current is smooth.
When the inclusions are merely Lipschitz, it is well known (from elliptic theory in domains
with corners) that Vu is generally not uniformly bounded, i.e., generally not in L°°. On the
other hand, when the inclusions are smooth (say eh* 0 < ap < 1) and when they are
not mutually touching and do not touch 91, it is equally well known that Vu is bounded.
A natural question is whether Vu stays uniformly bounded, even as some of the inclusions
get close.

This question has been addressed in several papers (see for example [11] and [18]). It
has been established that Vu is bounded in L*°(£2) independly of the distance between the
smooth inclusions. The answer given in [18] is actually quite a bit more general. It addresses
the case of a divergence form elliptic equation with ‘piecewise Holder coefficients’: assume
there exist numbers 0 < ag,0 < ¢o, u < 1,0 < Ag < Ag, and a positive integer M such that

1,a9

i. Q contains M possibly touching inclusions D;, 1 < [ < M, each of whichisa &
subdomain.
ii. Forany 1 <[ < M, dist(D;,09Q) > co > 0,
ili. Ineach inclusion, and in the remaining part D41 := Q\Ui<i< u Dy, the conductivity
satisfies Ao < a5, < Ao, and has " regularity.

Then
M+1 . a0
(1) ; l[ull 1.0 B,na.) < CllgllLz(a0), forany 0 < o < min{pu, m},
where ., € > 0, denotes the set
Q. ={X € Q, dist(X,09) > e}.
La «

The constant C' depends on €, o, M, Ao, Ag, p, 2 and the appropriate & norms” of the
parametrizations of the inclusion boundaries. But note that C is independent of the inter—
inclusion distance. The proof given in [18] uses elliptic blow-up techniques and maximum
principles, and is thus restricted to scalar problems.

In a subsequent paper [19], Y.-Y. Liand L. Nirenberg extended the above result to strongly
elliptic systems, with the same restriction 0 < a < min{g, %} for the regularity
“measure” of u. Recently, G. Citti and F. Ferrari [13] followed the approach of [18], using
more precise estimates and obtained an improved regularity result. They show that the
solution w is locally in &%, for o < min{u, ap}. However, they assume that the inclusions
are strictly separated from one another, and their proof yields regularity estimates that may
depend on the inter-inclusion distance. The uniform character of the estimates is the cardinal
point of [18] and of our work.

In the case of perfectly conducting or perfectly insulating inclusions the gradients may
blow up as the inter-inclusion distance, §, approaches 0. The estimates (1) are therefore not
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ELLIPTIC ESTIMATES 455

uniform in the magnitude of the conductivities. In [7], the solution for perfectly conducting
inclusions is shown to satisfy

IVullze < Gellullrzo0) forn =2,
) IVl < sriagllullzzon)  forn =3,
IVl < §llull200) forn = 4,

where n is the ambient dimension. The case n = 2 was derived independently by Yun, using
conformal mapping techniques [22]. The picture is less complete for the case of insulating
inclusions, see [8].

For n = 2 and for circular inclusions, one can obtain very precise bounds in terms of
both contrast and inter-inclusion distance, since the solution has a series representation that
lends itself to asymptotic analysis [5, 3, 12, 20]. Optimal upper and lower bounds on the
potential gradients are derived in [5, 3] for nearly touching pairs of circular inclusions. In
the case of two disks, a decomposition of the solution into a singular part, and a part that
remains uniformly bounded with respect to ¢, is given in [4].

When the conductivity is piecewise constant, and when the inclusions are gheo, mutually
separated and separated from the boundary, then one can represent v in the form

M
3) u(X) =Y Sip(X) + H(X),
=1

where H is a harmonic function, where each ; is defined on dD;, and where .S; denotes
the single layer potential on dD;. Invoking the transmission conditions on dD; and the
Neumann condition on 0f2, we can derive a system of integral equations, for the ¢;’s, and
an associated (implicit) formula for H. As each inclusion has gheo regularity, results from
classical potential theory (see, e.g., [15]) show that this system is invertible. Detailed facts
about the regularity of u may be deduced from the representation (3).

The aim of this paper is to show that the system of integral equations for the ¢;’s is
uniformly invertible in €% as inclusions get close. The associated uniform estimates on the
inverse can then be used to derive a priori estimates for the solution, u, in &1 norms.

The integral representation (3) of solutions has also been used in other related contexts.
In particular, recent works have focused on the connection between the bounds on Vu and
the spectral properties of the kernel of the integral equation system (the Neumann—Poincaré
operator) for varying coefficient contrast and inter-inclusion distance [1, 10].

For simplicity we always assume that the inclusions are convex, and that any two that
asymptotically meet only meet at one point. Since the regularity of u and the corresponding
estimates only depend on the geometry of the inclusions locally, we shall restrict ourselves
to the case of two inclusions, D; and D,, of size O(1), that asymptotically meet (with a
horizontal tangent) at the point 0, see Figure 1. We denote I'; := 9D;,i = 1,2. For
simplicity, we assume that the matrix phase has conductivity 1 and that both inclusions have
conductivity k # 1. Foré > 0, we consider the situation where the inclusions are at a distance
0 apart, say in the unit vertical direction es. As we shall see, the corresponding system of
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Dz 0

g

FIGURE 1. The touching and near—touching configurations. D{ = D; — %62, and
Dg = Dz —+ gez.

integral equation for the potential functions (¢{, ¢3) may be written

3 L} M -K3) \¢ 95

Here, A = %, (g¢,g3) are known functions (given in terms of the boundary flux g),
K7 denotes the trace on I'; of the normal derivative of the single layer potential on I';, and
Lg denotes the normal derivative on I'y (or rather, on the —§ vertical translate of I';) of the

single layer potential defined on I'5. To be precise
L3O3(X) = —v1(X) - VSap3(X — des), X €Ty,

and similarly for L. We notice that even though the physical situation is as in the right picture
of Figure 1, we use potentials ¢! that live on the § independent curves I'; = dD;, as in the
left picture of Figure 1. Thus, vertical translations (by +8 and +46,/2) appear in appropriate
places. We also notice that the parameter A always satisfies |A| > 1/2.

Throughout the paper, we assume that the inclusions are &b with 0 < ap < 1 and
we seek the potentials in the space 67,0 < a < ag, of slightly less regular functions.
When 6 > 0, the kernel of L3 is smooth, so that LS is a compact operator from £ (T'5)
to E?O’O‘(Fl) [17]. Similarly, L¢ is compact, so that by Fredholm theory, the system (4) is
invertible in §%*(I';) x €%*(T'3).

If the operators (L{, L3) were convergent in the operator norm (C%® to C%%) as § — 0,
and if we could show that the limiting system corresponding to (4) is invertible, then the
operators (T°)~! would converge in norm to the inverse of that limiting system. In particular
(T?)~! would be norm bounded, and we would immediately obtain uniform piecewise C1:*
estimates for u. It is indeed possible to show that the operators (LS, L) converge pointwise
to some (LY, LY), and that the limiting system corresponding to (4) is necessarily invertible.
However, as we shall show that the operators (L, LJ) are not compact, the convergence
of (L§, L3) cannot take place in the operator norm. Therefore the simple argument above
cannot be used to obtain uniform estimates for u. We note here that we are not entirely sure
whether this “degenerate” picture is special to dimension two. In our opinion it would be
very interesting to resolve this question, and thus to understand any potential “qualitative”
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ELLIPTIC ESTIMATES 457

difference in the behavior of the gradients near contact points in dimension two versus
dimension three and higher.

Due to the lack of norm convergence, mentioned above, we appeal to results about collec-
tively compact operators established by P.M. Anselone [6]. These results require only point-
wise convergence and invertibility of the limiting operator to garantee pointwise convergence
(and thus uniform norm-boundedness) of the (7%)~1’s. It is very useful to note that the limit-
ing operators (LY, LY) are nearly compact: their kernel is singular only at one point, namely
where the two inclusions touch.

We use this observation to split the operators T as a sum of operators the supports of
which depend on a small parameter . Due to our assumptions the curve I'; can, near X = 0,
be parametrized as (z, 1y (z)) with ¢, € §"*°(R) and such that ¢, (0) = (0) = 0, and
similarly for the curve I';. Given € > 0, we introduce approximate curves ¢ ., %2 . which
satisfy

||¢j,a gl < 2||¢j

gl EV

{T/Jj,e = 9y J=12, |z[<¢

for any 0 < a < ag, where v = ag — a > 0, see Figure 2. We then split Lg as

1
2m\[1 4 (91 ()]

Ly=x| K’ + (J5° + I5°) | + (1 —x)L3,

where x is a smooth cut-off function that is identically one near the origin. The term K 9 s
(near X = 0) the difference between L$ and the normal derivative at the approximate point
(z,%1,c(x) — dez) of the single layer potential on the approximate curve y — (y,¥2:(y)).
Since the original and approximate curves coincide in an e-neighborhood of the origin, the
operators K;"S are collectively compact with respect to §. The term involving I3 % is the
normal derivative at the approximate point (z,v1 ¢ (x) — dez) of the single layer potential on
the straight line y — (y,v2.(z)), and the term involving J5 9 is the remainder, see Figure 2.

¥, () +8/2)

5 L0+ 82) v, (0 +872 V¥ (¥) +872)

&V, (0 -8/2) v, (x) =872 .V, (1) =872)

FIGURE 2. The approximate curves introduced in the splitting of L3.
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We decompose L likewise and define

x(X) €,0 €,0
Ao A ey e S )
€,0 ™ x(X) £,0 £,0
i ﬁ[%,s(z)]z(ﬁ + I5%) Vs
Cos— ( —K{ XK§’5+(1—X)L§>
T \XET + (1 - L ~K3

sothat 7% = A. 5+ C. 5. In this decomposition, the operators C. s are collectively compact,
whereas the operators A, s are pointwise convergent and invertible, with uniformly norm-
bounded inverses. Since they do incorporate a term from the L{, the operators A, s are,
however, not “diagonal”.

Given |\| > 1/2, we show in Lemmas 6 and 7, that we can fix ¢ > 0 small enough, so that
the norm of the off-diagonal terms of A s is strictly smaller than |\|, uniformly with respect
to 0 < § < 1. The operators A, 5,0 < & < 1 are thus invertible in (') x (). We
then show (Lemmas 5 and 8) that (A, 5, C. 5) converge pointwise to some limiting operators
(Ac0,Ce0), as § — 0 (for C. s in a collectively compact fashion). These limiting operators
correspond to an integral formulation of the limiting elliptic problem with § = 0. As a
consequence, we obtain our main result, Theorem 1: the operators T are invertible operators
in 2(6%*(I'y) x £¥%(T'y)), and their inverses are bounded independently of §. Moreover,
the operators (7°)~! converge pointwise to (7°)~! as § — 0.

The paper is organized as follows: In Section 2, we make precise our assumptions on the
geometry, we describe in detail the system of integral equations, when the inclusions are
not touching, and we also derive the splitting of the system as briefly explained above. Our
main result is found and proven in Section 3. The proof depends on a number of technical
lemmas that are precisely stated in this section, but the verifications of which are relegated
to Appendices A-D. Appendices A-C are devoted to proving Lemmas 5-7, that concern the
properties of the operators (K5, J5*°, I5°), for e sufficiently small. Appendix D gives a
proof of Lemma 8 which asserts that, for fixed ¢ > 0, the aforementioned operators converge
pointwise when § — 0. Finally, Appendix E is devoted to a proof of the non—compactness
of the limiting operators (LY, L9). Although this result is not needed for the proof of our
main Theorem, we feel its inclusion is nonetheless relevant, since it was what motivated a
significant part of our analysis.

2. Layer potentials for a system of 2 inclusions

2.1. Notations and assumptions

We recall that a closed curve I' € R? has regularity C*® if it can be covered by a local set
of charts

Yz €I — (Y1(2),9;2(z)) CR?,

where I;,1 < j < J, are open intervals of R, and where the 9; ;’s are C Lo (E) functions with
(%5 1)% + (1) 5)* > 0. We say that a continuous function f is of regularity €%*(T) if for any
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of the local charts

1f 0 0] pore gy 1= sup |f(¥1(2), ¥j2(@) — F(¥,,1(2),95,2(2))| < C
) x,ierj, lz—2|<1 |‘T - §7|a -

The norm on §”*(T) is defined by

ey = mae (510 2, 17 @ sl ) -

We consider a bounded smooth domain Q C R? containing 0. D; and D, are two touch-
ing, simply connected domains (inclusions) contained in 2; their boundaries are denoted I'y
and I'y. We assume that D; lies in the lower half-plane x5 < 0, D5 in the upper half-plane,
and make the following assumptions about the geometry:

A1l. The inclusions are strictly convex and only meet at the point 0.

A2. Around the point 0, I'; and I's are parametrized by 2 curves (z,¢1(x)) and (z, ¥2(x))
respectively. The graph of ¥ (resp. 12) lies below (resp. above) the x-axis.

A3. The inclusions D; and Ds are globally 61’0‘0, for some 0 < a9 < 1. In particular, each
function 1; has regularity 6.

A4. D; and Dy lie strictly inside €, i.e., dist(0Q, D; U D3) > cg for some ¢y > 0.

Throughout the text, C' is a generic positive constant, that may only depend on the
geometry of each inclusion, but not on the parameters §, £g and ¢ introduced below.

2.2. The system of integral equations

Let g € §7°(8Q), such that [, g = 0. We first introduce the diffusion equation

div(ag(z)Vug) =0 in £,
Q) Oyup(z) =g ondQ,
Joq uo =0,
where the conductivity ag is equal to k > 0,k # 1,in Dy U Do, and to 1in Q \ (D1 U Dy).
The real physical situation we are interested in is one in which the two inclusions are
separated by a small distance: For § > 0, we set D = D; — §/2e3, D3 = Dy + §/2e3,
and we denote by a; the corresponding conductivity distribution. Let us be the solution to
div(as(z)Vus) =0 in £,
(6) dyus(x) =g onoA,
f a0 Us =0.
In other words, the function u; is harmonic inside and outside the inclusions D?, D3, and

satisfies the transmission conditions

. _
T gs Ous _ 10us ]
(7 Uy = Uy 5 = k5%, ondD;.

Here uf (resp. uj ) denotes the solution outside (resp. inside) the inclusions, and v is the
outside normal to dD?. Since the coefficients as = 1+ (k—1)x psupg converge to a in LP(€)
for any p < oo, it follows from Meyers’ theorem [9] that

3 }i_lf(l] |lus — uol| 1 () = 0.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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Let G(X,Y) = 2L In(|X—Y) denote the fundamental solution to the Laplace operator in
dimension 2. Let Sy and Dyq denote the single and double layer potentials on 952, defined
on L?(0Q) by

Saaf(X) = aQG(X,Y)f(Y)day X € R?\ 09,

Doaf(X) = " D, G(X,Y)f(Y)doy X €R?\ 09,

and let S; denote the single layer potential on T';, defined on L?(T;) by
Sif(X) = / G(X,Y)f(Y)doy X €R*\T;.
r;

We introduce the harmonic parts of ug and us (see [2] sect. 1.4)

{HO(X) = —5509(X) + Daa(ugpa)(X) X €Q

9
© Hs(X) = —Ssag(X) + Dag(u(g‘ag)(X) X e

LEMMA 1. — Let 6g > 0, and w CC S, such that D‘f U Dg C w, for § < bg. Then, for all
n € N, there exists C = C(n, k,Q, dist(0Q,w)) > 0, such that

(10) Vo <do, |Hsllen@) < CllgllL2an)-
We furthermore have that

(11) %E%”His_HOH‘@"(E) =0.

Proof. — The definition of Hy and H, immediately gives
Hs — Ho = Daq(us/aa) — Daa(uo/a0),
and since w is strictly inside {2 we may estimate

|[Hs — Ho

en@) < Cllus — uo||L2a0) < Cllus — uol| a1 (),

where the constants C' only depend on n, Q and dist(92, w). The assertion (8) now leads to
the desired convergence (11). To prove the uniform estimate (10), we see that

(12) [Hsllgm @) < C (lgllz200) + llusllL200))
and
(13) llusllz280) < Cllus|lmi@) < Cllgllrz(aq),

where the constants C only depend on n, k Q and dist(992, w). For the last estimate we have
used the Trace Theorem as well as an elliptic energy estimate. A combination of (12) and (13)
gives the desired estimate for Hy. O

Let § > 0. We define for X € I'q
_ )
W3 (X) = (ayu; — Oyuy )‘an (X - 562)
and for X € T'y

(X + éeg).

03(X) = (Ovuy — avué_)mpg D)
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By repeated integrations by parts, it is easy to calculate that us can be represented as

5 )
(14) us(X) = S193(X + 562) + Sy05(X — 5eg) + Hs(X).

The standard jump relations for a single layer potential also show that the functions (¢ and
5 solve the following system of integral equations

(A = K})@$(X) — Z5:05(X — 0e2) =0, Hs(X —Zes) X €Ty

(15)
— 25108 (X + de2) + (A — K3)3(X) = 0,Hs(X + Se2) X €T.
In this system, A = % € R\ [-1/2,1/2], and K denotes the operator defined

on L(T;) by

ki) = 5 [ R sy

Classical results from potential theory show that for any 0 < a < o’ < ag,
(16) ||Si(<P?)||Cl,a(D7) + ||Si(¢?)||clva(Q\Df) < C||<P?||00,a’(ri)a

fori = 1,2, see [17]. Based on the representation formula (14) and Lemma 1 we thus
immediately get the following result.

LEMMA 2. — Let ug be the solution to (6), and let (¢$, ©3) be the solution to (15), where Hy
is given by (9). For any small n > 0, let Q,, denote the set Q, = {x € Q,dist(xz,00) > n}.
Then for any 0 < a < o' < ay,

||u5||cl,a(D7f) + ||u5||cl,a(D7g) + ||u5||C1:°‘(Qn\(D‘fUDg))

2
<C (Z ||90§5||co,a'(ri) + ||9||L2(an)> ;

=1

for some constant C, depending on a, o, ag, Q, k, 1, but independent of é.

According to this lemma we obtain the desired piecewise Holder estimates (1) on Vus, if
we can establish uniform C%® a < g, bounds on the potentials ¢?. Since Hy is bounded
uniformly in any norm on the curves I'; (by Lemma 1) such uniform bounds on the ¢? follow
if we can verify that the operator on the left-hand side of (15) has a uniformly bounded
inverse as an operator on C%%(T';) x C%%(T'3), a < ag. This verification is the focus of the
remainder of this paper.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



462 H. AMMARI, E. BONNETIER, F. TRIKI AND M. VOGELIUS

2.3. Decomposition of the system of integral equations

In this section, we begin our detailed study of the system of integral equations

. m () (2,5 () ()
03 L M-K;) \¥ 92

where, for (1, 2) € €7 (1) x §V%(T,),

Lipa(X) = —2Sop2(X —des) X €Ty
(18)
Lo (X) = —,9%514.01()( + de2) X eTls.

When § > 0, classical potential theory applies, and one finds that T is a continuous linear
mapping on **(I';) x **(T'y), invertible with bounded inverse, for any 0 < a < ay,
and for any |A| > 1/2.

Our goal is to study the behavior of T and its inverse as § — 0. As the inclusions come to
touch, the terms 9, S22 and 9,511 may become singular at the contact point. To isolate
this difficulty, we decompose T° as a sum A. s + C. 5, where for a fixed ¢ > 0 sufficiently
small, the operator A, s contains the singular part of T° (i.e., the identity plus a piece of the
off-diagonal terms) and where C, ;5 is compact.

We fix a small parameter 0 < ¢ < 1 so that

1 1+ €o

(19) 5 < 5

Let Rp = 2(1 + ¢4 ). By a rescaling of €, if necessary, we may assume that each inclusion
is sufficiently large so that the intersection of (I'y UT'3) N B(0,2R,) with the vertical axis is
reduced to the contact point 0. In other words, the ‘South pole’ of I'; and the ‘North pole’
of 'y are at a distance greater than 2R, from the contact point. Let x be a smooth cut-off
function, such that

< |A]

0<x(X) <1,

x(X)=1 for X € B(0,¢0),
Supp(x) € B(0, Ro),
[IVX|[os < €0-

(20)

We also assume that ¢q is sufficiently small so that around the contact point X = 0, the
curves I'; can be parametrized by

@1 {m <eo— X = (&,41(2) €Ty,
lyl <eo — Y = (y,¢2(y)) € T

LEMMA 3. — Given 0 < g9 < 1 for which (21) holds, and given 0 < a < 1, there exists an
operator E : §"*(Ty) — €"*(R), such that for any ¢ € °*(Ty),

1Epllo,a < (1+¢0)llello,a
(22) Eo(y) = o(y,%2(y)), v € (—¢o0,€0)
Supp(Ep) C (—2/c0,2/¢0)-
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Proof. — Given ¢ € §¥%(T'3), we first define 3 € €”*(R) by

ey, Ya2(y)), if y € [—€0,€0]
B(y) = wleo,¥a2(e0)), ify>eo
o(—€0,¥2(—¢0)), if y < —ep.
It is easy to check that ||@||o.« < ||#]lo,«: For instance, when |y| < €g,§ > o and |[y—g| < 1,
we can estimate

16(y) — 2@ ey, v2(y)) — p(eo, Pale0))|

|y_:g|o¢ |y—@|a
< Iso(y,wz(y)):90(‘;0”/’2(50))| < llello,as
ly — eol

and similarly for the other choices of ¥, 4.
Next, let p denote a C*(R) function with values in [0, 1], with compact support in (—%, %),
and such that
{ ply) =1 iflyl<eo
1]l < 0.
We define Eg(y) = p(y)@(y), which satisfies || E¢||co < [[@]|os < [|¢]|oo and

|Ep(y) — Ev(9)] ley) —o@)| | | ~ —a
sup — < sup | lplloe = F 1800 |10 looly — 91"
ly—gl<1 ly — 9 ly—gl<1 ly — 9
< (L +eo)llello,as
and the lemma follows. O

Weleta < apand fix0 < e < €. We introduce two auxiliairy functions 95 ¢, 2 ., defined
on R, which satisfy (see Figure 3) :

(23) wj,s = "/}j)j = 1,27 |SC| < €,
(24) [P5ellgre < 2[4l g0,
where v = ag — a > 0. The existence of such functions follows from the & regularity

of 11 and 15, and from the fact that
¥;(0) = ;(0) = 0.

We simply take
¥;(z), lz| <e,
VYje(x) = 295(ke) — (2 —z), e<tx <2
2, (Le), tz > 2e.

Let 0 < a < ag < 1. Throughout the paper, we set for ¢ € €O’Q(I‘2)

P(y) = BEp(y)y/1+ [¥2 . (y)]*.
It is easy to check that this function has regularity €“*(R) and that
(25) [$llo,a < (14 Ce)(L+eo)llellgoa(r,),

with C, — 0ase — 0.
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L= (y, ()

6 € 2¢e X

CRTANE)

FIGURE 3. A possible contruction of 12 : the part between (e, 2¢) is obtained by
rotating the part between (0, ) around the point (g, 2(g)).

Leté > 0andy € E?O’Q(I‘Q). For X € I'y with first coordinate =, we set X, = (z, ¢1,()).
We alsosetI's . = {Y = (y,¢2,(y)),y € R}. We then define
e _;1/ v(X) (X =Y —deg)
K2 SO(X) - o r, |X—Y—(562|2 SO(Y) dO'Y
1 v(X:) (X =Y — dea)
27T F2,E |X5 _Y_662|2

(26)

EQO(Y) dO’y.

More explicitely, the second term in the above expression has the form

<—¢;,€<x>> . ( z—y )
¢1,a($) - "/’2,8(y) -4

1 1
2m\ /14 [¥) . (2))2 /R (@ —9)* + (0 + Y2,e(y) — Y1(2))?

We remark that the two integrands in the definition of K5 coincide when |y| < e and

2] < & as Y = (5, ¥2(y)) = (v, Y2, (y)) and X = (z,91(x)) = (2, ¢1,0(a)) in this case. We
further define for | X| < Rp,and § > 0 or X # 0
= [ G4 v2e(y) —Yre(x) — Y1 (@)(y — )
oy T e G ey O
B / (0 + 2,e(2) = Y1,e(2) — V1 c(2)(y — @)
R (.’L‘ - y)2 + (6 + "/)2,5(*7;) - 1/11’5(1'))2

o(y)dy.

B(y)dy,

andford =0and X =0

JE,O 0 — / 1/)2,6(?4) ¢ d .
2 QO( ) - yz + 7/12,5(?/)2 (y) Y
Note that the integral in the expression above is well-defined as ¥ . (y) = O(Jy|***) when
y — 0. Finally, for | X| < Ry, and § > 0 or X # 0, we define
[ A (@) = Y1e(w) — ¢ (2)(y — 2)

€,0
(28) I2 (p(X) - - (.CC _ y)g + (5+¢2,s(~’0) _ "/)1,5(55))2 ¢(y)dy7

and

(29) I5°0(0) = mp(0).
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The expression E I§’6 represents the form one would (locally) have obtained

1
271+ (] .

for L3, if T'y were a flat boundary at distance 6 + o (x) — Y1, (x) from I'y, see Figure 2.

Using the above definitions and recalling the definition (20) of x, we may now decompose
the off-diagonal operator L3, 8 > 0, as follows

(30) Lip(X) = x(X)Lip(X) + (1 — x(X))Li(X)

G1) — (%) [ K5+ . 57+ 15%) | o(3)
2my /1 + [¥ . (2)]?

(32) +(1 = x(X))Lip(X).

In a similar manner, we define operators K5, J5*°, 12 from 6**(I'; ) into §**(I'y), that
help decompose the operator L

1

2my [T+ [y . ()]

LY = x(X) | K7° + (JP2+I70) | @(X) + (1 — x(X))Lip(X),

for0 < e < egg.

The integral equation system (17) may now be written

(33 1° (901) =Acs <“’1) +Ces <‘m> ;
P2 P2 P2

with
X €,0 €,0
(34) Ay = M Ve AR
R S S ) A

2m /1[5 ()2 \ 71 1
and

~K; XxK5° 0 L3
(35 Ces = s L]t (1-x) s .

xK{° —K3 LS 0

For 6 = 0, and X € I'y, with | X| > &, the definition (18) is used to define an auxiliary
operator Lyp(X), i.e.,

- 0
(36) Lp(X) = —552<p(X) X €Ty, |X]| > ep.

Since the single layer potential S2¢ is infinitely regular away from the curve I's, we have that
LYy = lims_,o Lip in CO*(T'; N {|X| > €0}), and as a consequence it follows immediately
that

(1-x)Ly - (1 —-x)IL3 asé—0,
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in operator norm, from C%%(T'y) to C%*(T';). We also note that the operators (1— x)L$ and
(1 — x)L3 are compact. We now define a global operator by

1

2my /1 + [¢) ()]
+ (1= x(X)) Lgp(X).

The operator LY is independent of ¢ and &g, since it is, as we shall show (in Lemma 8),
the pointwise limit of the €, eo-independent operator L3, as § — 0. For that same reason
L3p(X) is also given by the formula (36) for X # 0. However, as we used the former
to define the latter, different notation seems appropriate. A similar approach yields an ¢,
go-independent operator LY. We use the operators L?, i = 1,2 to define the system

Y2 L(l) )\I — KS Y2

As we shall show (in Lemma 8) this is indeed the limiting system corresponding to (17)
as § — 0. Due to the definition of T it is easy to see that this operator may be decomposed
as

Lp(X) = x(X) | K3° + (J3° + I5°) | o(X)

(38) T = Aco+Cep,
with
I o x (750 IE,O
(39) A 0= A 27 1+[¢175(m)]2(‘]2 + 2 )
i == (T + 177 A

2my/1+ (93 . (2)]
and

_K* KE,O 0 EO
“0) Ceo = PRI R CEPO N (et

xKi" K3 L% o

3. Main results

Our main goal is to show that the system of integral equations (17) is invertible, uniformly
with respect to 4. As already discussed, all involved operators do not converge in norm
as § — 0, and the limiting system (37) is not of the form A times the identity plus a compact
perturbation. The single layer potentials K; are compact operators on i?o’a(l“i), as the
curves I'; have regularity eh [15]. However, the off-diagonal terms LY are not quite as nice,
even though their singular parts concentrate near only one point.

LEMMA 4. — The operators LY and LY are not compact on €% for any 0 < a < aq.

This result immediately implies that the compact operators (L, L3) do not converge in
norm to (LY, LY), and this eliminates a simple proof of uniform invertibility of (17). In order
to overcome this difficulty, and still prove the uniform boundedness and convergence of the
solutions to (17), we base our analysis on the decomposition (33), and use some fairly basic
results from the theory of collectively compact operators, [6].
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DEFINITION 1. — Suppose X and 'Y are two Banach spaces. A family of compact linear
operators B® : X — Y, 0 < § < &, is called collectively compact if and only if the set
{B%p, |l¢llx =1, 0< 8 < &} is precompact inY .

The next three lemmas describe some important properties of the operators in the decom-
position (33) of our system of integral equations. We only give the statements for the opera-
tors indexed by 2 (i.e., those defined on C?%%(T';)) but similar statements hold for the opera-
tors indexed by 1.

LEMMA 5. — Let & be fixed with0 < ¢ < &o. The operators xK5° : €%*(T'y) — §"%(T'y),
0 < § < b, form a collectively compact family of operators.

LEMMA 6. — Givenany 0 < € < gg and any 0 < § < &y, the operator XJ;‘S is a continuous
linear operator from 6> (T'y) to €”%(T'1), & < avg. Moreover, we have

X )8
| ————="5"l (g0 (r,),c02(r,)) < C(e),
2my 1+ [¥1 ]2

where C(e) converges to 0 uniformly in 0.

The operator I§’5 contains the most singular part of the off-diagonal term. Lemma 7
gives a very precise estimate of its norm, so we can compare it to |A|, and ensure that the
operators A, s are invertible when ¢ is sufficiently small (see the proof of Theorem 1).

LEMMA 7. — Givenany 0 < € < gg and any 0 < § < &y, the operator XIQS"; is a continuous
linear operator from §°*(I'y) to €”*(T1), o < ag. Furthermore we have the estimate

X 75 <1/2(1+C(e))(1 + o),

— s
9 1 /2
™ + [wl,a] P60 (T3),6%%(T'1))

where C(e) — 0, as € — 0, uniformly in 0.

(41)

The next statement concerns the pointwise convergence of the operators T, as operators
from £0%(T'y) x §*(Iy) to E*(Iy) x €V (Ty).

LEMMAS. — Let 0 < a < ap, and fix 0 < € < ¢€g. Then, as § — 0, for all
(1,02) € 67 (T'1) x 6"*(T2),
K1876()01aK§76902 — K?O(th;’O@Qa in 607(1'
Additionnally, as § — 0, for all (1, 2) € €¥%(T'1) x V()

)6 ,6 ,0 ,0
xJ1 %01, xIT o1 — xJi e, XD e o0 o

£,0 £,0 €,0 €,0 n y o <
XJs w2, XI5 2 — xJ7 @2, X1y w2,
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Consequently, since we already know that (1 — x)LSp; — (1 — x)L9y;, in 6" i = 1,2
it follows that as 6 — 0,

As (wl) — Ag <‘”l> L in G (Dy) x €% (T), o < a,

P2 ©2

Cos [P ) 0o [ PY), in 8%(T) x 6%%(T),
P2 P2

T (“”) — T (‘“) ,in 6% (D) x €YY (Ty), o < a
P2 P2

By the Uniform Boundedness Principle, the operators C. s are uniformly norm-bounded

in £(6*(T1) x €V%T,)).

The proofs of the lemmas stated above are given in the Appendices A through C. We now
state our main result.

THEOREM 1. — Let |A| > 1/2 and o < «g. There exists 6o > 0 such that the oper-
ators T°, 0 < & < &, are invertible with inverses that are bounded independently of § in
LEV(T) x €¥*(2)),a < ag. Moreover, the operators (T®)~' converge pointwise
to (T°) Y asdé — Oisin f(??o’a/(l"l) x G0 (T3)), forany 0 < o < c.

Proof. — Step 1. — Let |A| > 1/2. Recall that we have tuned € so that |A\| > (1 + &¢)/2.
Invoking Lemmas 6 and 7, we may fix ¢ > 0 sufficiently small that the off-diagonal terms
of A¢ 5, being bounded in operator norm by (1+C(e))(14¢¢)/2, are strictly smaller than ||
uniformly for 0 < § < &. Consequently, A, 5 is invertible in £(6%*(T';) x €¥*(I'y)) and

C
1+C(e))(1+e0)/2

with C(e) — 0, as e — 0, uniformly in §. Further, it follows from Lemma 8§, that
for (1, 2) € E7(T1) x € (T2),

(43) A7) S Az (M) in g%, o <o
T\ g2 T\ @2

,a+v

42)  V0<65<do, A 5llpcgonr)xeoa(rs) < N = (

Step 2. — As Ty and I'y are of regularity &' , K¥ and K3 are compact operators
on i?o’a(I‘l) and i?o’a(l“g) respectively (see for instance [15]). By Lemma 5 and Lemma 8,
C. o is the strong limit of the collectively compact family of operators C; 5, and so it is also
compact. In summary the operator 7° = A, o + C. ¢ is a Fredholm operator: it is therefore
invertible if proven injective.

Step 3. — Let (¢1,92) € §*(T'1) x €¥%(Ty), such that

(44) 0 (901) =0.
P2
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By Lemma 8, Ly — L3po asé — 0, and so

/ nggdozlim/ Loy do
r, §—0 r,

=—1lim [ 8,5¢5X —dey)dox.
5—0 Fl

Since S23 (X — dey) is harmonic in Dy, the integrals on the last right—hand side vanish, and
so do their limits. Invoking well known results in potential theory [16], we now get

/ (M — K{)p1 + L] do = / (M — K7)¢1 do
Iy Iy

== 1/2)/F 1 do.

A similar relation for (A — K3 )2 + L9 holds on I'y. Thus, as a consequence of (44) and
of the fact that |\| > 1/2,

(45) / ©1 do = / Y2 do = 0.
Fl Fz

Step 4. — Consider the function wy defined on R? \ (I'; UT') by
(46) wo = Sl<p1 + SQ(pQ.

We claim that wg = 0 in R2. Indeed, S;¢; and S,¢, are continuous functions on R? and
harmonic in R? \ T'; and R? \ Ty respectively. The regularity of I'; and 'y implies that
VS1¢1 and V Sy, are bounded. Thus, wy is piecewise harmonic in R?\ (I'; UT;), with Vawg
piecewise continous and bounded. In particular, wg € H} (R?). We note further that (44)
expresses the continuity of agd,wp across I'; and I's, except possibly at 0, and consequently
wy is a local solution to

(47) div(agVwe) = 0 in R?\ {0}.

As for the behavior of wq at infinity, a classical estimate of the Newtonian potential [16],
under condition (45), yields

48) wo(X) = O(IX|™),  Vuwo(X) = O(I1X|™?) for |X] — .

Let 0 < p < Rand let B, and Bg denote the balls of radii p and R, centered at 0. We
compute

(49) [ alvul= [ alvuoP+ [ aolVuol
Br Br\B B

P P

As wy 18 ag-harmonic away from 0, the first integral reduces to

/ aowoarwo do — / aowo&wo do
O0BR 9B,

< C/ R™%do + |Jwol| L= (a8,) llaoVwol| L= (a3,)|0B,|
OBRr

< CR2+Cp,
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where C'is independent of R and p. We estimate the second integral by

/ aova . VU)Q
B

P

< laol| Lo @2) [[Vwol|7 o (5,)|Bp|l < Cp?.

Letting R — oo and p — 0 in (49), we conclude that [, ag|Vwo|? = 0, and in view of (48)
that wg = 0.
We now use the jump conditions for the single layer potential to obtain

01(X) = dwy —O,wy; =0, X eI\ {0}
2(X) = Owi —O,wy; =0, X eTly\ {0},

which together with the continuity of the ¢;’s at 0 yields that ¢; = @5 = 0,i.e., T is injective.

Step 5. — At this point we have verified that A%® and A% are invertible for ¢ sufficiently
small, the latter with inverses whose operator norms are bounded independently of §. We
next claim that
(1) The operators C’E,(;A;é are collectively compact.
(i1) CE,OA;(% is compact.
(i) C.sAZ} — CeoAZp pointwise in £(6%%(I'1) x ¥*(I'y)) as § — 0.
Under these conditions, Theorem 1.6 in [6] states that the operators (I + 0675/\;;)‘1 exist,

for ¢ sufficiently small, and are bounded uniformly in ¢ if and only if I+ Cs,OA;é is invertible.
Moreover in that case

(50) (I+ 0575A;§)_1 — I+ C&OA;é)_l pointwise.

Since T° = (I + CE,(;A;};)AE,(;, and since we already know that T° and A5° are invertible,
the validity of the claims (i)—(iii) will thus let us conclude that (I 4+ CE,(;A;;)_l are uniformly
norm bounded and that (50) holds. In combination with (42), (43) it follows that

(Té)—l — A;;(I—}- Cs,zSA;;)_l
are uniformly norm bounded, and satisfy
(T°)~1 - (T°)~! pointwise as § — 0.

It therefore only remains to verify the claims (i)—(iii) in order to complete the proof of
Theorem 1. As already noticed in Step 2, it follows directly from Lemma 5 and Lemma 8§ that
the operators C, s form a collectively compact family and that the limit C, o is compact. The
uniform bounds (42) now imply that the operators C&(;A;; also form a collectively compact
family. This verifies the claims (i) and (ii).

Since the operators C, s are collectively compact in E?O’Q(I‘g) X 80’0‘(1“1), and since
(AZ; — AZg)e is uniformly bounded in 6" (Ty) x €"*(y), a subsequence of
Ces (A;é —A;é)cp converges to some function w € %% (T'y) x *(T';). However, in view of
(43), and of the fact that the operators C, s are norm-bounded in Z’(E?O’a/ (Ty) x ‘60’0" (T2)),
this subsequence must converge to 0 in (G (T1) x 80’0‘/(1“2), 0 < o' < «. Uniqueness
of the limit implies that w = 0, i.e., that C. s(AZ§ — AZg)e — 0in 6¥*(T) x 6>%(I'y).
Since this is true for any subsequence, the whole sequence CE,(;(A;(% — A;(l))go converges to 0
in €%%(I'y) x €V%(Iy).
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We then write
_ _ 2 _ _ — ¥
(Ceszs = Ceohd) ( 1) = [Cos(AZ} = AZY) + (Ces — C0)AZY) ( 1)
P2 P2
to conclude that CE,(;A;; converges pointwise to C’S,OA;é in E?O’a(l“g) X E?O’Q(I‘l) asd — 0,

and therefore that (ii1) holds. O

Recall that the solution to the conduction problem where the inclusions are § apart has the
representation (14), in terms of the solutions (¢¢, 3) to (15) and the harmonic function Hs
from (9). A similar relationship holds between the solution ug to the conduction problem
with touching inclusions and the solutions (¢9, ©9) to

9 o, H
(51) T° (90(1)) - ( WFI),
<P2 aI/HO/FQ
where H is the harmonic function from (9). This is the assertion of the following theorem.
PROPOSITION 1. — The solution ug, to (5), may be written

(52) uo(X) = S1¢7(X) + S295(X) + Ho(X) X €9,

where Hg is harmonic inside Q, and defined by (9), and where the pair (¢9,¢9) €
60%(Iy) x €V%(Ty) is the unique solution to (51).

Proof. — Since Hy is harmonic inside €2, and since I'; and I'; are G0, the right-hand
side of (51) lies in €”*(I';) x €”*(T'y). By Theorem 1, the integral equation (51) therefore
has a unique solution (9, ¢9) € §V%(I'y) x EV%(I'), for any 0 < a < ap. By Lemma 1,
0yHsr, — 0,Hyp, in Eo’a(Fi), and so we infer from Theorem 1 that

s 0
® 7 _1( 9vHs)r, _1 ( OvHoyr,
5 5 0y Hs)r, 0, Hyr,
0, Hjsr, 0,Hyr,
a9, H
+ [(TJ)—I _ (TO)_l] ( 0/F1>
8I/‘E[O/l—‘z
—0 in 8 (Ty) x €%¥(Ty), 0<d <a.
This convergence of ¢? immediately implies that

1) 1)
(53) S1e(X + 562) — 5199(X), and Sy} (X — 562) — S5 (X),

uniformly on compact subdomains of Q\ (I';UT'2), as § — 0. Consider now the solution to the
conduction problem (6), us(X) = S1¢3 (X +Se2)+S203 (X —Se2)+Hs(X). From Lemma 1
we know that Hs — Hy uniformly on compact subdomains of 2, and if we combine this with
(53) we obtain

5 )
us(X) = S10%(X + 562) + Sy05(X — 5@2) + H5(X) — 819%(X) 4 So05(X) + Hy(X),
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uniformly on compact subdomains of Q \ (I'; UT'2), as § — 0. Since we also know that
us — ug in H(Q), it follows from the uniqueness of the limit that ug = S1¢9 + S299 + Hy
on compact subdomains on 2\ (I'; UT'2). Both sides of this identity are continuous functions,
and so we get ug(X) = S199(X) + S293(X) + Ho(X) for all X € Q, just as desired. O

The representation formula (52) of the previous theorem guarantees that u and its gra-
dient are piecewise smooth functions in €2,,, and uniformly bounded. This property is trans-
mitted to the solutions us, as expressed in the following Theorem, an entirely different proof
of which was already given in [18].

THEOREM 2. — Letn > 0and 0 < a < ag. The solutions us to (6) satisfy

||U5||C1,Q(Qn\(DtliuDg)) + ||u6||cl,a(Ff) + ||u5||01,a(Fg) < C||g||L2(8Q)'

The constant C depends on n, but is independent of 6 and g.

Open question. — Can one get optimal regularity estimates, i.e., can one establish a uniform
bound for ugs in CH®0 ? We are not able to obtain such an estimate with our technique, which
uses the fact that ||1 ¢ ||1,o and ||2.||1,a are o(€). This is only true for o < o and therefore,
we cannot reach the optimal exponent «g. This is consistent with the results of [21]. The authors
of that article derive regularity results for another type of integral operators, namely Beurling
transforms (operators defined on volumes, whereas we consider operators defined on curves).
Using the theory of quasiconformal mapping, they study the elliptic equation div(AVu) = 0,
with det(A) = 1, in a medium containing C*° inclusions. They show that Vu is in C%% on
each component but also only for a < ay.

Proof. — Recall that us has the representation
0 0
us(X) = S199(X + 562) + Sap3(X — 562) + Hs(X),

where (4, ©3) solves (15) in §*(I';) x V*(Iy), forany @ < @ < ag. Adapting the
arguments developed for the case of &? contours in [14], Theorems 2.13 and 2.16, one easily
obtains that

1) 1)

|1S103 (X + ze2)lgre@py) + |1S103 (X + se2llgrepy) <€ o3l go.a .

and similarly
s g s g s

15202(X = Se2)ll gra g + 15202(X = Sea)llgra ) < Cllvallgoar,)-

Due to Theorem 1 and the fact that (3, ¢3) solves (15)
||<P(1s||€°’&(r1) + ||S03||€0’&(r2) < C||Hs|lcra(a,)
for n sufficiently small. At the same time, due to Lemma 1,
[[Hs||cra0,) < Cllgllzeo0)-

A combination of these four estimates with the above representation formula for us imme-
diately gives the a priori estimates from the statement of this theorem. O
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Appendix A

Proof of Lemma 5

To simplify our exposition, we drop the index 2 on the operators K5, J5°, I£°. Consid-
ering the definitions of ¥y ¢, 92 ., for X € T'y,|X| < £/2, the operator K= is given by

Ketp0) =~ [ T e doy
1 v(X) (X =Y —de)

2T Ton{|y|>e} |X—Y—5€|2
0+ Y2..(y) = ¥1.e(x)) — ¥1 . (2)(y — )

1 (

2my/1+ [’L/)i (1,‘)]2 /Rn{|y>z—:} (:I,’ - y)2 + (5 + 1/12,5(11) - 1/)1,5(95))2
Since for |y| > e and |z| < €/2, (z — y)? > £2/4, one easily checks that the kernels in
all the above integrals are bounded and have regularity %, so that K9¢ is compact and
maps 6% (Ty) into §**(T; N {|X| < &/2}), for any 0 < a < ag. An even more direct
argument works for | X| > /2. We also note that the bounds on the kernels are uniform
with respect to 0 < § < 1. As a consequence, the operators K%,0 < § < 1 form a family of
collectively compact operators. O

x(y)e(Y) doy

o(y) dy.

Appendix B
Proof of Lemma 6
Recall that we assumed 1, 92 have regularity €% for some 0 < ap < 1. Letar < ayg
with v = a9 — a > 0. Our construction of the auxiliairy functions v . and 9 . implies that
the following bound holds
[P1ellra l[P26ll1,a < Ce”.

In this section, we show that J=% maps §**(I'y) into §**(I';) for any 0 < a < ay.
Given s, z,Z € R, we write henceforth

a=a(z) =06+ 12(2) — ¥1(2)

(54) a= a(i') =4+ d’2,5(§7) - ¢1,5(£)
b=>b(x,8) =0+ t2(s+x)— 1 (x)
b =b(&,s) =04 ac(s+ &) — P1.(2).

B.1. Preliminary estimates
We will repeatedly have to estimate differences such as
b —al = |th2,e(s + ) — Yo (2)].
The mean value theorem shows that for some 6 between 0 and s
b—al = [y (z+0)]|s|

< (195, @)] + 1952 +6) — 95 (2)]) ||
< (192, (@)] + 195 clo,al01%) s

(55) < (2. @)] +[2clloals|®) Isl-
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Alternatively, we may bound |b — a| by
(56) b= al = (I¢5,c(s + 2)| + 193 cllo,als|?) Is]-

Similar estimates can be derived for |b — b|: setting d = |z — 2|, we have for some 6 between
z and &

b= b = [t (s +60) — ¥} .(0) d
S (|¢/2,5(8 + j)| + |w1,s(i)| + |1/)£75(8 + 9) - 1/)5,5(8 + i‘) - 1/1,176(9) + Qpi,s(i')|) d
67 < (Wa(s+ )| + [0 (@)] + d*([a.ello + 191 cllo,a)) d.

Similar estimates hold for |a — @| and |b — a.

Recall also that ¢(y) = Ep(y)+/1 + [¥5(y)]? has support in (—Rg, Ry). Thus, there exists
M > 0 such that for any X € T'; with first coordinate z, the function s — ¢(s + z) is
supported in (—M, M).

Our analysis relies on the following lower bound on |91 |, |12 <|:

PROPOSITION 2. — Suppose 0 < a < ag. There exists a constant C > 0, independent of e,
such that for any x € R,

(38) 9] (2)] < Clic(z)| =, i=1,2.

Proof. — We only focus on 1, but the same arguments apply to ;. Recall that we
assume I’y is strictly convex, and that v, is C* and positive, vanishing only at 0. The
function 15 is only defined in a neighborhood (—&¢, &) around 0. We may nevertheless
extend it on the whole of R, as a & function that only vanishes at 0 and such that
l|Y2]]1,0,k < 2[|¥2]]1,a,(—c0,e0)- It follows that for any « € [~ M, M] and for any 6 € R

ba(z +0) < pa(@) + 95 (a) + O(|6]'F),
so that for some constant C' > 0, independent of 6.
o (@) + Py(x)f + C|9]'F > 0.
As a function of 6, the left-hand side of the above expression is minimal when
0o = —(g35) M if Y4(z) > 0, and when 6 = (LE2L)Ye if gh(z) < 0. In both
cases, the positivity of 1, yields (58) for the function 1)5.

We note that (58) is therefore satisfied by 12 . when |z| < e. It is trivially satisfied when

|z| > 2e. Furthermore, when e < z < 2¢ one has

[V2,c(x)] = 292(e) — ¥2(26 — ) > P2(2e — )

1+a

> Clph(2e — @)= = Clgh (z)| =

PROPOSITION 3. — For any s,t > 0 and for any 0 < u < 1 we have
s2 412 > sthrtoe,
Proof. — We may assume that t > 0 and p < 1. By homogeneity, it suffices to show

that g(s) := s% — s'™# 4+ 1 > 0 for any s > 0. One easily checks that g’ only vanishes

at sg = (1“; )ﬁ and that

1+up

2 14+ p 14n
o(s0) = (i g - (LLE

)=x > 0. O
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B.2. Uniform bound on J¢%, § > 0:

Let o € 6“*(I';), and X € I'y, | X| < Ry, with first coordinate z. Let

. _ (blx,s) — sy () alz) — sy ()
Jes(s,2) = < s$2+b(z,5)?2  s2+a(z)? ) ’

so that after the change of variable s = y — =,
F0p(X) = [ sl ) 6ls+a),
|s|l<M

It follows that

b—syi(z) a—syy.(z)
renls [ Ptet - SR
<114l / |b—al(s? + |ab| + |s¢ . (2)] |a + b])
= et (s? + 02)(s* + a?)
|b — al |b — al
<C N .
<Cloloe [ ot i
Recalling (55)-(56), and using Propositions 2 and 3, we see that
/ |b — al |b — al
2 2 T 21 g2
lsl<m 2+ s’+a
< / |s] (15, (s + 2)| + 5°[[93 cllo,a) N Is| (194, (@)] + 5*1¥.cllo,a)
- |s|<M 82 +b2 82 +a2
<C || [$2,6(s + z)| 7= |s][¢ha,c ()| 5=

+
sl<pr |8 [hae(s + ) + 6171 |s|'HH oo (2) + 610

+C lhellon [ sl

|s|l<M

We choose p such that 1/(1 + o) < p < 1, and thus o/(1 + @) — (1 — ) > 0, to obtain

[ B b
‘S|<M82 +b2 82 +(12

i —(1-p) _
< C [Whellon M+ C llgael E= 07 [ o
|s|l<M

o (1—
(59) <O (Wb ellow M+ 2| E5 07 A1) < C(e),

where C(¢) — 0ase — 0, uniformly with respect to 4, since ||¢2.c||1,« = O(¢”). Hence,
recalling (25), we see that

(60) |7520(X)| < C(e) |l¢l]o,as

where C(e) — 0 as ¢ — 0, uniformly with respect to § (and X).
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B.3. Hélder continuity of J5%, § > 0

Let X,X eI'; N B(0, Ry), with respective abcissae x, & and set
(61) d=|z -2 < |X-X]|
Using the notations of the previous section, we form

T (X)) = T p(X)
- b svle) _a-sU@Y .
_/|S<M( )[¢< +2) — s+ 2)

82+b2 82+a2

[ Geslorm) = sl ) bls + ) - 0(2)
|s|<M

+o@) /||<M (b—swi,scc) a=s¥ie(@) b-syi (@)  a—svi.@)

52 + b2 52 + a? s2 + b2 52 + a2

(62) =: Ry + Ro+ Rs.

B.3.1. Control of R,. — Using (595), it follows that

Ry| = ‘/ISKM (b— sPre(@)  a— 81/11,5(1’)> [6(s + ) — b(s + 5] ds

52+b2 S2+0,2

_ 2 ’
S/ b — a| (s*+ |ab| + |s(a + b)y] . ()]) 1610 d®
|s|<M

(7 + @) +5)

|b—al |b—al
< C [$]lo,a d° ,
<Clolbed |t e

and we conclude from (59) that
(63) |R1| < C(e)l|9l]o,ad”,

with C'(¢) — 0 when ¢ — 0, uniformly in ¢ (and X, X).

B.3.2. Control of Ry. — We rewrite R as

a /SKd(b—sz/z;,s(x) EL PO e

82+b2 52+a2

b— syl (3) a-spl.(d) -
- /|s|<d < s2+b2 st +al > [6(s + 2) — o(2)]
b—s¢) (z) b— sy (2) ) )
+/d<|s<M ( s2+02 s2 + b2 > [p(s + &) — (2)]
a— sy (z) a— s (&) A )
_/d<|s<M ( s24+a2 2442 ) [¢(s + &) — ¢(2)]
(64) =: 51 4S5 + S5+ 5.
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The first term can be estimated by

b (e}
si<o [ (BB ol

<|Igll / sl lVelloe | Isl¥tellon | o
- o Is|<d s2 + b2 2 + a2

<O léllo IWhelloa [ sl

|s|<d

(65) < Cligllo.a 195 llo.o A

The same estimate holds for S,.

Concerning S3, we can rewrite the term in parentheses in the integrand as

(b= b)(s*—bb)  s*(W1.(8) = ()
(s24+b2)(s2 4+ 02)  (s2 +b2)(s2 + b2)
N sb? (V1.£(2) — 91 (2)) + 591 o (2) (0 — D) (b + D)
(52 + b2)(s2 + b2) '

The estimate (57) then shows that

|S3| < / |b—b| _ |3|a||¢||0,a+/ 2|3|1+a||¢i,8||0,ada ||¢||07a
d<|s|<M $% 4+ min(b, b)? d<|s|<M s
W oolb —b
= RPN
d<|s|<M $2 + min(b, b)2

(Whelloa + 19, loa)d |,

52

<Cllolloa [ @+ le)
d<|s|<M

+Clelloa | 116 loadlsf
d M

<ls|<

< ClIglloa 1+ 119 clloo) (1% cllo.a + 1% cllo,a) (
66) < Cl9llo,a (1+ (1% clloo) (¥h.cllo,a + 91 cllo,a) d*

a72 4 Mocda>
d<s<M

The same argument yields a similar estimate for S4. In summary we obtain
(67) |R2| < Ce” ||¢||0,a da, vV =0qp— Q.

B.3.3. Control of R3. — The term Rj3 is the most singular in (62). We rewrite it as ¢(Z) R}

with
w- | b— st (s+a) b sv.(s+3)
3 |s|<M $2 4+ b2 82+B2
_ / a a
Is|<M 82+a2 82+d2
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N / (8(%,5(8 +2) —¢1(@)  s(Wh(s+2) - wa,ecc)))
ls|<M s? +b? s2 + b2

(e iy,
Is|<M 82 + (12 52 + dZ

(68) =T +To+T3+Tj.

Noting that 95 _(s + ) = 9,b the first term can be integrated explicitely to obtain

N

T = [arctan( ) — arctan(

b(s, ) b(s, )

The mean value theorem shows that

M M M (195, (M +0)] + [ (0)])
b(M, x) b(M,z)" — M2 +b(M,0)?
(69) <C (||"/J£,s||0,a + ||d),2,5||0,0¢) d,
and similarly with M replaced by — M. It follows that

(70) |Ty| < C(e)d,

| arctan( ) — arctan( |z — 2|

where C(e) — 0 as ¢ — 0, uniformly in é.
The term T5 can be treated in the same fashion. Note also, that as ﬁ is an odd function
of s, Ty = 0.
Finally, we decompose T35 as follows:
- / S[,.(s + @) — W} (@) — Wb (s + &) + ¥} . (2)]
d<|s|<M 52 + b2

’ R PPN 1 1
T / I CICEE BTG < o 52)
sWhe(s +2) W @) [ slih(s +8) — ¥ ()
+/s|<d s% + b2 /|s|<d s2 + b2
(71) =: Uy +Us + Us + Uy.

Estimate for U;. — The fact that 4] _ and ¢5 _ are 6% for any o < 8 < a gives

U Sdﬁ 1/)/8 + ,(/}/E / |3|
0] < P loo + Wilhos) [ s

< d7(I194 cllos + 1¥3.cllo,6) n(s? + ($1,2(z) — 6)*)]3"
< C d°(|[W cllos + 1¥2cllo,s) [In(d?)],
for d sufficiently small. Thus, we have
U1l < C(|[91 cllo,s + 119 cllo,6)d” | In(d)]
(72) < Ce* P ge,
for any o < < . This shows that
|U1] < C e a%,

forany 0 < v < ag — a, where C is independent of £, d and 6.
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Estimate for Uy. — To estimate U, we proceed as follows:
|b—b| |b+ bl
(52 +b2)(s2 + b2)

<|b—z3| |b—z3|>
— + ——
24062 s°+b
b — b
< Yy (s +T) — ]
/d<s|<M| e el |2+b2

|b—b|
+/ Wl (5+2) — 9
d<|s\<M| % b | 2+b2

+/ |wl2,s(8+'i.)_¢ll,s( ) w25(8+$ +¢1s | 2 2‘
d<|s|<M s +b

Ol < [ sl [ghes )~ 91 (0)
d<|s|<M

< / 0 (s + &) — ¥, ()
d<|s|<M

Recalling (57) we obtain
d ([[91,cllo,e + [[¥5.cllo,a) d
s2 +b?
d (|95, (s +2)] + |91 .(2)])
82 + b2
d (|19} clloa + 195 cll0.0) @
s2 + b2

d (|95, (s + 2)| + |97 (2)])
52 4+ b2

Ol < [ fhels+ ) - v (a)]
d<|s|<M

b s+ ) - @)
d<|s|<M

t [ bt a) @)
d<|s|<M

b s n) - vl@)
d<|s|<M

! / 2 da+1
+ /d g o+ 1 o)

=Vi+Vo+Va+Vy+ Vs
The first term can be estimated by
Vi <C (W elloa + Wl it [ 572

d<s<M
< C (19 clloa + 12 cllo,)? d

We easily obtain a similar estimate for V3 and V;.
To control V3, we use once again Propositions 2 and 3

d (|94 (s +2) + [¥1 . (2)]?)

Va<C =
d<s<M 52 + b2
<cd max([y,-(s + )], [r, () T
d<s<M sltu pl=n

Choosing 1 — o = « yields
max([ha.e (s + )], [1r.(2) )

Sh bl < ma(|thz.c(s + &), b o (2)]) 55707 o

17;) a—2
(||wls||0a+||w26||0a) te 8 .
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From (24), it follows that V5 < C'(g) d“. The same argument applies to V4. In summary we
conclude that

(73) Uz| < C(e) a*,
where C(e) — 0 as ¢ — 0, uniformly in 6.

Estimates for Us and Uy. — Both terms can be treated in the same fashion. We only present

the case of Us. Using the fact that f‘$|<d ﬁ = 0, we have
Us — / s[¢12,5(3 + l‘) - 1/)/1’6(1,‘)]
3= 2 1 p2
|s|<d s +b
s[Ypy (s + ) — Py ()] ) , / s s
- [ e e o [ (ah e
=: W1 + Wg.

The first term can be estimated by

s Y5 cllo.a

Wil < © 22208 < C el d°

0<s<d
As for the other term, we have by (55)-(56)
b—alls| |a + b
i |
|W2| —= ’1/}2,5( 1/)16 ’ /|<d (82 +(L2 +b2)
b — al

2 2
ls|]<d S +a

+ /s|< ‘1/)/2,5(5—'_'77 1/)15 }

< [ta,e(2) = ¥ o(2)]

82+b2

b — a
+/S|<d|¢263+33) Yeelo iz+b2

[1¥5,cll0.08™" + s[4, (@)

< |’¢)é,a(l‘) - 1/’1,5(33”

0<s<d s +a?
[195,cllo,08" " + st (s + )|
+/ o (s + @) — ) ()| st T e
0<s<d s +b
s1|v5 cllo,a
T / g 1r2ellh
L helloa s
<cC ||wé,€||3,a/ s
0<s<d
L smax(|y] . (z)], |1/)’2€($)|)2
0<s<d 52 + a2
Lo s max(|¢1 (@), ¥, (s + 2)])?
0<s<d 32 + b2
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2a

T+a
S C ||’¢}l2,s||(2),ada + C Smax(|w1,s(x)|’ |”(/12,s($)|)

0<s<d sttr al=nr

20

C s max (|1, (2)], |2, (s + 2)|) TF<
+ gltn pl—p :

0<s<d
Choosing again 1 — . = « yields

! 2 CleEal=) oY
Wal < C (11l + max(ls ello s [[92.ll0) 57 ) d*.
It follows that
(74) |Us| < C(e)d?,

where C'(¢) — 0 as € — 0, uniformly in §. By a combination of (68)—(74) it now follows that
(75) |R3| < C(e) d°,
where C(e) — 0 as ¢ — 0, unifomly in ¢.

B.3.4. End of the proof of Lemma 6: Holder continuity of J&° for § > 0. — Collecting the
estimates (60), (62), (63), (67) and (75), we obtain that for any « < «g, for any ¢ € o (T9),
and for any X, X € Iy, | X|,|X| < R,

{ | Je,s0(X)] <Ce)
[ J5(X) = Jes(X)| < Ce) d,
where lim._,o C(g) = 0, uniformly with respect to 6. Lemma 6, for 6 > 0, follows imme-
diately.
B.4. Lemma 6, the case § = 0
Recall that for X € T'; N B(0, Ry), J°¢ has the form

bo—sv; () ao—sy) . () )
JE’O(p(X) _ f|s|<M ( s2_,’_1bg - sz+1ag ) dp(s+x) iIfX#0
Jojens 72285m0(s) i X =0,

where ag = YP.(z) — P1(x),b0 = ae(s + ) — Y1(z). When X # 0, the esti-
mates of Section B.2 remain valid, since the denominators of the kernel are always greater
than |¢1 ¢ (z)] > 0. When X = 0, we have

|Js,0§0(0)| < / ||w2,€||1,a|3|1+a

e e
S

< [W2elli,a lllloc M* < Ce”||¢]|co-
It follows that

1750l | Lo (ryB(0,R0)) < CE)lI#ll0as
where lim._,o C(e) = 0.
As for Holder estimates, when both X and X are different from 0, the quantities
|JE09p(X) — J=9%(X)| can be estimated exactly as in B.3, again because the denomi-

nators of all the kernels involved in these estimates never vanish. Therefore, we only need to
examine |J%p(X) — J=%(0)| when X # 0.
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A careful analysis of the previous estimates shows that only the terms S5 in Section B.3.2
and T} +T5 in Section B.3.3 require a modified treatment compared to the case & > 0. Indeed,
we only used the fact that the denominators in the integrands are greater than s? to control
the terms S3, Sy and T3.

The term Sy. — When X = 0, this term reduces to (see (64))

__ _Y2e(8)
Sy — Aw§+%AWWU 4(0)],

(here d = |z|) which can be bounded by

iy o () — g (0
1S2] < [I9llo,a /|s|<d : W«J:Q 4581)#2,62[;2)’2( )l

swmm%mw/ o

|s|<d
< C(e) ||8l]o,q d*
The term Ty + Ts. — When X = 0, this expression reduces to

T, + T / bo — 51/’5,5(3 + $) 1/)275(8) - ’Swé,a(s) ao
1 2 = - - .
lsl<M s? + b 2+ 93 (s) s + af

Note that since 5 < (s) = O(s'**), and ¢4 _(s) = O(s®), the second term is integrable with
an integral equal to

iy [V ) ) el
P

L A MO NN A=
— _M _P M _—r
= ;11,% [arctan(sz(M)) arctan(%’s(p)) arctan(d)z’s(_M)) + arctan( 2,5(—/7))
= arctan(L) - arctan(i) -
B ¢2,6(M) 1//’2,5(—M) .
It now follows that
t —M t —M
= etant )~ )
- [arctan(M) - arctan(_]\/j)] +
ag agp '

Arguing as in (69), the absolute value of the first two terms are easily bounded by C'(¢)|z|.
As for the last terms, one has

ao
< = < ClYoe — Y1l o' T

+M s
Farctan(—) + — ”

ao 2

It follows that |77 + T»| < C(e) |z|, and Lemma 6 also holds in the case § = 0.
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Appendix C

Proof of Lemma 7

|11 cllo,a < € (which can be made smaller than ¢q by taking ¢ sufficiently small), we only
need to show that

We first note that due to (25), and since Suppx C B(0, Ro), |IX|lco < 1,|X||cc < €0 and

I3°p(X) — I p(X)

(76) max[sup I70(X)|,  sup }sﬂ<1+c<e>>||¢||o,a.

IX|<Ro IX],|X|<Ro X — X~
C.1. Thecasedé >0
For X, X € I'; N B(0, Ry) with abcissae z and &, we split the expression of I5° as /5 — 43
with
Ho Y1 (2)(y — @)
Ji(z) = / Le dy,
= ] e @0 (0 vce) @ Y

_ [T Gt ne(e) —ne(2))
2= [ T G o

and next estimate the L° and Holder semi—norm of these two operators.

L% estimate of 91. — Since ¢ has compact support, changing variables to s = y — x yields

|71( )|—‘/S¢“ (s +z)ds|.

S2+ 2

Noting that 3 is an odd function of s, we see that

s ()
s2 4+ a?

(¢(s +z) — ¢(x)) ds

5'7|9llo
< ||’ LY
< [ elloo /0<ng 2+q2

(77) < Ce”|[9llo,as

A= [

where C' only depends on €, M and 11, but is independent on € and §.

Hoélder estimate of J1. — We form

(@) - (@) = /R S[Zbl’sg);a?‘@”

d
(78) + (&) /R (ngGQ Gy W) é(s + ) ds,

o(s+ ) ds
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with d := z — Z. The first integral above is easily estimated using (24) and the fact that
8 = S3yo» is an odd function: it is bounded by

¥ cllo.a o — 2]

| saatots +a) — sl ds

81+a

<o [z — 21 |ll0. /

s
|s|l<M 52 + a?
(79) <Ce”||Pllolz—2|% v=a)—a

To treat the second term, let us assume (without loss of generality) thatd = =z — & > 0
and rewrite the integral factor in this term as

s s+d
/R<s2+a2 a (s+d)2+d2>¢(3+x)d8

:/| ol — o) - [ g0 - ota - alds

|<4d 5° +a® Is|<4a (s + d)* + @*

s+d)? +

$ s+d
" /SI>4d (-92 +a2  (s+d)? +d2> [6(s + 2) = ¢(2)]
= i1 + g + i3 + i4.

- / |<4d (5"'7‘1&2[45(36 —d) — ¢(z)]ds

Here we have used the fact that ja2 and G +f1;r2d+d2 are odd functions of s and s + d
respectively. We estimate i, by

li1] =

/S|<4d 2120+ ) —g(a)lds

sl+a

< lollo | ds < Clo.de.
“ |s|<4d 32+a2 ¢

The second term ¢, can be estimated in the same way, as |¢(s+z)—¢(z—d)| < ||¢||0,a(s+d)*.
For i3 we have

d
sl =loe ) 9@l | [ o s

5d 5d
| Tmde < ol [ 0o
_3q40°“t+a 3

d 0'2 + &2
25d% 4 a2
9d2 + a2

< ll¢llo,a d”

IN

5
= [1¢llo,a 4% 1/21n( ) < In(3)lI¢llo,q 4%

Finally, the remaining term, i4, can be bounded as follows:

. S s+d
= ‘/|s|>4d (32 +a2 (s+ d—; + &2> [9(s ) = o(w)] ds

- Sd+sd +s(a—a)ata)—ad,
_‘/Is|>4d (52 4 a2) ((s + d)? + a?) [¢(s + z) — ¢(z)] d
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d & le=al)
=¢ Is| 4d<32+83+ 52 |s1* [|¢l]o,a ds
s[>

2 dllwl — — !
cof (LS e vl
|s|>4d S S

< Cllollo.ad™.

- 517 1161lo.0 ds

It follows that the second term in (78) can be bounded by C'||¢] .||oo [|9]l0,o |2 — #[*. In
combination with (79), we conclude that

(80) |1(z) = J1(2)] < Ce”[]lo,a e — 2%

L estimate of I5. — Changing variables from y to s = y — x, and then to ¢t = s/a, which is
well defined since @ = (6 + 2 () — ¥1..(x)) > § > 0, we easily see that

|I2(z)| = ‘/Rgiaz(b(s—i—m)ds

1
~lolle | e
81) = 7 [[9lle-

Holder estimate of I,. — Let X, X € Ty N B(0, Ry), with respective abcissae x and &. We
form

~

a

m¢(5 =+ .'i) dS

Io(z) — Io(2) = /qub(s-l-x)ds—/R

1 1 N .

It follows that

1
1720) — @) < [ Tppllat +0) - o+ 2)] e
R
o 1 |la—a ¢
<lblloale -t [ s [Sgt+1] a
T 1 (1/)2,5 - wl,e)(x) - (1/12,5 - 1/11,5)(92’) “
< l@llo,o [z — 2| /Rlﬂg — t+1| dt

i 1,
<llolloalz =l [ {50 H+1)" dt

By the Lebesgue dominated convergence Theorem, the last integral converges to
Jz Tz dt = was e — 0. It follows that

(82) [72(z) = J5(2)] < (7 + C(e) [|6llo,a |z — 2%,

with C(g) — 0,ase — 0.

The estimate (76) follows from a combination of (77), (80), (81), and (82). This completes
the proof of Lemma 7 in the case § > 0.
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C.2. Thecased =0

We remark that the estimates of /1 (z), J2(x), I1(z)—I1(Z), J2(x)—I2(Z) of Section C.1
remain valid when § = 0 if both X # 0 and X +# 0, since in this case, the denominators of
the kernels do not vanish. Thus, to establish the lemma when § = 0, we only need to check
that |109(0)| < (n+C/())]|llo. and that |I0p(X) — I*0(0)] < (r+C(e))l[¢llo.a I X|°,
with lim,._,¢ C(g) = 0. The first inequality is a straightforward consequence of the definition
of I#%(0) and of the fact that ¢(0) = ¢(0).

To prove the second estimate, we form

I19%(X) — I*%(0)] < /| 805+ 2) — 7(0)

2
<M $“tag

591, (2)
+ /S|<M 32+a% ¢(8+.’1})
1

1
< ‘/Rwﬂs(aot‘i‘x)— /Rl—i—tQ(b(O)‘

U.(0) o
[, e n o)

The ©°“ regularity of 11 . implies that the second term can be estimated by

@ 8o [

2
[sl<M S +ag

81+a

< CllYrellia 2% lI¢llo.a

< Ce”||9llo,a X
As for the first term, we write it as

1 1 [¢e(@) —¢re(@), | 1o
[ et +2) = 6000 < ol [ 1 “ @)y

1
< | X|¢ ——|Ce"t + 1|~
<Xl [ gl |

It easily follows from the Lebesgue dominated convergence theorem that the integral above

(which is independent of z) converges to 7 as € — 0. Combining the two previous estimates
we obtain

[15°(X) = I°0(0)| < (m + C(e)) |60, I X%,
with lim._g C(e) = 0, as desired. O

Appendix D

Proof of Lemma 8
In this section, we show that for fixed ¢,
VeGP (Iy), lim K% =K% in6""(I).
We then show a similar result for 75°, .J%, but it is not as strong: For these operators, we are

only able to show pointwise convergence in G (T'y) forall0 < o/ < o, whenp € %% (Ty).
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The case of K is the easiest. Since I'y N {|z| < €} = 'y N {|z| < &} the denominators
are bounded away from 0 in the expression (26) (this also holds for § = 0). Hence, K% is an
integral operator with a €' kernel, and one can take limits in the integrand to obtain

li KE,5 — K&‘,O
lim K% ®,

in the sense of C%%(T'y).

Let o € §"*(2) and 0 < o < «. Assume that xI=%¢ does not converge to xI¢%
in £ (I'y). Then for some p > 0 there is a sequence which satisfies

(83) IXI=° ¢ — XxI=%¢|[o,0r > p

Lemma 7 implies that xI%°»¢ is uniformly bounded in E?O’Q(I‘l). Since E?O’O‘(Fl) is com-
pactly embedded in E?O’al(l“l), we may assume, after extraction of a subsequence, that
(xI%"¢) converges to some function ¢ € Gl (T'1). We show in Proposition 5 below that
xI¢%p converges uniformly to xI5°p. Uniqueness of the limit implies that ¢ = Iy,
which contradicts (83), and proves the statement of Lemma 8 concerning xI°°.

Using Lemma 6, the same argument shows that x.J%¢ converges to xJ*%¢ in (el (T'y).
Here, we use Proposition 4 below which shows that J*° (X)) converges pointwise to J*%¢(X),
for X € T'y N B(0, Ry).

D.1. Pointwise convergence of J5?¢(X) as § — 0

We prove the following:

PROPOSITION 4. — Let ¢ € 6€"*(T'3). Then for any e < /2 and any X € T'1 N B(0, Ry),
lims o J5(X) = JCp(X).

Proof. — Recall that ay and by denote the quantities

apg = ¢2,E(x) - ¢1,s(m)
by = Pae(s+ x) — Y1.(x).

For X € T'y N B(0, Ry), X # 0, the kernel
b— 31/)/1,5(33) a— 51/’/1,5(55)

Jes(88) = — s T g

convergesasd — O a.e.s € (—M, M), to

’(/}276(5 + ‘T) - ’(/}175(.T) - swi,s(l’) _ 1&275(55) - wl,s(m) - S’QZJE(SE)
$% + (Y2.e(s +2) — P1(2))? 82 + (Yo,c(x) — P1e(x))?
b @) a0 s¥h.(@)
s2 + b2 s24a?

Since we also have
1b— sy .(2)] la— sy, (2)
52 + "pl,s(x)z 52 + wl,S(x)z ’

lje.s(s, )| <
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which is integrable on (— M, M), the Lebesgue dominated convergence theorem implies that,
forany X € 'y N B(0, Rp), X # 0,

bo — sty (x)  ap — sy (z)
1. JE,(S X — / < ,E _ ,€ ) +
Fa o(X) |s|<M s2 4+ b2 s2 4 a? s +2)

= J0p(X).

When X = 0, the expression of J, 5¢(X) reduces to

o Voe)ts 6\
d “m‘/;M<ﬁ+wu@+®2 ¥+ﬂ>“)

- Poe(s) 46 S o
a /s|<M <52 + (wQ,s(S) + 6)2 s2 + 52) [d)( ) ¢(0)]
Ya,e(s) + 0 — sy (s)

Heo /|s|<M 52 4 (Ya,e(s) + )2

515 . (s)
+o(0) /|s|<M 52 4 (Y2,e(s) +9)?

)
— 0 J—
o0 [ e
= T1 +T2 +T3+T4

The term T can be integrated explicitely to obtain

B=¢@hm%%;%¢?WM

— ¢(0) [arctan(wzjz‘[M)) - arctan(lh:(]i/[]\/[))]y asd — 0.
We remark that since 92 o (s) = O(|s|*T%),
. EM hy e (s) — sy o(s) +M . p
plirgli /p 2 l.(9) = arctan(iwz’a(iM)) — pl_l)I[I]li arctan(%,s(p))
+M
= arctan(m) F/2.
It follows that
. B M 4hae(s) — s¥hc(s)
(84) }141}’(1) T2 - (Zs(o) Ny 52 I wg,a (S) 7T¢(0)

It is easily checked that the integrands in 77 and T3 converge a.e. s € (—M, M) to the
corresponding expression with § = 0. Furthermore, the integrand in 73 is bounded by

( Yoo(s) + 5
2[s| (Y2,e(s) +6)  2ls|é
which is integrable on (—M, M). The integrand in T3 can be bounded using Propositions 2
and 3

)memwswmuw*,

593,:(5)
s% + (¢2,€(8) + 6)2

Olslthze(s)| ™=
T[T 2 (s) O] e
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ie,0 < u = —L- < 1, we see that the above term is smaller

Choosing 1 — u = 15, e
than C's~* which is also integrable on (—M, M). An application of the Lebesgue dominated

convergence shows that

N _W2e(s)
®85) }E%Tl B /|s|<M s2+ ¢2,s(5)2 [¢(S) ¢(0)]
. B 51.£(5)
(86) lim T3 = ¢(0) /|3<M T oo (52
The term T4 can be integrated explicitely and
lim T = — lim ¢(0) [arctan(5)] %
(87) = —m¢(0).
Gathering (84)-87, we see
: €,0 — L(S) —
%E%J #(0) = /|s|<M 52 + 1/12,5(5)2 19(s) = (0}

V2,e(8) — 895 ()
+ ¢(0) /|5|<M 5% + 2.0 (5)2

4 6(0) /| Ve

sl<m 82+ P2(s)?
_ 17[}276(8)
- /|s|<M 52 + 12 . (5)? o)
= J=9(0),

which completes the proof of Proposition 4. O

D.2. Convergence of xI°°p in L>°(I';),as § — 0
PROPOSITION 5. — Let ¢ € §V%(D'y). Then, for any e < £0/2, we have
lim |[xI%p — xI*"pljoc = 0.
Proof. — We again split I°*® in two parts 45’ — 45 as in the proof of Lemma 7. In

particular, when X € I'y N B(0, Ry) and § = 0,

Sropent =B (s +-2) if X #0

jél:’()‘P(X) = s|<M  s?+ag
0 fX=0
500(X) = Jisjanr #azd(s +a) i X #0
i 7p(0) if X =0.

We first examine the convergence of Ji"s. For X # 0,X € T'; N B(0,Ry), since the
integrand is an odd function of s, we have

7o) - e = [ st

|s|<M

1 1
s2 4+ a2 52+a(2)

) 6(s + ) — 6(2)]
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_ ’ 1 B 1 B
- /|s|<6 ¥16(7) (32 +a%2 24 a%) [¢(s + z) — ¢(z)]
/ 11 ~
i eas o (55~ 552 B+ 2) — 000
=T+ 15
The term T can be estimated by
1 1

T3] < 9 @) [|6lloa / sito

|s|<d

s24+a? s2+4ad

< . ()] 16]]0.0 /

|s|<d
(88) < Ol (@) lello,a 0%

As for Ty, we have

Tl < 6l [ @) ls

§<|s|<M

1 1
s2+a?  s?+4ad}

Applying the mean value theorem, we see that for any s € R,
1 1 —2(ag+06)6

s2+a2  s2+a2 (24 (ao + 00)2)?
for some 0 < 0 < 1, so that

91, (@)lls['"®

1 1
s2 + a2 52+a(2)

- Sl @)

2 2
$° + ag

Using once again Propositions 2 and 3, we can estimate the above right-hand side by
B
o e
n o2 ,e ()] ——— < Cols[* T,
§' TR [y o ()| T TR

for any § < ayp. Thus, we obtain

Tl < Clldllon [ slsl T

0<|s|<M

<8 Cliolloa [ T
6<|s|<M
< Cllllnade.

The above inequality together with (88), and the fact that /5’ (0) = /5°¢(0) = 0, imply
that

(89) X270 = X970 < Cl¢ll0,a 6%

Next, we consider the convergence of 4 ;’5. Assuming X # 0, X € I'y N B(0, Ry), we have

a ao
——d(s+zx —/ ——d(s+zx
/|s|<M s% +a? ( ) |sj<nr 8%+ ag ( )

| T 9tat +-2) = d(aot + )

175°0(X) — 95°p(X)| =

4¢ SERIE - TOME 48 — 2015 - N° 2



ELLIPTIC ESTIMATES 491

Recalling that a = ag + 4, it follows that

o*t”
< -
1957600) = 250 < ol [ -7
90) < C[¢llo.a 8°

When X = 0, we have
€ c 6
1757 0(0) - 5 %(0)] = ‘ [ gt~ o0
s|<

= | [ 1 oo - 500
< lolloe [ 15

g 1+1t2

which, in view of (90), shows that

©n X757 ¢ = X753 ¢llo < Cllgplloa 8.
A combination of (89) and (91) now completes the proof of the proposition. O
Appendix E

Proof of Lemma 4

In this section we show that the off-diagonal term L§ : ¢%*(I'y) — €“*(I'y) is not a
compact operator when é = 0, for any 0 < a < 1. For simplicity, we only consider the case
when I'; is flat around the contact point, i.e., we assume that 1o (y) = 0 for |y| < yo. Note that
in this case D5 is not strictly convex. The general case can be reduced to the case of a flat I'y,
by using a decomposition of the operator similar to that of Section 2.3. Let x € o° (=0, %0),
with 0 < x < land x(y) =1 for |y| < yo/2. For X = (z,91(x)) € T'y, we write

Ly(w) = Ly((1 = x(IY ))e) + La(x(IY o).

The first operator on the right-hand side has a kernel that remains uniformly bounded with
respect to &, and is thus compact from €%*(T'y) to €¥*(';) in the limit § = 0. Setting
o(y) = x(y)p(y, 0), the second operator writes for | X| < &g

5 1 [ (=t(z) —i(z)(y —x)

Bo) = o [ et
_ 1 (z —y)vi(x) ¢ﬂ5 ¥y (z)] + z)
__%'4(x—w”+WM@—ﬁ) 2 +1 dt,

where we have changed to the variable t = (y — z)/(6 — z/)l(:r,)). As § — 0, R® formally
reduces to Ry = 1/27(Ry + R3)¢ with

ERITAC)
Rip(X) = /( o) dy

¢t|¢1 )|+ )
o241

dt.
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It is not difficult to make this convergence argument rigorous, and this shows that
LY - i(ﬁ’q + Ry) is ©"*-compact. Proceeding as in Section (C), one can check that
both R; and R, are continuous from E?O’O‘(Fg) to i?o’a(I‘l), for any 0 < a < ap.

We now show that Ry + Rs is not compact. We can always assume that the support of
the cut—off function x is sufficiently large to contain y = 1. Let { € 2?(1: (R), such that
Supp(¢) C (—yo0,%0),¢(1) #0and ¢(0) =0. Forn > 1and Y = (y,0) € I'y, we define

on(Y) = 27"9¢(2"y).
Note that x, = ©n.

Claim 1. — The sequence ¢, is uniformly bounded in EO’Q(I‘Q).
We first note that since ¢ € i?i (R), we have forany 0 < p < 1, and any (y,y’) € supp(¢)?,

1¢(y) = <@

~1l— 1—
e < ¢l ly = al'™" < 1I¢l 299 *

It immediately follows that ¢ € €%*(R) with a norm that is bounded by 2y ~*||¢||1 for any
O<pu<l.
Next, ||¢nlloc < 27"%|¢||oo tends to 0, while for y, § € R we have
lon(y) — en(@)] = 27"C(2%y) — ¢(2"D)] < 27"[[C]o,a |27y — 279]°
= I¢llo.a ly =917
which shows the uniform boundedness of (¢,,) in §°*(I'5).
Claim 2. — Ryp, — 0in E?O(Fl N{|X]| <ep}).
For | X| < gy, we compute
- sy1(z)
Ripp(X) = —27ne [ 2P0
von(X) [=tior
M !
- sy (@)
=27 "« — (2" —¢(2" d
| Fs k@ ) - o) s
where M is an upper bound on the support of {(2"(- + z)) which is uniform in n and
in X €Ty, |X| < gg. Using the fact that ¢ € E?O’Q/Z(R) to control {(2"(s + x)) — ¢(2"x) in
the integral above, we obtain

¢(2"(s +x))ds

1+a/2

<2—na/20 ’ s
2+,Z/)2( )— ||d]1||

Rign(X)] < 27"/ C |} (2) /

which proves the claim.

Claim 3. — lim,, o, Fe2(Ta)=fen Ol — 0, where X, := (27", 91(27")).

Indeed, denoting again by M a bound on the support of s — {(2"s+ 1) which is uniform
in n, we form

|R10n(X0) — R1on (0 ‘ / sy (27)

5—na LT E n)QC(Qns—Fl)ds

Ml o gy
: /—M 21 gy (e — Dl ds
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For s # 0, the integrand is bounded by

2/¢lloo 19127 sI ™ < 21¢lloo [11l11,0 277,
and so it tends to 0 a.e. Moreover, since ¢ (0) = 1 (0) = 0, the integrand is bounded by

/ 9—n |S| o ona|gla < o o a—1
LICI e s c= NGO lI<To,0 27| < [[¥nll1,a [[Cllo,a |87,
which is integrable on (0, M). The claim then follows from the Lebesgue dominated conver-
gence Theorem.
Claim 4. — Ry, — 0in §°(Ty N {|X| < e0}).
Indeed, we have for X = (z,91(z)) e T1 N {|X]| < o},

Reea(01 < [ oglenltiin @] +2,0)] d

1
=27« 2"t 2Mx)|dt < C27"® —
| arle@tn@i+raa<cre [ oo

which proves the claim.

Claim 5. — lim,_, ‘R”’”(l);{z)__oll%“""(o)l = w|¢(1)] # 0, where X,, = (27", ¢1(27™)).
Indeed, we have

dt.

2= — 0|a t2 +1

Since 1, has regularity € and since ¥1(0) = 1(O) = 0, we see that
|2nw1(2—n)| < C2n(2—n)1+a — Cz—na7

so that as n — oo,

AC@ (27 +1) — S22 aeteR,
92)

@27+ 1)| < Ul
and the Lebesgue dominated convergence Theorem now shows that
| R2pn (Xn) — Rapn(0)] ~ | R2pn (Xn) — Rapn(0)] — [¢(D)] /
| X, — 0] [2=7 — 0|« r 1+1t2
as n — oo, which proves the claim.

We thus have exhibited a sequence (¢, ),>1, bounded in €%*(T'y), such that (Ry + R2) ¢y
converges to 0 in °(I'; N {|X| < &o}), albeit no subsequence of (Ry + Ry)¢, converges
to 0in ¥*(Ty N {|X| < eo}). Therefore no subsequence of (Ry + Rs)e, converges
in "%y N {|X] < eo}), and so Ry + R, is not a compact operator from £%%(T';)
to &%(Ty N {|X| < eo}). Since LY — o= (Ry + Ry) is €7 compact, it immediately follows
that LY is not a compact operator from 6%*(I'y) to §**(I'y) for any a < a.

=7 |¢(D)] #0,
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