The geometric Satake correspondence for ramified groups
[La correspondance Satake géométrique pour les groupes ramifiés]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 409-451.

Nous démontrons l'isomorphisme de Satake géométrique pour un groupe réductif défini sur F=k((t)) et déployé sur une extension modérément ramifiée. Nous donnons comme application une description des cycles évanescents sur certaines variétés de Shimura via les modèles locaux de Rapoport-Zink-Pappas.

We prove the geometric Satake isomorphism for a reductive group defined over F=k((t)), and split over a tamely ramified extension. As an application, we give a description of the nearby cycles on certain Shimura varieties via the Rapoport-Zink-Pappas local models.

Publié le :
DOI : 10.24033/asens.2248
Classification : 22E57, 14M15, 14G35.
Keywords: Geometric Satake, affine flag variety, local models.
Mot clés : Satake géométrique, variété de drapeaux affine, modèles locaux.
@article{ASENS_2015__48_2_409_0,
     author = {Zhu, Xinwen},
     title = {The geometric {Satake} correspondence  for ramified groups},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {409--451},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {2},
     year = {2015},
     doi = {10.24033/asens.2248},
     mrnumber = {3346175},
     zbl = {1392.11036},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2248/}
}
TY  - JOUR
AU  - Zhu, Xinwen
TI  - The geometric Satake correspondence  for ramified groups
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 409
EP  - 451
VL  - 48
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2248/
DO  - 10.24033/asens.2248
LA  - en
ID  - ASENS_2015__48_2_409_0
ER  - 
%0 Journal Article
%A Zhu, Xinwen
%T The geometric Satake correspondence  for ramified groups
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 409-451
%V 48
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2248/
%R 10.24033/asens.2248
%G en
%F ASENS_2015__48_2_409_0
Zhu, Xinwen. The geometric Satake correspondence  for ramified groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 2, pp. 409-451. doi : 10.24033/asens.2248. http://www.numdam.org/articles/10.24033/asens.2248/

Bezrukavnikov, R., Representation theory of algebraic groups and quantum groups (Adv. Stud. Pure Math.), Volume 40, Math. Soc. Japan, Tokyo, 2004, pp. 69-90 | DOI | MR | Zbl

Buzzard, K.; Gee, T. The conjectural connections between automorphic representations and Galois representations (preprint arXiv:1009.0785 ) | MR

Bernstein, J.; Lunts, V., Lecture Notes in Math., 1578, Springer, Berlin, 1994, 139 pages (ISBN: 3-540-58071-9) | MR | Zbl

Borel, A., Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 27-61 | MR | Zbl

Brylinski, R. K. Limits of weight spaces, Lusztig's q-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc., Volume 2 (1989), pp. 517-533 (ISSN: 0894-0347) | DOI | MR | Zbl

Cartier, P., Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 111-155 | MR | Zbl

Deligne, P.; Milne, J. Tannakian categories, Hodge Cycles and Motives (Lecture Notes in Math.), Volume 900 (1982), pp. 101-228 | DOI | Zbl

Gaitsgory, D. Braiding compatibility (appendix to [2] )

Gaitsgory, D. Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., Volume 144 (2001), pp. 253-280 (ISSN: 0020-9910) | DOI | MR | Zbl

Ginzburg, V. A. Perverse sheaves on a loop group, and Langlands duality (preprint arXiv:alg-geom/9511007 ) | MR | Zbl

Heines, T. A proof of the Kazhdan-Lusztig purity theorem via the decomposition theorem of BBD (preprint www2.math.umd.edu/~tjh/KL_purity1.pdf )

Heinloth, J.; Ngô, B.-C.; Yun, Z. Kloosterman sheaves for reductive groups, Ann. of Math., Volume 177 (2013), pp. 241-310 (ISSN: 0003-486X) | DOI | MR | Zbl

Haines, T.; Rapoport, M. On parahoric subgroups (appendix to [22] )

Haines, T. J.; Rostami, S. The Satake isomorphism for special maximal parahoric Hecke algebras, Represent. Theory, Volume 14 (2010), pp. 264-284 (ISSN: 1088-4165) | DOI | MR | Zbl

Kottwitz, R. E. Points on some Shimura varieties over finite fields, J. Amer. Math. Soc., Volume 5 (1992), pp. 373-444 (ISSN: 0894-0347) | DOI | MR | Zbl

Kottwitz, R. E. Isocrystals with additional structure. II, Compositio Math., Volume 109 (1997), pp. 255-339 (ISSN: 0010-437X) | DOI | MR | Zbl

Krämer, N. Local models for ramified unitary groups, Abh. Math. Sem. Univ. Hamburg, Volume 73 (2003), pp. 67-80 (ISSN: 0025-5858) | DOI | MR | Zbl

Lusztig, G., Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101, Soc. Math. France, Paris, 1983, pp. 208-229 | Numdam | MR | Zbl

Mirković, I.; Vilonen, K. Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math., Volume 166 (2007), pp. 95-143 (ISSN: 0003-486X) | DOI | MR | Zbl

Nadler, D. Perverse sheaves on real loop Grassmannians, Invent. Math., Volume 159 (2005), pp. 1-73 (ISSN: 0020-9910) | DOI | MR | Zbl

Pappas, G. On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebraic Geom., Volume 9 (2000), pp. 577-605 (ISSN: 1056-3911) | MR | Zbl

Pappas, G.; Rapoport, M. Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008), pp. 118-198 (ISSN: 0001-8708) | DOI | MR | Zbl

Pappas, G.; Rapoport, M. Local models in the ramified case. III. Unitary groups, J. Inst. Math. Jussieu, Volume 8 (2009), pp. 507-564 (ISSN: 1474-7480) | DOI | MR | Zbl

Pappas, G.; Zhu, X. Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math., Volume 194 (2013), pp. 147-254 (ISSN: 0020-9910) | DOI | MR | Zbl

Richarz, T. Local models and Schubert varieties in twisted affine Grassmannians (preprint arXiv:1011.5416 )

Steinberg, R., Memoirs of the American Mathematical Society, 80, Amer. Math. Soc., Providence, R.I., 1968, 108 pages | MR | Zbl

Tits, J., Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 29-69 | MR | Zbl

Verdier, J.-L., Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101, Soc. Math. France, Paris, 1983, pp. 332-364 | Numdam | MR | Zbl

Yun, Z.; Zhu, X. Integral homology of loop groups via Langlands dual groups, Represent. Theory, Volume 15 (2011), pp. 347-369 (ISSN: 1088-4165) | DOI | MR | Zbl

Zhu, X. Affine Demazure modules and T-fixed point subschemes in the affine Grassmannian, Adv. Math., Volume 221 (2009), pp. 570-600 (ISSN: 0001-8708) | DOI | MR | Zbl

Zhu, X. On the coherence conjecture of Pappas and Rapoport, Ann. of Math., Volume 180 (2014), pp. 1-85 (ISSN: 0003-486X) | DOI | MR | Zbl

Cité par Sources :