ISSN 0012-9593

quatriéme série - tome 48 fascicule 2 mars-avril 2015

ANNALES

SCIENTIFIQUES
de

I/ ECOLE
NORMALE
SUPERIEURE

Xinwen ZHU

L'he geometric Satake corvespondence for ramified groups

SOCIETE MATHEMATIQUE DE FRANCE



Annales Scientifiques de I’Ecole Normale Supérieure

Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Antoine CHAMBERT-LOIR

Publication fondée en 1864 par Louis Pasteur Comité de rédaction au 1°¢* janvier 2015
Continuée de 1872 a 1882 par H. SAINTE-CLAIRE DEVILLE N. ANANTHARAMAN B. KLEINER
de 1883 a 1888 par H. DEBRAY E. BREUILLARD E. KOwALSKI
de 1889 a 1900 par C. HERMITE R. CERF P. LE CALVEZ
de 1901 a 1917 par G. DARBOUX A. CHAMBERT-LOIR M. MUSTATA
de 1918 a 1941 par E. PICARD I. GALLAGHER L. SALOFF-COSTE

de 1942 a 1967 par P. MONTEL

Rédaction / Editor

Annales Scientifiques de I'Ecole Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.
Tél : (33) 144 3220 88. Fax : (33) 144 32 20 80.
annales@ens.fr

Edition / Publication Abonnements / Subscriptions
Société Mathématique de France Maison de la SMF
Institut Henri Poincaré Case 916 - Luminy
11, rue Pierre et Marie Curie 13288 Marseille Cedex 09
75231 Paris Cedex 05 Fax:(33)0491411751
Tél. : (33) 01 44 27 67 99 email : smf@smf .univ-mrs.fr

Fax : (33) 01 40 46 90 96
Tarifs

Europe : 515 €. Hors Europe : 545 €. Vente au numéro : 77 €.

© 2015 Société Mathématique de France, Paris

En application de la loi du 1° juillet 1992, il est interdit de reproduire, méme partiellement, la présente publication sans ’autorisation
de I’éditeur ou du Centre frangais d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).

All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 Directeur de la publication : Marc Peigné
Périodicité : 6 n° / an



Ann. Scient. Ec. Norm. Sup.
4 série, t. 48, 2015, p. 409 a 451

THE GEOMETRIC SATAKE CORRESPONDENCE
FOR RAMIFIED GROUPS

BY XINWEN ZHU

ABSTRACT. — We prove the geometric Satake isomorphism for a reductive group defined over
F = k((t)), and split over a tamely ramified extension. As an application, we give a description of the
nearby cycles on certain Shimura varieties via the Rapoport-Zink-Pappas local models.

RESUME. — Nous démontrons I'isomorphisme de Satake géométrique pour un groupe réductif dé-
fini sur F' = k((t)) et déployé sur une extension modérément ramifiée. Nous donnons comme applica-
tion une description des cycles évanescents sur certaines variétés de Shimura via les modeles locaux de
Rapoport-Zink-Pappas.

Introduction

The Satake isomorphism (for unramified groups) is the starting point of the Langlands
duality. Let us first recall its statement. Let F' be a non-Archimedean local field with ring
of integers @) and residue field k, and let G be a connected unramified reductive group
over F' (e.g., G = GL,). Let A C G be a maximal split torus of G, and W, be the
Weyl group of (G, A). Let K be a hyperspecial subgroup of G(F') containing A(9) (e.g.,
K = GL,(0)). Then the classical Satake isomorphism describes the spherical Hecke algebra
Sph = C.(K \ G(F)/K), the algebra of compactly supported bi-K-invariant functions
on G(F') under convolution. Namely, there is an isomorphism of algebras

Sph =~ C[X.(4)]"",
where X, (A) is the coweight lattice of A, and C[X,(A)]"° denotes the Wy-invariants of the
group algebra of X, (A).

If F has positive characteristic p > 0, then the classical Satake correspondence has a vast
enhancement. For simplicity, let us assume that G is split over F' (for the general case, see
Theorem A.12). Let us write G = H ®y, F for some split group H over k so that K = H(9).
Let Gry = H(F)/H(®) be the affine Grassmannian of H. Choose £ a prime different from p,
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410 X. ZHU

and let Saty be the category of (K ® k)-equivariant perverse sheaves with Q,-coefficients
on Gry ® k. Then this is a Tannakian category and there is an equivalence

Sat g ~ Rep(Gée )

where Gée is the dual group of G and Rep((%e) is the tensor category of algebraic represen-
tations of Gée (cf. [10, 19]).

There is also a version of Satake isomorphism for an arbitrary reductive group over F',
as recently proved by Haines and Rostami (cf. [12])V. Namely, let B(G) be the Bruhat-Tits
building of G and v € B(G) be a special vertex. Let K, C G(F) be the special parahoric
subgroup of G(F') corresponding to v. Let A be a maximal split F-torus of G such that
K, D A(0), let M be the centralizer of A in G and Wy = Ng(A)/M be the Weyl group
as before. Let M; be the unique parahoric subgroup of M (F'), and Ay = M (F)/M,, which
is a finitely generated Abelian group. Then

(0.1) Co(K,\G(F)/K,) ~ C[Ap]"™.
More explicitly, suppose that G is quasi-split so that M = T' is a maximal torus. Then
Ay = (Xe(T)1)°,

where I is the inertial group and ¢ is the Frobenius, and (X, (7))’ denotes the o-invariants
of the I-coinvariants of the group X, (7).

The goal of this paper is to provide a geometric version of the above isomorphism when
F has positive characteristic p and the group G is quasi-split and splits over a ramely ramified
extension. More precisely, let k£ be an algebraically closed field and let £ # char k be a prime.
Let G be a group over the local field F' = k((t)) (so that G is quasi-split automatically), which
is split over a tamely ramified extension. That is, there is a finite extension F'/F such that
G is split and chark { [F : F]. Letv € B(G) be a special vertex in the building of G
and let G, be the parahoric group scheme over &) = k[[¢t]] (in the sense of Bruhat-Tits),
determined by v. We write LG for the loop space of G and K,, = LG, for the jet space
of G,. By definition, for any k-algebra R, LG(R) = G(R&®F) and K, (R) = G,(R&0).
Let

Fl, = LG/K,

be the (twisted) affine flag variety®, which is an ind-scheme over k. Let &, = Pk (FL,)
be the category of K,-equivariant perverse sheaf on 7, with coefficients in Q,. Let H be a
split Chevalley group over Z such that G ® p F* ~ H @ F'*, where F* is a (fixed) separable
closure of F'. Then there is a natural action of I = Gal(F*/F) on H" := Hée (preserving a
fixed pinning).

THEOREM 0.1. — The category P, has a natural tensor structure. In addition, as tensor
categories, there is an equivalence
VAT
RS : Rep((HY)') = Py,
(D There is another version, known earlier, as in [6].

@ One would call ¥4, the affine Grassmannian of G. However, we reserve the name “affine Grassmannian” of G
for another object, as defined in Definition A.2.
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THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 411

such that H* o R is isomorphic to the forgetful functor, where H* is the hypercohomology
functor.

This theorem can be regarded as a categorification of (0.1) in the case when & is alge-
braically closed and the group splits over a tamely ramified extension of k((t)). For the
description of (H"Y)! when H is absolutely simple and simply-connected, see §4.

Let us point out the following remarkable facts when the group is ramified. First, the
group (H")! is not necessarily connected as is shown in Remark (4.4). Second, it is well-
known that if G is unramified over F', then all the hyperspecial subgroups of G are conjugate
under G,q(F) ([27, §2.5]), where G4 is the adjoint group of G. However, this is no longer
true for special parahoric of G if G is ramified. An example is given by the odd ramified
unitary similitude group GUs,,+1. There are essentially two types of special parahorics
of GUgp41, as given in (7.1). One of them has reductive quotient GOz, +1 (denoted by G, 0),
and the other has reductive quotient GSp,,, (denoted G, ). Accordingly, the geometry
of the corresponding flag varieties ¢, and ¥, are very different, while 2,, ~ 2,,.
Indeed, their Schubert varieties (i.e., closures of K, -orbits) are both parameterized by
irreducible representations of GOgp,y1. Let Gy, , (resp. Sy, p,,, ) be the Schubert
variety in ¢, (resp. ¥¢,,) parameterized by the standard representation of GOgppt1.
Then it is shown in [31] that &¥,z,,, , is not Gorenstein, while in [25] that S£,, 5,,, , 1S
smooth. On the other hand, the intersection cohomology of both varieties gives the standard
representation of GOz, 1. In addition, the stalk cohomologies of both sheaves are the
“same”. See Theorem 0.3 below.

REMARK 0.1. — Instead of considering a special parahoric K, of LG, one can begin with
the special maximal “compact” K/, (i.e., K| = LTG., where G, is the stabilizer group
scheme of v as constructed by Bruhat-Tits), and consider the category of K -equivariant
perverse sheaves on LG/ K. However, from a geometric point of view, this is less natural
since K| is not necessarily connected and the category of K -equivariant perverse sheaves
is complicated. In fact, we do not know how to relate this category to the Langlands dual
group yet. In addition, when we discuss the Langlands parameters in Section 6, it is also more
“correct” to consider K, rather than K.

The idea of the proof of the theorem is as follows. Using Gaitsgory’s nearby cycle functor
construction as in [8, 31], we construct a functor

Z :Satg — Py,

which is a central functor in the sense of [2]. By standard arguments in the theory of
Tannakian equivalence and the Mirkovic-Vilonen theorem, this already implies that
P, =~ Rep(GY) for certain closed subgroup GV C H". Then we identify GV with (HY)!
using the parametrization of the K,-orbits on &¥¢,,.

REMARK 0.2. — (i) We believe that the same argument (maybe with small modifications)
should work for groups split over wild ramified extensions. However, we have not checked
this carefully.

(i1) Our approach is more inspired by [8] rather than [19]. However, it would be interesting
to know whether there is the similar theory of MV-cycles in the ramified case. It seems that
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412 X. ZHU

the geometry of semi-infinite orbits on ¥, is similar to the unramified case, except when
JL, corresponds to one type of special parahorics for odd unitary groups (the one denoted
by G, as above). We do not know what happens in this last case.

(ii1) Our theorem and the method also share the similar features with the results of Nadler
on geometric Satake for real groups [20].

When the group G is quasi-split over the non-Archimedean local field F' = F,((t)) and
v is a special vertex of B(G, F), the affine flag variety 77, is defined over F,,. We assume that
v is very special, i.e., it remains special when we base change G to F,((t)) (see § 6 for more dis-
cussions of this notion). Then we can consider the category of K, -equivariant semi-simple
perverse sheaves on ¥, pure of weight zero, and denote it by gﬁﬁ. On the other hand, let I
be the inertial group of F and o be the Frobenius of Gal(k/F,), where k = F,. Then the ac-
tion of Gal(F*/F) on H" (via the pinned automorphisms) induces a canonical action of ¢
on (HV)!, denoted by act®&. One can form the semidirect product (H")! x,.ie1e Gal(k/F,),
which can be regarded as a proalgebraic group over Q,, and consider the category of alge-
braic representations of (HY)! x,cpa1e Gal(k/F,), denoted by Rep((HY)! X yepae Gal(k/Fy)).

THEOREM 0.2. — In this case, the functor R in Theorem 0.1 can be extended to an
equivalence
v

RS : Rep((HY)T X pepare Gal(k/Fy)) ~ P2

whose composition with H* is isomorphic to the forgetful functor.

Let us mention that under this equivalence, the restriction to Gal(k/F,) of the represen-
tation (HV)! X epaie Gal(k/Fy) on H*(7) for F € & is NOT the natural Galois action
of Gal(k/F,) on H*(¥). However, their difference can be described explicitly. See Section 4
and appendix for more details.

Our next result is to use the ramified geometric Satake isomorphism to obtain the stalk
cohomology of sheaves on ¥, (i.e., the corresponding Lusztig-Kato polynomial in ramified
case), following an idea of Ginzburg (cf. [10]). Let us state the result precisely. The centralizer
of A in our case is a maximal torus of G, denoted by T". Then the K -orbits on ¢, are labeled
by X, (T") 1 /Wy, Wy-orbits of the coinvariants of the cocharacter group of T'. For i € X, (T,
let 7¢, z be the corresponding orbit. For a representation V of (H")?, let V(1) be the weight
space of V for (TV)!. Let XV € Lie(H")! be a certain principal nilpotent element (see
Section 5 for the details), which induces a filtration F;V (i) = (ker X V)1 NV () on V (),
called the Brylinski-Kostant filtration. Then we have

TaEOREM 0.3. — ForV € Rep((HY)!), let RJ(V) € P, be the corresponding sheaf. Then
dimﬂQF(z’)’ﬂ)%d(V)|ggm = dimgr V().

Here #™ denotes the cohomology sheaves, and 2p is the sum of positive roots of H, see
Section 1 for the meaning of (2p, it).

One of our main motivations of this work is to apply these results to the calculation of the
nearby cycles of certain ramified unitary Shimura varieties, via the Rapoport-Zink-Pappas
local models. For example, we obtain the following theorem (see Section 7 for details).
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THEOREM 0.4. — Let G = GU(r, s) be a unitary similitude group associated to an imagi-
nary quadratic extension F/Q and a Hermitian space (W, ¢) over F/Q. Let p > 2 be a prime
where F'/Q is ramified and the Hermitian form is split. Let K, be a special parahoric subgroup
of G = G(Qp). Let K = K, K? C G(Qp)G(A}) be a compact open subgroup with K small
enough. Let Shyc be the associated Shimura variety over the reflex field E and Shg, be the in-
tegral model of Shy over O, (as defined in [23]). Then for £ # p, the action of the inertial
subgroup I of Gal(Q,/Fy) on the nearby cycle \IISth‘X’@E,, Or, (Qy) is trivial.

By applying Theorem 0.3, it will not be hard to determine the traces of Frobenius on these
sheaves explicitly, which will be the input of the Langlands-Kottwitz method to determine
the local Zeta factors of Shy . Instead, we characterize these traces of Frobenius in terms of
Langlands parameters, which verifies a conjecture of Haines and Kottwitz in this case (see
Proposition 7.4).

REMARK 0.3. — (i) While the definition of the integral model of a PEL-type Shimura
variety at an “unramified” prime p (i.e., the group is unramified at p and K, is hyperspe-
cial) is well-known (cf. [15]), the definition of such a model at the ramified prime p (even
for K, special) is a subtle issue. In [21, 23], the integral models Sh, are defined as certain
closed subschemes of certain moduli problems of Abelian varieties. Except a few cases
(e.g., (r,s) = (n—1,1) and n = r 4 s is small), there is no moduli description of Shg,
so far. In general, Shg, are not smooth. Indeed, as shown in [21, 23], when n =r + s is
odd and (r, s) = (n — 1, 1), for the special parahoric K, of G(Q,) with reductive quotient
GOy, Sh, is not even semi-stable.

(i1) If r # s, then we know that E = F and the above theorem gives a complete description
of the monodromy on the nearby cycles of Shg . If r = s, then E = Q, and the complete
description of the monodromy is more complicated. See Section 7 for details. In any case, the
action of inertia on the nearby cycle is semi-simple.

(iii) We hope that there will be a “good” compactification of such Shimura varieties Shg,, .
Then the above theorem, together with the existence of such compactification, would imply
that the monodromy of H}(Shx ®g, F) is trivial.

(iv) The triviality of the monodromy as above would have the following surprising conse-
quence for the Albanese of Picard modular surfaces. Namely, in the case when (r, s) = (2,1),
F/Q is ramified at p > 2 and K, = G(Q,) is a special parahoric, the Albanese Alb(Shg,)
of Shg, is trivial. It will be interesting to find the “optimal” level structure at p so that
Alb(Shg, ) can be possibly non-trivial. More detailed discussion will appear elsewhere.

Let us quickly describe the organization of the paper. We will prove Theorem 0.1 and
Theorem 0.2 in §1-4. Then we prove Theorem 0.3 in §5.

In § 6, we briefly discuss the Langlands parameters associated to a smooth representation
of a quasi-split p-adic group, which has a vector fixed by a special parahoric. We call them
“spherical” representations, and we will see that their Langlands parameters can be described
easily. Again, the correct point of view is to consider the special parahoric rather than the
special maximal compact. Then in § 7, we apply the previous results to study the nearby cycles
on certain unitary Shimura varieties.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



414 X. ZHU

The paper contains an appendix, joint with T. Richarz, where we recover the full Lang-
lands dual group via the Tannakian formalism. In particular, we give the geometric Satake
correspondence for unramified groups. We hope that this formulation will be of independent
interest. In addition, we observe that for a reductive group defined over &, the Tannakian for-
malism provides a natural action act8*°™ of Gal(k*®/k) on the dual group GV, which differs
from the usual pinned action act®# of Gal(k*/k) on GV by the twist of “the half sum of the
positive roots”. This gives a geometric explanation of the two natural normalizations of the
Satake parameters.

Notations. — Let k be a field. We denote by k° a separable closure of k.

For a (not necessarily connected) diagonalizable algebraic group C defined over a field F',
we denote by X*(C) its group of characters and by X, (C) its group of cocharacters over the
separable closure F**. The Galois group I = Gal(F'*®/F') acts on X*(C) (resp. X, (C)) and the
invariants (resp. coinvariants) are denoted by X*(C)? (resp. X*(C)1, X (C)!,X¢(C)). We
will always use A, 1, . . . to denote elements in X*(C) or X,(C) and ), fi to denote elements
in X*(C); or X¢(C);. In general, let T be a group acting on a set S. We denote S’ to be the
subset of fixed points.

If G is an algebraic group defined over a field E, we denote by Rep(G) the category
of finite dimensional representations of G over E. If G is connected reductive, we denote
Gad, Gaer, Gsc to be its adjoint quotient, its derived group, and the simply-connected cover
of its derived group.

Let k be a field and O = k[[t]], F = k((t)) := k[[t]][t"']. For an ©-scheme X, we denote
Lt X to be the jet space over k so that for any k-algebra R, LT X (R) = X (R[[t]]). For an
F-scheme X, we denote LX to be its loop space so that LX (R) = X (R((t))). If X is defined
over k, we write LT X for LT (X ® #) and LX for L(X ® F) if no confusion will arise.

For a variety X over k, we denote D(X) the usual (bounded) derived category of ¢-adic
sheaves on X (£ { char k). If X = lim X is an ind-scheme of ind-finite type, D(X) = lim D(X)
as usual. If there is an action of an algebraic group G on X, the G-equivariant derived cat-
egory is denoted by Dg(X) (see [1] for the details). All the functors like f., fi, f*, f' are
understood in the derived sense unless otherwise specified.

Acknowledgement. — The author would like to thank D. Gaitsgory, T. Haines, Y. Liu,
I. Mirkovi¢, G. Pappas, M. Rapoport, T. Richarz, E. Urban, Z. Yun for useful discussions.
The author also thanks the hospitality of Tsinghua University, where part of the work has
been done. The work of the author is supported by the NSF grant under DMS-1001280.

1. Reminders on the affine flag variety associated to a special parahoric

In this section, we collect basic facts about the affine flag varieties associated to a special
parahoric of G. Another purpose of this section is to fix notations that are used in the later
sections.

Let k£ be an algebraically closed field and let G be a group over the local field F' = k((t)),
which is split over a tamely ramified extension. Let us choose A to be a maximal F'-split torus
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THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 415

of G and T be its centralizer. Then 7' is a maximal torus of G since G is quasi-split. Let us
choose a rational Borel subgroup B O T

Let H be a split Chevalley group over Z such that HQ F* ~ GR F°. We need to choose this
isomorphism carefully. Let us fix a pinning (H, By, Ty, X ) of H over Z. Let us recall that this
means that By is a Borel subgroup of H, Ty is a split maximal torus contained in By, and
X = Yaea, Xa € LieB, where Ay is the set of simple roots of H, U is the root subgroup
corresponding to @ and Xj is a generator in the rank one free Z-module Lie Uj. Let E be the
group of pinned automorphisms of (H, By, Ty, X ), which is canonically isomorphic to the
group of the automorphisms of the root datum (X*(Tx), Ap, Xe(TH), AY).

Let us choose an isomorphism (G, B,T) ®p F ~ (H,By,TH) ®z F, where F/F is
a cyclic extension such that G ® F splits. This induces an isomorphism of the root data
(X*(Tr), A, Xo(Tr), AYy) ~ (X*(T),A,X4(T),AV). Now the action of I = Gal(F/F)
on G®p F induces a homomorphism ¢ : I — 2. Then we can always choose an isomorphism

(1.1) (G,B,T)®p F ~ (H,By,Ty) ®z F

such that the action of v € I on the left hand side corresponds to ¥ () ® 7. In the rest of the
paper, we fix such an isomorphism.

Recall that the Kottwitz homomorphism « : T(F) — X¢(T'); (cf. [16, 11]) induces an
isomorphism

Xe(T)r = T(F)/T°(0),

where T"° is the unique parahoric group scheme of T over @ (the connected Néron model).
Our convention of Kottwitz homomorphism is that the action of ¢t € T'(F') on A(G, A) (the
apartment associated to (G, A)) is given by v — v — k(t). Let Wy = W(G, A) be the relative
Weyl group of G. It acts on T and therefore on X, (7");. In addition, its action on the torsion
subgroup X (1) tor C Xo(T'); is trivial.

The Borel subgroup B determines a set of positive roots &+ = ®(G, A)* for G. There is
a natural map X, (7); — Xe(T); @ R ~ X,(A)r. We define the set of dominant elements
in X (7)1 to be

(1.2) Xe(T)} = {i|(fi,a) > 0fora € ®*}.

Then the natural map Xo(T)F C Xo(T); — Xo(T) /W is bijective. Let us define an order <
on X, (T'); as follows. Let Qg be the coroot lattice for H. The action of I on @y will send
the positive coroots of H (determined by the chosen Borel) to positive coroots. Therefore,
it makes sense to talk about positive elements in (Qg);. Namely, an element in (Qg); is
positive if its preimage in @ g is a sum of positive coroots (of H). Since (Qg); C Xo(T)r, we
can define for A\, u € Xo(T)y,

(1.3) X < @if i — X\ is positive in (Qp) .

Let G, be a special parahoric group scheme of G over & = k[[t]] in the sense of Bruhat-
Tits (see [27] for a summary of the theory), such that the natural inclusion A C G extends
to Ay C G, (i.e., the vertex v in the (reduced) building of G corresponding to G, is contained

in the apartment A(G, A). For examples of such group schemes, we refer to Section 7. We
write K, = LTG,, and consider the (twisted) affine flag variety

¢, = LG/K,.
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416 X. ZHU

This is an ind-projective scheme (cf. [22]). As is shown in loc. cit., when G is semi-simple
and simply-connected, F¢,, is just a partial flag variety of certain (twisted) affine Kac-Moody
group. The K,-orbits on ¢, are parameterized by Xe(7)7 . For i € X¢(T)}, let s; denote
the point in ¥¢,, corresponding to . More precisely, this point is the image of & under the
map X,(T); ~ T(F)/T"°(0) — G(F)/K, = F,(k). Let Ly be the corresponding
Schubert variety, i.e., the closure of K-orbit through s;. Then

dim 4, ; = (2p, 1),

where 2p is the sum of all positive roots (for H), and by definition (2p,5) = (2p, u) for
any lift 4 of fi to Xo(T). In addition, 7¢,5 C T4, if and only if A < f. In this case,
dim ¢, ; — dim 4,5 is an even integer. For the proof of these facts, see [25, 31].

Let #, = Pk, (FL,) be the category of K,-equivariant perverse sheaves on F¢,, with
coefficients in Q,. By the above facts, in each connected component of &£, the dimensions
of K,,-orbits have the constant parity. Therefore, we have

Lemma 1.1. — P, is a semi-simple Abelian category.

Proof. — By the argument as in [8, Proposition 1], it is enough to show that the stalks
of the intersection cohomology sheaves have the parity vanishing property. But this follows
from the existence of Demazure resolutions of Schubert varieties in ¥, whose fibers have
pavings by affine spaces (for example see [8, A.7]). More precisely, the existence of such reso-
lutions were constructed in [22, Section 8] for twisted affine flag varieties, and the arguments
as in [13] apply in this situation to show that the fibers have pavings by affine spaces. O

In[31, 24], a natural G,,-action on ¥, is constructed. In the Kac-Moody setting, it is just
the action of the “rotation torus” on &¥,. Each Schubert cell is invariant under this action.

COROLLARY 1.2. — Any K, -equivariant perverse sheaf on YL, is automatically
G -equivariant.

Proof. — Clearly, the intersection complex is G,,-equivariant. Then the assertion follows
from the semisimplicity of &,,. O

ExaMPLE 1.3. — In the special case when G = H ® F and G,, = H ®, O is hyperspecial,
then &Y, is just the usual affine Grassmannian Gry of H, and &, is the Satake category
of H, i.e., the category of L+ H-equivariant perverse sheaves on Grg . All the above facts are
well-known.

2. Construction of the functor Z

We continue the notations as in the previous sections and let G,, be a special parahoric
group scheme of G over @). In [31], a group scheme & over A} is constructed such that
1. ﬁn is connected reductive, splits over a (tamely) ramified extension, where 7 is the
generic point of Al;
2. For some choice of isomorphism Fy ~ F, g =G, where for a point z € Al,
O, denotes the completed local ring at z and F), denotes the fractional field of @;
3. For any y # 0, ﬁoy is hyperspecial, (non-canonically) isomorphic to H ® @,;
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4. Gy, = G, under the isomorphism & ~ G.

The construction is as follows. Regard I as the Galois group of the cyclic cover [e] : G,,, — G,
of degree e. Then the group I acts H x G,,,. Namely, it acts on H via the pinned automor-
phism ¢ : I — =, and on Gy, via transport of structures. Then &|¢,, = (Resg,, /¢, (H x Gn))’,
and @ is the extension of it to A! so that Go, = G-

Let Gry be the global affine Grassmannian of {7, which is an ind-scheme over Al (see, for
example [24, §5] for the ind-representability of Gry). Recall that it classifies triples (y, &, 5)
where y is a point on A}, & is a G-torsor on A and 3 is a trivialization of this &-torsor away
from y. Let [¢] : A} — Al be the natural extension of the cyclic cover of [e] : G,,, — G,,.
Let (’;‘Trﬁ = Gry Xa1 [e] Al be the base change. Then

(a;‘g)o ~ JY,, (A}}gk;m ~ Gryg X Gy,.
Since I acts on H via pinned automorphisms, it acts on Gry, still denoted by . The

following lemma is clear from the above construction.

LeEMMA 2.1. — Under the isomorphism Gry Xg,, Gm ~ Grg x Gp, the action of v € 1
on the left hand side (via the Galois action on the second factor) corresponds to the action
of ¥(7) x ~y on the right hand side.

REMARK 2.2. — One should be warned that a}g # Gr?, where fé is the base change of ¥
along [e] : Al — Al

Recall that we denote Saty to be the Satake category for H, i.e., the category of
L™ H-equivariant perverse sheaves on Grg, which is equivalent to Rep(H") via the geo-
metric Satake correspondence. Let

2.1 J : Rep(H") — Saty
be this equivalence. We define a functor
Z :Satg — P,

by taking the nearby cycles. More precisely, let
2.2) 2(9) = Vg, (7 BQ1),

where for an (ind)-scheme X of (ind)-finite type over Al, ¥y denotes the usual nearby
cycle functor (see SGA 7, XIII for the definition of nearby cycles, and [8, A.2] for the
explanation why the nearby cycles functors extend to ind-schemes of ind-finite type). Recall
that the theory of nearby cycles provides an action of Gal(F*/F) on the functor Z via
automorphisms, usually called the monodromy action.

LEMMA 2.3. — The monodromy of Z(F) is trivial.

Proof. — This follows from the fact that there is a G,,-action on @&g making the natural
map a}g — A! a G,,-equivariant morphism, where G,, acts on A! via natural dilatations
(cf. [31, 24]). In addition, the restriction of this G,,-action on ((ﬁ}}g)o = ¥, coincides with
the action of the “rotation torus” on ¥, as mentioned in Lemma 1.2.

Then for any & € Saty, the sheaf ¥ X Q,[1] is G,,,-equivariant so that the monodromy of
the nearby cycle Z(&) = ¥, , (FRQy) is opposite to the G,,-monodromic action on Z ()
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(see [28] for the definition of G,,-monodromic sheaves and G,,,-monodromic actions, and in
particular Proposition 7.1 of loc. cit. for this statement). By Corollary 1.2, Z (&) is G,,-equiv-
ariant which exactly means that the monodromy is trivial. O

REMARK 2.4. — A mixed characteristic analogue of this lemma also holds (Theorem 7.2).

Let ig : (G~rg)0 — CTI"g be the closed embedding of the special fiber and j : (f}vrﬁ \ ((Trg)o — (f}vrﬁ
be the open complement.

COROLLARY 2.5. — There is a canonical isomorphism Z () =~ i ji. (I K Q).

Proof. — Thisis standard. Since the monodromy is trivial, from the distinguished triangle
53T BQ) = Z(T) > 2(T) =
we obtain that i}j.(& X Q) lives in perverse cohomological degree 0 and 1, and both

cohomology sheaves are isomorphic to Z (). But i1 (7 KQ,) = PH i%5.(F K Q,), where
PH* stands for the perverse cohomology. O

In what follows, for & € Saty, we denote g, = F KQ,[1] over (A}}gmm, and
Iar = jixJG,, -

Recall that the irreducible objects in Sat i are the intersection cohomology sheaves J(V,,)
on Gry where u € Xo(Ty)*t = Xo(T)*. On the other hand, the irreducible objects in 2,
are the intersection cohomology sheaves ICj; on F¢,,, where fi € Xo(T); . For i € Xo(T) 7,
let jj : g Lyn — IL, be the corresponding locally closed embedding of K ,-orbits.

LEMMA 2.6. — For any p€Xo(T)*, let p be its image in Xo(T)f. Then
Iz Z(A(Va)) = Qe[(2p, 1))

Proof. — Consider s, x G, C Grg x G, C é\;'g|([;,m. Since (’i}g is ind-proper over Al,
it extends to a section A! — C‘:rg, still denoted by s,,. By [31, Proposition 3.5], 5,,(0) € ¥4, is
just the point s;, where [ is the image of p under X, (Tx) — Xo(Tw)1.

Recall that J(V,,) is supported on Gr,,, the Schubert variety in Grg corresponding to s,,.
Let au - (Afrﬁ be the closure of @u x G, C Cﬂfrﬁ G,.- Then by the above fact, 7Y, is
contained in the special fiber of au. In fact, it is proved in [31] that the special fiber of E;“r,,

is £, ;. In addition, it is shown in loc. cit. that the point sz is smooth in Gr,,. The lemma
then is clear. O

The following key result is established in [8] for the split case and in [31, Theorem 7.3] in
general. Let Dy (9¢,) be the K,-equivariant derived category on &¥,, and
x: Py x Py, — Dk, (FE,) be the convolution product functor. For a precise definition of
the convolution product, see for example [19, 31].

PROPOSITION 2.7. — For any I, € Saty and Fo € P, there is a canonical isomorphism
Z(F1) % Fo = Fox Z(F1) and both are objects in P,.

A brief review of the construction of this canonical isomorphism is given in § 3.

COROLLARY 2.8. — The convolution of P, is bi-exact. Therefore, P,, is amonoidal category.

4¢ SERIE - TOME 48 — 2015 - N° 2



THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 419

Proof. — Observe that &, is semi-simple (Lemma 1.1) and every irreducible object
in &, is a direct summand of some Z(¥). Indeed, for i € Xo(T)F, let u be a lift of it
in X, (T)*. Then by Lemma 2.6, IC,, appears as a direct summand of Z(J(V,,)) with multi-
plicity one. As the convolution (for left and right) with Z(J(V},)) is exact, the convolution
with its direct summand is also exact. The first claim follows.

It is well-known that the convolution functor Dy, (¥¥¢,) x Dk, (5¢,) — Dg, (F,)
is monoidal. TIts restriction to &, x &, takes value in &,. As &, is a full subcategory
of Dk, (F¢,), the associativity constraints are morphisms in &,,. Therefore, &, is a monoidal
subcategory of D (F4,). O

REMARK 2.9. — (i) According to [19, Remark 4.5], the exactness of the convolution
product probably would imply that LG x& J¢, — 4, is (stratified) semi-small.

(ii) By the same argument, the convolution bi-functor x : P(F¢,) x P,, — P(FL,) is also
exact, where P(FL,,) is the category of perverse sheaves on FY,,.

3. Zis a central functor

In this section, we show that Z is a central functor in the sense of [2]. By Lemma 2.6,
together with some general nonsense, this already implies that &, is equivalent to Rep(G")
for some closed subgroup G¥ c HV. In the next section, we will identify GV explicitly. We
will also determine a fiber functor of %,,.

THEOREM-DEFINITION 3.1. — The functor Z : Saty — P, is naturally a monoidal
functor.

Proof. — The proof is literally the same as the proof in [8, Theorem 1(c)]. We repeat the
argument here in order to make the definition of this monoidal structure explicit.
Let GryxGry be the ind-scheme over A? classifying

x,y € AY(R), &, & are two G-torsors
(3.1) GryxGry(R) = (z,9,6,6,8,8) | on AR, B: Elar v, ~ Elar 1, isa
trivialization, 5’ : &'| ab-r, = 6l _r,
Let Gry 151 Gry denote the restriction of GryxGry along the diagonal A — AZ? Then
Gry 1;?1 Gry is a kind of twisted product. Indeed, let £ G be the global jet group of @,

which classifies a point on A' and a trivialization of the trivial G-torsor over the formal
neighborhood of this point (cf. [31, §3.1]). Then f+ﬁ naturally acts on Grg. In addition,
thereisa £ G-torsor over Gry classifying quadruples (y, &, 3, ), where the triple (y, &, 3)
is as in the definition of Gry and « is a trivialization of & over the formal neighbor-
hood of y (this is indeed the global loop group & of & introduced in [31, §3.1]). Then

- £ty
Gry X Gry ~ L% x Gryg. Let us denote the base change of this isomorphism along
A
-~ 7ty
[e] : Al — Al by Grﬁg(}rﬁ ~ 28 x Gry.
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Let 71 and &5 be two objects in Sat 7. We can form the twisted product (71)g,, X (%2)g,,
over Grylg,, G§< Grylg,,. We claim that there is a canonical isomorphism

‘I’ag%@;g((gl)c’m X(F2)6,,) = Z(T1)XZ(T2).
Indeed, let V; C @&y be the closure of the support of &; X Q,[1] in E}vrgk;m. Let £, 4 be
the nth jet group such that the action of f+ﬁ on V; factors through f: 4. The corre-

sponding £, & torsor over Gry is denoted by £, 7. Let us denote by £ g and %
their base changes along [e]. Then one can check the isomorphism after pullback along

Efg xa1t Vo = £,G fiy V5, and the isomorphism follows from [8, Theorem 5.2.1].

Now Gryg?l(}rg — Gry, (y,6,8,8,8) — (y,&,B88') is ind-proper and taking nearby
cycles commutes with proper push-forward. Therefore we obtain the canonical isomorphism
Z(F1*F2) 2 Z(F1) * Z(F2).

In addition, working over Gry 1;?1 Gry 1;?1 Gry, one can see that this isomorphism makes Z a

monoidal functor. O

Let us recall the definition of central functors as in [2]. Namely, if F': € — 9 is a
monoidal functor between two monoidal categories and assume that & is a symmetric
monoidal category, then F' (together with the following data) is called central if

1. there is an isomorphism ¢ of the bi-functors & x ¥ — 9,(X,Y) — F(X)® Y and

(X,)Y)~ Y ® F(X),ie,anisomorphismcxy : F(X)®Y ~Y @ F(X) functorial
inX,Y;

2. for X, X' € G, the following diagram is commutative

Cx,F(Xx")
_

F(X)® F(X') F(X")® F(X)

! !

F(o ’
F(X®X') 7x.x) F(X' ® X),

where o is the commutativity constraint of &;
3. for X € Gand Y,Y’ € 9, the following diagram is commutative

FX)oYoYy 2% yverX)oy!
CX,Y@Y’l lid@cx'w
Y QY @ F(X) YV ® F(X);

4. for X, X' € 6,Y € 9, the following diagram is commutative

id®cxs y cx,y ®id
LN

FX)®F(X)®Y F(X)®Y ® F(X') Y ® F(X)® F(X')

l !

FXoX)oY 22 YRFX®X) — YQFXoX).
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PROPOSITION 3.2. — The functor Z, together with the canonical isomorphisms provided in
Proposition 2.7, is a central functor. There is an algebraic group GV C HV together with an
equivalence S : P, ~ Rep(GY) such that S o Z ~ Resgvv as tensor functors, where Resgvv is
the restriction functor from Rep(H") to Rep(GY).

Proof. — Since every object in &, appears as a direct summand of some object in the
essential image of Z, the second statement of the proposition is a direct consequence of the
first statement and Proposition 1 of [2].

The first statement can be checked literally the same as in [9]. For this, let us briefly
review the construction of the canonical isomorphisms in Proposition 2.7. Let us define the
Beilinson-Drinfeld Grassmannian

Al is a G-torsor on AL, and
(32 Grg’(R) = {(y, 6| 1L oY N } :

B:6lGn)r-r, = £0|(Gm)R_1"y is a trivialization

where &° denotes the trivial torsor. This is the restriction to {0} x Al (or to Al x {0})
of the usual Beilinson-Drinfeld Grassmannian over A? (e.g., the one considered in [19]). In
particular, we have

Gr§D|Gm ~ Grg|@,m X (Grﬁ)o, (GI‘ED)O ~ (Grﬁ)o ~ gfv

——BD ——BD
As before, we denote by Gry; ~ the base change along [e] : A* — A'. Over Gry |g,, =~

Eﬂ"gh;m x (Grgy)o, we can form the external product (71)g,, X 3. Then the isomorphism
in the proposition is induced from the canonical isomorphisms

2(91)*92 ~ \P&?D((gl)([}m X 92) ~ 92 *Z(gl),
where the two isomorphisms are induced from the natural maps
GrﬁiGrgle{O} — GrgD — Grﬁ;Grﬁ“O}xAL

See [31, Proposition 7.4] for more details.
Again, since the monodromy of \I/év o ((F1)g,, B Fo) is trivial, we have
Ty

(33) Z(g1)*92Z’L'Ej!*((gﬂ([;,m&gQ)ZgQ*Z(gﬂ,

where ig, j are corresponding closed and open embedding.

Back to the proof of the proposition. The conditions (3) and (4) are checked the same way
as in [9]. To check condition (2) is even simpler than loc. cit. Observe that the monodromy
of all the nearby cycles involved is trivial. Then the nearby cycles can be expressed via
intermediate extensions as in Corollary 2.5 and (3.3), rather than via the homotopy (co)limits
of certain ind-pro system of sheaves as in loc. cit. O

Now we would like to endow &, with a fiber functor. We begin with the following general
lemma.

LEmMA 3.3. — Let Gy C G2 be a closed embedding of affine algebraic groups over a field E
(of characteristic zero). Let F' : Rep(G1) — Vectg be an E-linear exact and faithful functor.
Assume that: (1) F(X®Y ) and F(X)®F(Y') are (non-canonically ) isomorphic; (ii) FoResg; is
a fiber functor of Rep(Gs). Then F has a unique fiber functor structure which induces the fiber

unctor structure of F o ResG! as in (ii).
g Go
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REMARK 3.4. — We are not sure whether the first assumption is necessary.

Proof. — The uniqueness is clear. We write R = Resg; for simplicity. For any X € Rep(G2),
let (X') denote the full subcategory of Rep(G2) consisting of the objects that are isomorphic
to subquotients of X, n € N, and (R(X)) denote the full subcategory of Rep(G1) con-
sisting of the objects that are isomorphic to subquotients of R(X)™,n € N. Let us denote
End(FR|x)) (resp. End(F|(r(x)))) the endomorphism algebra of the restriction of the
functor FR (resp. F') to (X) (resp. (R(X))). They are finite dimensional E-algebras and
clearly, the E-algebra homomorphism End(F'|(r(x)y) — End(FR|xy) is injective. Accord-
ing to [7, Lemma 2.13], there are canonical equivalences and the following commutative
diagram

(X) —2— End(FR|(x))-Mod —=— Vectg

| ! H

b w
(R(X)) —=5 End(F|(p(x)))-Mod —2— Vect .
In addition, wax ~ FR and wbpx) ~ F. Observe that if (X) is a subcategory of (Y').
Then we have a natural algebra homomorphism End(FR|;yy) — End(FR|xy)).
Then A = limxerepc, End(FR|(x))" is a coalgebra. Similarly, we can define
B = limxerepa, End(F|(r(x)y)". We have the surjective map of coalgebras A — B, and

RepGa + A-Comod —2— Vectg

dl ! H

RepG: % B-Comod —~— Vectg.

By the assumption (i) and [7, Proposition 2.16], the tensor structures on RepG; and RepG»
induce B® B — Band A ® A — A respectively. Since the restriction functor R is a tensor
functor, we have the commutative diagram

AQA —— A

! l

B® B —— B.
By assumption (ii), wa ~ F'R is a fiber functor of RepGs, and therefore we know that
A = B¢, and the map A ® A — A is the usual multiplication. Since the map A — B is
surjective, this implies that the map B ® B — B is also associative and commutative. By [7,
Proposition 2.16] again, this implies that the functor F' is compatible with the associativity
and the commutativity constraints. The lemma follows. O

COROLLARY 3.5. — The functor given by taking the cohomology H* : &, — Vectg, has a
natural structure as a fiber functor.

Proof. — 1t is well-known (e.g., from the decomposition theorem) that there exists an
isomorphism H*(¥¢,, 71 * ) ~ H* (L, 1) @ H*(FL,, F2) (non-canonically). Since
taking nearby cycles commutes with proper push-forward, we have a canonical isomorphism
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H* o Z ~ H*. Since H* : Saty — Vect@l is a fiber functor, the assertion follows from the
above lemma. O

4. Identification of the group GV with (H'V)!

We need to describe the group GV from the last section. To begin with, let us re-
view how the geometric Satake correspondence (together with a choice of an ample line
bundle on Grg) gives rise to a pinned group (HY, BY;, T}, X"). First, once we choose
Ty C By C H, the construction of [19] gives us Ty C B); C HY. Namely, let Uy C By
be its unipotent radical. For p € X,(Tx), let S, be the semi-infinite orbit on Gry passing
through s, as introduced in [19] (i.e., the LU -orbit passing through s,,). Let S<,, = Ux<, S5
and S<, = Ux<,Sx. Then the fiber functor H* : Saty — Vectg, has a canonical filtration
(called the MV filtration) given by ker(H*(Grgy,—) — H"(S<,,—)). This defines a Borel
BY, C HY.In addition, it is proved that the filtration admits a canonical splitting, i.e.,
a canonical isomorphism H*(Gry, —) ~ @, H;(Su, —). This provides a maximal torus
Ty C BY,. Let # be an ample line bundle on Gry, and let ¢(#) € H?*(Grg,Q,) be its
Chern class. Then it is shown in [10, 29] that the cup product with this class realizes ¢(¥) as
a principal nilpotent element in XV € §¥ = LieH". In addition, by [29, Proposition 5.6],
the quadruple (H", By;, Ty, X") is indeed a pinned reductive group.

REMARK 4.1. — One remark is in order. In [29], all the assertions are proved for the affine
Grassmannian defined over C. The only place where the complex topology is used, besides
the issue of dealing with Z-coefficients as in [19], is to define the coproduct on H*(Grg, Z) by
realizing Gry as being homotopic to the based loop space of a maximal compact subgroup
of H¢. However, one can provide a commutative and cocommutative Hopf algebra structure
on H*(Grg, Z) using the Beilinson-Drinfeld Grassmannian. More precisely, one can use the
isomorphism (2.11) in loc. cit. to define the comultiplication map by the formula (2.12) in loc.
cit. This map on the other hand can be realized as follows. There is the Beilinson-Drinfeld
Grassmannian 7 : Gro — A2 whose fiber over a point in the diagonal A C A2 is Gry and
whose fiber over a point off the diagonal is Grgy x Gry (cf. [19, Section 5]). Then R, Qy is
a constructible sheaf on A%, constant along the stratification A2 = A U (A2 — A). Now the
usual cospecialization map of constructible sheaves gives rise to the comultiplication. From
this latter definition, the usual arguments for the commutativity constraints as in [19] show
that this defined comultiplication is indeed cocommutative. The proof of [29, Lemma 5.1]
that ¢’# () is primitive under this Hopf algebra structure can be replaced by the following
argument: as is well-known (e.g., see [30, 1.1.9]), if # is ample on Grg, then there is an ample
line bundle on Gro, which away from the diagonal is #X ¥ and on the diagonal is . Now the
above arguments and all the remaining arguments of [29] apply to the situation when Gry is
defined over arbitrary field k£ and sheaves have Q,-coefficients.

REMARK 4.2. — Asexplained in [19, Theorem 3.6], the above pinning (H", BY;, T}, XV)
is in fact independent of the choice of T' C B. Another way to deduce this fact is as follows.
The natural grading on the cohomological functor H* defines a one-parameter subgroup
Gm — HY and Ty is just the centralizer of this subgroup, which is independent of the
choice of T C B. On the other hand, BY; is completely determined by XV, which is also
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independent of the choice of T C B. In other words, there is a canonical morphism from
the Lefschetz SLy to HY, which gives a principal SLs in H", and the pinning is determined
by this principal SLs.

Recall that we denote by 1 the action of I on Grg. The action of v € I will map Gr),
isomorphically to Gr.,(5). Therefore the pushforward functor v, : D(Grg) — D(Grg)
for v € I naturally gives rise to v, : Saty — Saty. In this way, I acts on Saty via tensor
automorphisms. Under the geometric Satake correspondence, I acts on HY clearly as pinned
automorphisms with respect to the pinning we mentioned above.

THEOREM 4.3. — GY ~ (HY)!.

REMARK 4.4. — Observe that (H")! is not necessarily a connected reductive group. For
example: let HY = GLa, 1, let J be the matrix with 1s on the anti-diagonal and 0s elsewhere.
LetT = {1,7} and y act on H" via g — J(g*)~'J. Then (HY)! = Ogy, 1.

Proof. — Since P, is semi-simple, GV is a reductive subgroup of HY. We first see that
GV c (HY)!. The following lemma is a direct consequence of [7, Corollary 2.9].

LEMMA 4.5. — Let f : Hy — Hy be a homomorphism of algebraic groups and let w¥ de-
note the induced tensor functor Rep(H,) — Rep(H,) (if f is a closed embedding then w' is
the restriction functor Resgf). Let I C Aut(Hy) so that it acts on Rep(Hy) via tensor auto-
morphisms. If for any vy € I, wf o w” ~ wf, then f factors through f : Hy — H{ C H;.

Now, I acts on E}vrg = Gry xp Al via the action on the second factor A! by deck
transformations. By Lemma 2.1, we have

Z0nT) = Vg (T BQ1]) = Vg ((6(7) X 7)o(T RQ[1]) = Vg, (T RQ[1]) = Z(T).

In other words, we have the tensor isomorphism between Z o «y, and Z for all v € I. From
the above lemma, GV c (HY)!.

Therefore, we have successive restriction functors
Rep(H") — Rep((H")") — Rep(G").
To prove that GV = (HY)!, it is enough to show that the above restriction induces an iso-
morphism of K-groups K (Rep(H")!) ~ K(Rep(G")).
As the group (H")! may not be connected, we need to be careful to describe its represen-
tation ring.
Let (HY)% denote the neutral connected component of (HY)!. This is a connected

reductive group with maximal torus (T'V)1:°, the neutral connected component of (V). The
key fact is the following lemma.

LEmMMA 4.6. — The natural map
(TV)I/(TV)I’O N (HV)I/(H\/)I,O

is an isomorphism.

4¢ SERIE - TOME 48 — 2015 - N° 2



THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 425

Proof. — We will not distinguish a group from its E-points. As we purely work with dual
groups, we switch the notation H" to H, etc. in the proof. Let us choose  to be a generator
of I. We need to show that mo(T7) = mo(HT). Let N be the normalizer of T in H and
let W = N/T be the Weyl group. Then I acts on W naturally. Let us define a right action
of W1 on H'(I,T) as follows. Suppose w is in W' and ¢ be a cohomology class; lift w
ton € N and lift ¢ to a cocycle ¢ : I — T. Then we set (c - w)(y) = [n Lp(y)y(n)]. It
is clear that this is independent of all choices. We will deduce Lemma 4.6 from the following
fact.

LEMMA 4.7. — Under the above definition, every element w € W' acts on H*(I,T) via a
group automorphism. In addition, H' (I, H) is the quotient of H' (I, T) via the above action.

Proof. — Observe that the map N/ — W7 is surjective. Indeed, let Hy,, be the derived
group of H and H,. be the simply-connected cover of Hge,. We have corresponding groups
Nyer, Nsc, Tder, Tsc- We now apply the argument of [26] p. 55 (5) to Hy. and . Our assump-
tion that v is pinned allows us to take ¢ = 1 in loc. cit. It follows that the natural map
NL — W1 is surjective; therefore the same is true for N7 — W (another argument of this
surjectivity can be found in [3, Lemma 6.2]). By taking the lift w to n € N, it is clear that
w acts on H' (I, T) via group automorphisms. The second statement was proved in [24]. [

COROLLARY 4.8. — The preimage of 1 € H' (I, H) under H*(I,T) — H' (I, H) is 1.

We continue to prove Lemma 4.6. First, if H is simply-connected, then H is connected as
is shown in [26, Theorem 8.2]. On the other hand, I acts on 7' via permuting a basis of X* (7).
Therefore, T is also connected. The lemma holds in this case. For general H, let Hg,, be the
derived group of H and H,. be the simply-connected cover of Hge,. Let Tqer and Ty, be the
corresponding preimages of T'. Write

1—- 72— Hy. > Hger — 1
which then gives
4.1 1 — mo(HL,) — H'(I,Z) — H'(I, Hy.).
Similarly, the sequence of maximal tori

1—Z—Tsc = Ter — 1
gives
4.2) 1 — mo(Th,) — HY(I,Z) — H' (I, Ty.).
Comparing (4.1) and (4.2) and applying Corollary 4.8, we obtain that the natural map
4.3) 70(Ther) > mo(Hler)
is an isomorphism. Now consider

1> Hger m H—->D—1
which gives

4.4) 1— 7T0(H£er) — 7T0(HI) — 7T0(DI) — Hl(I,Hder).
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Similarly, the sequence of maximal tori
1>Tger—T —>D—1
give
(4.5) 1 — 70(Tier) — mo(T1) — mo(D') — H' (I, Taer)-
Comparing (4.4) and (4.5) and using Corollary 4.8 again, we obtain that the natural map
(4.6) mo(TT) = mo(HT)

is an isomorphism. ]

REMARK 4.9. — Note that the above proof of Lemma 4.6 in fact applies to any cyclic
subgroup I of the group of pinned automorphisms of H. With a little more effort, one can
prove the same statement for any solvable subgroup. Also note that Lemma 4.7 implies that
if I acts on H via pinned automorphisms, then H*(I, H) has a canonical Abelian group
structure. This does not necessarily hold for arbitrary action of I on H.

Recall that there is a natural partial order “<” on X4 (7)) given by (1.3). Let i € Xo(T)}.
We say an irreducible representation W of (H"Y) is of highest weight f if i appears as a
weight under the weight decomposition of W with respect to (TV)! and any other weight
appearing in this weight decomposition is < ji. We claim that

LemMma 4.10. — (i) For i € X, (T)f there is a unique (up to isomorphism) irreducible
representation W of (HY)! of highest weight fi. In addition, any irreducible representation
of (HV) is of this form.

(i) The multiplicity of the p-weight in Wy is one.

Proof. — Indeed, let i be the image of i in X¢(T)7/Xe(T)1,t0r, and W5 be the unique

irreducible representation of (H")?:? of highest weight fi. Let W be an irreducible represen-
\YAV4

tation of (H")! appearing as a direct summand of indggv; 1,0Wg. Then by the Frobenius

reciprocity, W ® x also appears as a direct summand of indggzgioWﬁ for every character x

of (HV)!/(HY)!9, regarded as a representation of (H")!. Then by Lemma 4.6 and counting
the dimensions,

. (HY)T
lndEHV;“)W/i ~ @ W& x,
XxERep((TV)T/(TV)1:0)
and the restriction W to (H")? is irreducible. Therefore the restriction W to (H")! is
isomorphic to Wj. It is then clear that exactly one (W ® x) appearing in the direct sum is
an irreducible representation of (HY)! of highest weight i. This proves the existence. Then
uniqueness is also clear because by the Frobenius reciprocity, every irreducible representation
\AV4
of (HV)! appears as a direct summand in indggvngﬁ for some & € Xo(T)1/Xe(T)1 tor-
O
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Now we finish the proof of the theorem. Let 4 € X (T)* be a lift of . Then,
VAT
Resg‘rv ) Vil = [Wal + 22525 exa[Wsl, where [X] stands for the element in the K-group
corresponding to X . Therefore,
Res§yv [V, = ReS(C;H\/)I[Wﬁ] + Z C;\ﬁRes(GHv)z[W;].
A<Q

On the other hand, for i € X¢(T')}, the intersection cohomology sheaf IC; € &, gives rise
to an irreducible object Uj in Rep(GY). By Lemma 2.6, we have

Resfry [V = [Ua] + ) ds5alUsl.
A<Q
By induction on fi, one immediately obtains that

ReS(GHv)I [Wﬂ] = Uﬁ + Z ej\ﬁ[Uj\]

A<p
Since [W},] (resp. [U]) forms a Z-basis of K (Rep((H"))) (resp. K (Rep(G"))), this implies
that Res(Gf;v)z is an isomorphism and therefore GV = (HV)'. O

The following table is a list of the group (H")! when G over k((t)) is absolutely simple and
simply-connected, and non-split . Note that in this case, I acts on the coweight lattice of Ty
by permutations of a basis and therefore X,(T); is torsion free. Therefore, by Lemma 4.6,
(HV)! is connected.

G H I ] @)
SUsp—1 | SLop—1,mn>2 | Z/2 | SOg,_1
SU,, SLon,n>2 | Z/2 | PSp,,
2D, Sping,,,n >4 | Z/2 | SO2,_1
3Dy Sping Z/3 Go
2Fs Es 72 F

Here PSp,,, denotes the adjoint form of Sp,,,, and 2 D,,, 3 Dy, 2 E are the quasi-split but non-
split forms of D,, and Fj.

Now, we switch to Theorem 0.2. Therefore, we will assume that G is a quasi-split reductive
group defined over the non-Archimedean local field F' = [F,((t)) (we can in fact replace I,
by any other perfect field). Let k = F,, and o be the Frobenius element in Gal(k/F,).
Let v € B(G, F) be a special vertex in the building which remains to be special when base
change to k((t)) (such a vertex is called very special, see § 6 for more discussions). Let G, be
the special parahoric group scheme over F,[[t]] corresponding to v and K,, = LTG, . Then
the affine flag variety ¢, = LG /K, is defined over F, and when base change to k, ¥¢, ® k1is
the affine flag variety considered in the previous sections, and we have the Tannakian cate-
gory P, = Pk, ok(Fl, ® k) with a fiber functor H*.

As in Lemma A.5, there is an action of o on #,,, and therefore an action of o on (HY)?.
Following the notation as in the appendix, we denote this action by act®°™. On the other
hand, since there is a canonical pinning (H", BY;, Ty, X"), there is a canonical action
of Gal(F*/F) on H" by pinned automorphisms and therefore an action of o on (H")! by
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pinned automorphisms. We denote this action by act?'#. As in the appendix, we denote cycl
to be the cyclotomic character of Gal(k/F,), so that cycl(c) = g. Let

X = pocyel : Gal(k/F,) — (H)'.
Asin Proposition A.6, since the action of act&°™ on (H")! fixes the cohomological grading
and acts on XV via the cyclotomic character, we know that

acts®™ = act*€ oAd,,

and there is an isomorphism
4.7) (HY)" Xaepae Gal(k/Fq) = (HY)" Nacpseom Gal(k/Fy), (g,0) — (Ady(p)-19,0).

Now regarding (HY)! x,.e1e Gal(k/F,) as a pro-algebraic group over Qy, as in the ap-
pendix, we have the category Rep((H")! x,cie1e Gal(k/F,)) of algebraic representations
of (HY)! x1,c4m1e Gal(k/F,). Now Theorem 0.2 follows from the same line as in the appendix.

5. IC-stalks, g-analogy of the weight multiplicity, and the Lusztig-Kato polynomial

Let o € Xo(T)r and F € P,,. We determine the stalk cohomology & at the point s. By
abuse of notation, the inclusion map s; € Y, is still denoted by s;. It will be convenient to
define

Stalky (Y) = s, [—(2p, )], Costalk () = s%g[@p, )]
Let XV be the regular nilpotent element of Lie(H")! given by the pinning. It defines an in-
creasing filtration (the Brylinski-Kostant filtration) on any representation V of HY or (H")?,

(5.1) FV = (ker XV)"*1,
For i € X¢(T)1, denote by V(iz) the fi-weight subspace of V, under the action of (T%)?.
Then filtration (5.1) induces
(5.2) FV (i) = V(@) N EV.
Let
Pu(V,q) = el V(i)g'

be the g-analogue weight multiplicity polynomial.

THEOREM 5.1. — Let F € P, and let V = H*(FL,, F) be the corresponding representa-
tion of (HY)L. Then

Py(V,q) =Y dimH % (Stalk;(9))g’ = »  dim H* (Costalky(7))q".

Observe that by the parity vanishing property of &, Stalk; & and Costalk; (&) only
concentrate on even degrees.

In the split case, this is proved in [18, 4]. A more geometric proofis given by Ginzburg[10],

which relies on the geometric Satake isomorphism and certain techniques of equivariant
cohomology. We will follow Ginzburg’s idea.

Let us give a quick review of equivariant cohomology (see [1] and [10, §8] for more details).
Let M be a variety with an action of a torus A. Let BA be the classifying space (stack) of A.
Let R4 = H*(BA) and recall that SpecR4 ~ a = LieA. Let ¢ € a be an element. We denote
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by x(t) the residue field of ¢ and let H; := HY ®g, «(t). If t = 0, this functor Hy inherits a
canonical grading. For general ¢, this functor equips with a canonical filtration by

HF' o=Im(> /) — Hy),
Jj<i
and there is a canonical isomorphism gr* H; ~ Hg. Forevery & € D 4(M), there is a spectral
sequence EY'? = H?(BA, HY(M, 7)) = HY (M, 7). If this spectral sequence degenerates

at the Fs-term (which is always the case in the following discussion), then Hi(M, F) ~
H*(M, &) and therefore we have a canonical isomorphism gr H,(M, &) ~ H*(M, 9).

Now assume that the action of A on M has only isolated fixed points M4, and let € a be
the generic point. Then the localization theorem claims that there is an isomorphism

(5.3) D u,6,9) ~H,(M,9)~ @ H,(59),

zeMA zEMA

where i, is the inclusion of the point z.

Next we review some results for split groups, which are essentially contained in [10].
However, our presentation here follows [29] closely. First, it is proved in [29, Lemma 2.2] that
there is a canonical grading preserving isomorphism

(5.4) Hr, ~ H* ® Ry, : Saty — Rr,-Mod,

which endows H7, with a structure of tensor functors and defines a canonically trivialized
HY-torsor § ~ HY X tyg on SpecRr,, = ty =: LieTy. In other words, the group scheme
Aut®H*TH over ty of the tensor automorphism of this fiber functor, which a priori is an
inner form of HV, is canonically isomorphic to HY X tg. In addition, the MV filtration
and its canonical splitting extend in the equivariant setting [29, Lemma 2.2] and provide
Ty xtg C BYyxtg C HY xty. Now, let ™% (£) € H}, (Gryr) denote the equivariant Chern
class of #®. Then the action of ¢™# (£) on H}, (Gry, J) for 7 € Saty can be identified
with the action of an element

el € T'(ty,Lie(ad§)).

Since & is canonically trivialized, e”# can be regarded as a map ty — hY. Observe that e#
is not the constant map XV. In fact,

e™ = XY +h,
where h : tg — t}; ~ (tg)* is given by a nondegenerate invariant bilinear form (cf. [29,
Proposition 5.7)). In particular, (HY, BY;, Ty, eT#) is not a pinning over tg.

The equivariant homology HY# (Gr) is a commutative and cocommutative Hopf algebra
and JY = SpecH?" (Gry) is a flat group scheme over tgy, acting on every
HY, (Gry,Y), € Saty. By Tannakian formulism, this induces amap ¢ : JY — HY x ty.
In[29], it is shown that this is a closed embedding, which identifies JV with the (H" x tH)eTH ,
the centralizer of eT# in HY x tg.

(3 By replacing £ by a power of it, we can assume that £ is Ty -equivariant.
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Let n be the generic point of tz. Then J)Y is indeed a torus in H,’ since e’ (n) € b,/ is
regular semisimple. Then localization theorem gives rise to an isomorphism of J,'-modules

(5.5) P Hy(s,9) ~H,(Gry, ).

neXe(TH)
Following the idea of Ginzburg, we claim that this decomposition corresponds to the weight
decomposition under J,’ C H,/. First, let By, — T}; be the natural projection. As is shown
in [29], JV C B}, x tg and the composition JY — BY; x tg — T} X tg is identified with
the map (cf. Remark 3.4 of loc. cit.)

Ry [T~ @ HT(s,) — HI* (Gry).
HGXO(TH)
Over 7, this is an isomorphism and therefore we obtain a canonical isomorphism
J, = (Ty),. In addition, the action of JY on H, .(S,, ¥) via J) — (Ty), is identi-
fied with the natural action of J on Hn(sL F) ~ H, o(Su, 7). Therefore, we obtain the
following proposition, originally proved by Ginzburg by another method.

PROPOSITION 5.2. — Let V € Rep(HY) and J(V) € Saty be the corresponding sheaf
(see (2.1)). Under the identification of the weight lattice of JT\{ with Xe(Ty;) via the canonical
isomorphism J)) — (T41)y, the direct summand HW(SLJ(V)) C H,(Gra, J(V)) corresponds
to the weight subspace V() C'V for J,/.

REMARK 5.3. — Let us observe that the localization isomorphism (5.5) holds over tg
after we remove all root hyperplanes. This is because for every Ty-invariant finite dimen-
sional closed subvariety Z C Gry, there are only finitely many 1-dimensional T-orbitsin Z,
and Ty acts on these orbits via rotations determined by roots. Therefore, in all the discus-
sions above, we can replace the generic point ) by any (closed) pointintgy \{a = 0,a € Py},
where ® g is the set of roots of H.

Now let ¢ be a closed point on tg such that
(5.6) h(t) =2p

so that eT# (t) = XV + h(t) = XV + 2p. According to [29, Proposition 5.7], such point
exists (unique up to adding an element in the center 3(h) of h) and does not belong to any
root hyperplanes. Therefore, the localization isomorphism (5.5) holds for H, by the above
remark. From now on, we will always choose the point ¢ satisfying (5.6).

Recall that under the geometric Satake isomorphism H* : Saty ~ Rep(H"), the natural
grading on the cohomology functor corresponds to the principal grading on representations
of HY. More precisely, consider the cocharacter 2p : G,, — Tp C HV. Then the grading
on the cohomology functor corresponds to the grading given by 2p on the representations.
This follows from the fact that H,(S,,, &) is nonzero only in degree (2p, ). Now it is clear
from (5.4) that for the closed point ¢t € tg, the filtration Htgl corresponds to the increasing
filtration on the representations associated to the gradings given by 2p. For i € Z, let

Xa(Th)i = {1 € Xo(Tr) | (20, ) = i}.
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Let V be a representation of HV. Denote
Vi)=Y V(.
pE€Xe(TH)q

where V' (p) is the u-weight space of J. Let us identify H;(Grg, J(V)) with V canonically,
so that Hy(s;,J(V)) is identified with V'(u) by Proposition 5.2. Then we have the following
proposition.

PROPOSITION 5.4. — Let t be as in (5.6). Write Hy = H,(Grg, J(V)) for simplicity. Then
foranym € Z,
H2" 0 @ Hi(s,d(V) =HF"n P Hy(s, (V) = BV N V(m),
HEXe (T)m HEXe (T)m

where F;V is defined as in (5.1).

Proof. — Let n be the unique element in Uy, such that Ad,, (X" + 2p) = 2p. Then the
canonical isomorphism J ~ Ty is given by Ad,, : JY — T}. The proposition clearly
follows from the following purely representation theoretical lemma. O

LEMMA 5.5. — Let V be a representation of H. Let

V=) V), V=> V)

be two gradings on V', given by the cocharacters 2p : G,, — HY and Ad,,-12p : G,, — HY
respectively. Let F}V and F2V be two filtrations on V' given by
Flv =) "VYj), FV=(kerX")*.
Jj<e

Then for any m € Z, V2(m) N Fy; .V =V23(m) N F}, .,V = VZ(m) N F2V.

Proof. — LetY" € hY sothat {XV,2p, YV} forms an sl,-triple. Then the lemma is purely
a statement about this sl; and can be checked easily by direct calculation. O

This finishes the discussion for split groups. Now let G be as before and A be its maximal
split torus. By the isomorphism (1.1), we can regard A as a subtorus of 7. Note that we can
restrict everything discussed above to A C Ty. In particular, we can choose the point ¢ € a
such that h(t) = 2p. This is because h : ty — t); is equivariant under the automorphisms
of the based root datum and 2p is a fixed point under these automorphisms.

We begin to prove the theorem. Observe that it is enough to prove the theorem for
objects in @, of the form Z(F), where & € Saty. Indeed, both maps &, — Z|q]
given by & — Py(H*(),q) and & +~ Y dim H*(Costalk;(Y))q* factor through the
Grothendieck group, and as observed in the proof of Theorem 0.1 in Section 4, the objects
of the form Z(&), & € Saty generate the Grothendieck group of &,,.

Recall that the maximal torus A C G extends naturally to a split torus over £ and
Ay C G,. Therefore, we can regard A as a subtorus of K,, as A is a natural subgroup
of LT Ay consisting of “constant” elements. The set of fixed points of the action of A on F¥,
are exactly {sz|fi € Xo(T')r}. This will be clear if we regard LG as a Kac-Moody group and
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A as its maximal torus. We consider the A-equivariant cohomology H : ¥, — R4-Mod.
Since the nearby cycles commute with proper base change, we have a canonical isomorphism
H’ o Z ~ H}; : Satg — R4-Mod.

Indeed, when fixing a cohomological degree, we can replace BA by (P")'*4 for n large
enough, and consider the nearby cycle functors for the family Gry x4 (P?)™ 4 The claim
then is clear.

REMARK 5.6. — One should be able to argue as defining the tensor structure of H*, that
there is a canonical isomorphism
Hy ~H" ® Ry : $, — Ra-Mod,

which endows HY with a fiber functor structure, and the corresponding (H")? torsor on
SpecR4 = a =: LieA is canonically trivialized. However, we did not investigate this.

Let p : Xo(T) — X (T'); be the projection. Let i be the generic point of a. Now, the key
observation is

LEMMA 5.7. — Under the canonical isomorphism H, (5L, Z(¥)) ~ H,(Gry,), the
direct summand Hy (s}, Z(F)) corresponds to D1 (n) H; (s,9).
Proof. — Recall that if f : & — % is a morphism of varieties over Al, then there are
always the natural maps f*¥y — Wof* and ¥y f. — f.¥y (see SGA 7 Expose XIII,
(2.1.7.1) (2.1.7.2)). In addition, these two maps fit into the following commutative diagram

Vy(9) —— ffVy()

! l

Vy(fuf*T) —— [ ¥x(f7T).

Now let u € X¢(Tg) and apply this remark to s, : Al — évrg as defined in the proof
of Lemma 2.6. By taking the cohomology H’, we obtain, for any & € Saty, the following
commutative diagram

HYy(Gry,9) ——  HiY(T4,Z(T)) — Hi(s3Z2(9))
(5.7) l l l
H’;,(s;g) =, H;(gev,\lfaﬁ(su*s,’gg)) =, H;(\I/Al(s;g)).

In other words, the composition H} (74, Z(Y)) — Hy(Gry, ) — Hj(s;, ) factors
as Hy (S4,, Z(9)) — Hy(s3Z(F)) — Hy(s;,F). On the other hand, by the localization
theorem, over the generic 7 of a, we have

H,(T4s, Z(9))) —— @pex.(r), Hy(s3Z2(7))

(5.8) :j lz

H;’;(GrH, ) —= @uex.(T) H;(szg)

Observe that in the localization Theorem (5.3), for 2,y € M# and x # y, the composition
H,(iL9) — H, (i, &) is zero. Therefore, the lemma follows from (5.7) and (5.8). O
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Asaresult, by Proposition 5.2, if & = J(V), this direct summand can be further identified
with EB#Ep,l(ﬂ) V' (u), the weight subspaces under Jg/. In addition, by Proposition 5.4,

Ht§2i+(2p7ﬁ)) N Ht(S:gZ(d(V))) _ Ht§2i+1+(2p,ﬁ)) ﬂHt(Si—LZ((J(V))) —FVN @ Vw),

nep~1 (i)
where we write H; = Hy(FY¢,, Z(J(V))) for brevity. Therefore, to finish the proof of the
theorem, it remains to show that

LEMMA 5.8. — Let & € P,,. Then the canonical map

(5.9) HY (s, 9) — Hy(9)

is a splitting injective map of free R a-modules. Therefore,
HE (0, Z(J(V) NHi(5,Z(A(V))) = BE (spZ(H(V))).

These are general facts about flag varieties for Kac-Moody groups. The basic geometric
fact behind this proposition is that the “big open cell” of the flag variety contracts to a
point under certain G,,-action. Then the statement follows using an argument with weights
(cf. [10]). We here reproduce the proof for completeness.

Proof. — Without loss of generality, we can assume that & is an intersection cohomology
complex. First, we claim that it is enough to prove a dual statement: the map

(5.10) Hy(F) — Hy(s;9)

is surjective. To see this, recall that since each of H* (), 53, si-l?/’ concentrates in cohomo-
logical degrees of the same parity, the spectral sequence calculating the A-equivariant coho-
mology degenerates at the E,-term, which implies that all HY (), Hj (s39), Hj (s; 7) are
finite free R 4-modules. Then taking Hom(—, R 4) interchanges (5.9) and (5.10).

Since ¥¥, is the flag variety of certain Kac-Moody group (cf. [22, Section 9.h]), for
every sy, there is a G, -action on &7, contracting an open neighborhood of s in ¥4, to sj.
In addition, this G,,-action stabilizes every Schubert cell g é;, and commutes with the action
of A on ¥4,. Denote this open neighborhood by j : Uy — &¢,. Then Uy is an inductive
limit of affine spaces. Indeed, Uj is just the big open cell in the flag variety, and Uj is the
translate Ug via s (lifted to an element in T'(F)).

Now we can assume that our group is defined over F((t)) and splits over a totally ramified
extension. All the discussion above remains unchanged in this setting. Recall that we denote
9)2 to be the semisimple K, -equivariant perverse sheaves on ¥4, pure of weight zero. It is
well-known that for every object 7 in &, H}; (s;,7) is pure of weight zero (i.e., Hi,(s’ﬁg ) is
pure of weight ), essentially due to the existence of Demazure resolutions. To show (5.10) is
surjective, we decompose this map into

Hy () = Hy(Up, j°F) — Hy (s ).
It is well-known that the second map is an isomorphism since j*& is equivariant under
this G,,-action, which contracts (Uz N Supp &) to sz. In particular, HY (U, j*¥) is pure
of weight zero. Therefore, it is enough to show that the first map is surjective. Denote
i:Z =94, \ Up — T, to be the complement. Then we have the distinguished triangle

Wi'T = T = T —

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



434 X. ZHU

and therefore
0— H('F) - Hy(F) = Hy(Up, 5*F) — 0.
The last map is surjective because the weights of H (i' ) are > 0. O

6. The Langlands parameter

In this section, we briefly discuss the Langlands parameters for smooth “spherical” repre-
sentations of a quasi-split p-adic group. The parameters themselves can be described easily,
and they will be used when we discuss the Frobenius trace of nearby cycles for certain unitary
Shimura varieties.

We will assume that F' is a non-Archimedean local field with finite residue field and
that G is a connected reductive group over F'. First, we generalize the hyperspecial vertex of
an unramified group as follows. Recall that by [27], the building of G(F’) can be embedded
into the building of G(L), where L is the completion of a maximal unramified extension of F'.

DEFINITION 6.1. — A special vertex v of G is called geometrically special (or very special)
if it remains special in G 1. The parahoric subgroup of G corresponding to a geometrically
special vertex is called a geometrically special (or very special) parahoric subgroup of G.

Clearly, if G is an unramified group, then very special vertices of G are the same as
hyperspecial vertices of G.

LEMMA 6.1. — A very special vertex of G exists if and only if G is quasi-split over F'.

Proof. — Assume that G is quasi-split. Then the existence of such points follows exactly
by the same argument as in [27, 1.10.2]. We prove the converse. Let v be a very special point.
Choose a maximal F-split torus A of G such that the corresponding apartment A(G, A, F)
containing v. Let S be a maximal L-split torus defined over F' and containing A. We identify
the apartment A(Gp, Sy, L) with X4(S) ® R by v. As v is special, there is a bijection
between the finite Weyl chambers for (G, Sy) and the affine Weyl chambers (or called
alcove) with v as a vertex, and this bijection is compatible with the action of Gal(L/F).
To show that G is quasi-split, it is enough to find an L-rational Borel containing S stable
under Gal(L/F), which is equivalent to finding a finite Weyl chamber in X,(S) ® R, stable
under Gal(L/F). Therefore, it enough to show that among all alcoves with v as a vertex,
there is one stable under Gal(L/F'). But as it is known, one of such alcoves intersects with
A(G, A, F) (since every reductive group over F' is residually quasi-split, see [27, §1.10]), which
is stable under Gal(L/F). O

In fact, by checking the classification of central isogeny classes of quasi-simple, absolutely
simple reductive group over F as in [27, §4], we find that if G is quasi-split, then every special
vertex of G is very special except the following case: up to central isogeny, G is an unramified
odd unitary group. Then there are two special vertices in its relative local Dynkin diagram,
only one of which is hyperspecial. To prove this assertion, one uses the following observation:
Using the notation as in loc. cit., a vertex v in A (the relative local Dynkin diagram of G) is
very special if and only if the corresponding Gal(L/F')-orbit O(v) C A; (the absolute local
Dynkin diagram of G) consists of one point, which is special in A;.
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Next we turn to representations.

DEFINITION 6.2. — We call an irreducible smooth representation V' of G spherical, if
there is some v € V, v # 0, which is fixed by some very special parahoric subgroup of G.

REMARK 6.2. — Again, one could try to define spherical representations of G as those
with a vector fixed by some special maximal compact subgroup of G. However, from the
point of view of Langlands parameters discussed below, this is not correct.

Clearly, if G is unramified, spherical representations are those usually called unram-
ified representations. For the unramified representations, the description the associated
Langlands parameters is well-known (for example, see [3, Chapter I1]). Let us explain the
Langlands parameters of spherical representations for quasi-split ramified groups.

Following the notation in the previous sections, we denote by H" its dual group in the
sense of Langlands defined over C, i.e., the root datum is dual to the root datum of G. Let
us equip H" with a pinning (HY, BY, TV, XV)®. Then Gal(F*/F) acts on H" via pinned
automorphisms, which we denote by act®'#, and we can form the Langlands dual group of G
as

Laae — HY ,4us Gal(F*/F).

Let Wr be the Weil group of F'. A Langlands parameter is a continuous homomorphism
(up to conjugation by HV) p : Wr — LG?!8 such that its composition with the canonical
projection G#!8 — Gal(F*/F) is the natural inclusion Wr — Gal(F*/F) and p(WFr)
consists of semisimple elements of “G?!# (see [3, 8.2] for the unexplained terminology).

We write p(v) = (p1(7),7) for v € W, where p; is a map from Wy to H".

DEFINITION 6.3. — A “spherical” parameter (or Langlands-Satake parameter) is a Lang-
lands parameter p which can be conjugated to the form p(y) = (1,7) for v in the inertial
group I.

Let (HY)! be the I-fixed point subgroup of H" (which could be non-connected according
to Remark 4.4). Then Gal(F*/F)/I acts on (HV)! through a finite cyclic group (o), where
o € Gal(F?*/F)/I is the Frobenius element.

LEMMA 6.3. — “Spherical” Langlands parameters p : Wrp — LG are in one-to-one
correspondence to semi-simple elements in (HV)! x o C (HV)! xy04a16 () up to conjugacy
by (HV).

I

We denote the set of semi-simple elements in (HY)! x o by ((HY)! x 0)ss.

Proof. — First, observe that elements h € H" satisfy that (h,1)(1,v)(h™%,1) = (1,7) for
ally € I'ifand only if h € (HV)!.

Let @ be a lift of the Frobenius element to Wx. Then p is uniquely determined by p; (),
which is a semi-simple element in HY. Let v € I. Then (1,®y®71) = p(®y®@~ 1) =
(p1(®),®)(1,7)(p1(®@71), @) implies that p;(®) is invariant under I. Conversely, if
g € HY X,a1e I, then the formulas py (I) = 1, p1(®) = g define p. O

@ In fact, by the construction of the appendix, there is a canonical pinned of HY provided by the geometric Satake
correspondence.
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Let A be a maximal F'-split torus and let T" be the centralizer of A, which is a maximal
torus of G. Let Wy, = W(G, A) be the Weyl group. As explained in [11, Remark 9], we
can identify Wy with the o invariants of the Weyl group W ((HY), (TV)!) (observe that the
latter group was denoted by Wy in Section 4), and let Ny be the inverse image of Wy inside
the normalizer of (TV)! in (HV)!. Let Rep((H")! X,z (o)) be a category of algebraic
representations of (HY)! x, a1 (o).

For every W € Rep((HY)! x a1z (o)), by restriction of its character to (HY)! x o, we
obtain a function chyy on (HY)! x 0. We denote by R the algebra of functions on (H")! x o,
generated by all chyy. We can adapt the proofs in [3, 6.4-6.7] to the group (H")! x (o), and
obtain

PROPOSITION 6.4. — (i) The natural map X¢(T)9 C Xo(T) induces an isomorphism

a: (TV)! x o/Int Ny ~ SpecC[X,(T)9]"°.

(ii) The natural map (TV)! x o — (HY)! x o induces an isomorphism

B:(TV) xa/Int Ng ~ (HY) % 0)s/Int((HY)T).

(iil) The composition Ba~?! : SpecC[Xe(T)9]Ve — ((HY)! x 0)ss/ Int((HY)T) induces an
isomorphism

CXo(T)9]"° ~ R

as functions on (HY)! x 0) s/ Int(HY)!.

Therefore, the set of spherical Langlands parameters can be identified with the set of
all characters of R. Namely if p is a spherical parameter, then the corresponding character
X, : B — Cis given by

(6.1) Xp(chw) = tr(p(®), W),

where we assume (after conjugation) that p(®) € ((HV)! x 0).s, and € (HY)! x (o).

Now let us explain how to attach to a spherical representation its spherical parameter.
Let 7 be a spherical representation of G, such that 7% # 0 for a very special parahoric
subgroup K,, C G(F). Therefore, = determines a character x, of C.(K,\G(F)/K,) by

(6.2) X (f) = tr(x(f)),
where we fix a measure on G(F’) so that the volume of K, is one.

DEFINITION 6.4, — We define the spherical parameter associated to 7 to be the unique
Langlands parameter

Sat(n) : Wp — LG
such that xgat(r) = X« under the Satake isomorphism

(6.3) C(K\G(F)/K,) ~ R.
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As explained in Lemma A.13, in the case F' = Fy((t)), the isomorphism (6.3) can be
deduced from 0.2 under the sheaf-function dictionary. We come back to the notation as
in §4, in particular k = F,. Let i € X¢(T');. By abuse of notation, we denote the corre-
sponding Schubert variety in ¢, ® k by S,z ® k. If i is defined Fy, i.e., i € (Xo(T)1)7,
then 4,5 ® k is also defined over F, and we denote the corresponding Schubert variety
in ¢, by S4,;. In this case the intersection cohomology sheaf IC; is naturally in ?2,
and H*(IC;) is a representation of (HY)! x, s Gal(k/F,). When restricted to (HV)?,
it is the highest representation Wj. By abuse of notation, this algebraic representation
of (HY)! x4 Gal(k/F,) is still denoted by Wj,. Let Az € Co(K,\G(F)/K,) be the asso-
ciated function under Grothendieck’s sheaf-function dictionary. Combining (6.1) and (6.2),
we have

(6.4) tr(m(A,)) = tr(Sat(r)(®), W;).

7. Applications to the nearby cycles on certain Shimura varieties

One of the main motivations of this work is to calculate the nearby cycles for certain
unitary Shimura varieties. This is achieved by the so-called Rapoport-Zink-Pappas local
models.

Let F/Q be a quadratic imaginary field; we fix an embedding F C C. Let (W, ¢) be a
Hermitian space over F//Q, of dimension n = dim W > 3. Let G = GU(W, ¢) be the group
of unitary similitudes defined by

G(R) = {g € GLrp(W ®q R) | ¢(gv, gw) = c(g)d(v,w), c(g) € R*}.

Assume that (Wg, ¢r) (C™, H), where H is the standard Hermitian matrix on C™ of
signature (r,s), i.e., H = diag{(—1)®,1®} is the diagonal matrix with —1 repeated at
the first s places and 1 repeated at the remaining r places®. Without loss of generality,
we can assume that s < r. Let h : Resc/rG;n — Gr be the homomorphism given
by h(z) = diag{z®, 2()}. Let K C G(A ;) be an open compact subgroup, small enough (i.e.,
K is contained in some principal congruence subgroup for some N > 3). Then associated
to the data (G, {h}, K), one can define a Shimura variety Sh(G, K) over a number field E,
where E = Qifr = s,and E = F if r # s. Let us recall that h also determines
a conjugacy class of one parameter subgroups of G¢ (the Shimura cocharacter), defined
over E. In our case, G¢ ~ GL, x G,, and the one parameter subgroups are conjugate
to pr,s(z) = (diag{z(s), 1(r)}v z).

Let us fix a prime p > 2 and assume that F'/Q is ramified at p. We denote F), (resp. E,) the
completion of F (resp. E) at the unique place over p. In addition, we assume that (W, ¢) is
a split Hermitian form at p. In other words, (W, ¢)q, =~ (F}',J), where J is the split
Hermitian matrix on F' with all its anti-diagonal entries 1, and 0 elsewhere. Observe that
this assumption automatically holds if n is odd. Then Gg, is quasi-split. We will assume that
K = K,K? C G(Qp)G(A}) and K, is a special parahoric of Gg,, which is automatically
very special in the sense of (6.1). Let us make this more concretely.

1

® The corresponding Hermitian form is H(z,w) = z! Hw for z,w € C™.
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Let 7 be a uniformizer of F), so that 72 = ap with a a Teichmiiller lifting of F.
Let {e1,..., e} be a basis of F} so that ¢(e;, e;) is given by J. Let

-1 -1
Ai=Span@Fp{7r €lyeey T €iy€itly-nvyCnte

If n = 2m + 1, we consider two integral models for Gg,,

(7.1) G,, ={9€G,gho=Ao}, G, ={9€G, gAn=Ay}
If n = 2m, we consider the integral model
(7.2) G, = {9 € G, gAm = A}

As explained in [23, Section 1.2], these G, are special parahoric group schemes and essen-
tially all special parahoric group schemes of G are conjugate to these ones.

Let K, = G, (Z,). In this case, the Shimura variety Sh(G, K') has a well-defined model
over f)g, , as in [23]. Let us denote the integral model by Shg, . In addition, there is the so-
called local model diagram

Shi,

PN
Mloc
4 Ky
where the scheme M1°f;, which is called the local model of Shg,, is projective over O,
with an action of G, ®z, @Ep, and is €tale locally isomorphic to Shg,. In addition,
7 : Shg, — Shg, isa G, ®z, O, -torsor, and ¢ : Shg, — Mi{éi is G, ®z, Op,-equivariant
and is formally smooth (cf. [23] for details).
We are interested in the nearby cycle \Ifsth (Q¢), which is an £-adic complex on Shg, ®¢ 5 F,,,

on which ' = Gal(Q,/E) acts continuously, compatibly with the action of I" on Mﬁf; ®F,
through T' — Gal(F,/F,). From the local model diagram, we have

T Ushie, (Qe) = @™ Uppige (Qo).-
Therefore, it is essentially enough to determine \IlMl}c(m (Qy). For this purpose, we need to recall

the geometry of Mﬁz

First, let F/ = F,((u)) be a ramified quadratic extension of F,((t)) with u? = at, where
a € S as before. Let W/ = F'e; +- - + F'e,, and ¢’ be a split Hermitian form on W' given
by ¢'(e;, ent1—j) = ;5. Let G’ be the corresponding unitary similitude group over F,((t)).
The parahoric group scheme G, of G over Z,, has an obvious counterpart G, over F,[[t]].
Namely, consider

A = Spang , {mter,...,m rei eip1, . en )
If G, = Gg, N Aut(A;), then G, = G’ N Aut(A]). Observe that there is an isomorphism
G, ®F, ~ G, ® F, (given by the obvious identification of (W, ¢)r, ~ (W', ¢')r,). In
addition, the Shimura cocharacter p, , makes sense as a cocharacter of G’ ® (F,((t)))°.
Let F¢, = LG’ /LT G, be the associated affine flag variety considered before.

Now, we give the description of MB‘}Z The following statements can be extracted from
[23, 25, 24].
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loc

ProrosiTION 7.1. — (1) The generic fiber ofMKp
variety of maximal parabolic subgroups of G g, of the type given by p..s.

(ii) The special fiber is isomorphic to F€,y,  in an equivariant way. More precisely, the
L*G! -action on FLyy,., factors through an action of Gi, ® Fp, and there is an isomorphism

MRS ~ T¢

is isomorphic to P, ., where P, _ is the

Vs
intertwining the G,, ® F,, action on the left and this G, ® F,-action on the right.
(ii1) The generic point of the special fiber Mll‘;:) ®F, is smooth in MII‘Q:)

Having described the geometry of M}‘;‘;, let us state the main theorem of this section. First,
let &, be either

1. the category of LT G’ -equivariant Weil perverse sheaves on F¥,, constant along each
L*G! -orbit; or
2. the category of LT G, ® F,-equivariant perverse sheaves on 74, ® F,,.

Likewise, we understand ICy, , either as a pure perverse sheaf of weight zero, or just a
geometric perverse sheaf. By Theorem 0.1, we have:

1. if n =2m + 1is odd,
%(J : Rep(G02m+1) = gjv;
2. if n = 2m is even,
RS : Rep(GSpsy,,,) =~ P,
Next, let V' be the standard representation of GL,, and V. ; = A*V to be its sth wedge power.
We extend V. ; to a representation of GL,, x G,,,, on which G,,, acts via the homotheties.
THEOREM 7.2. — Regard V, s as a representation of GO,, C GLy, x G, if n is odd, or
of GSp,, C GL,, x Gy, if n is even by restriction. Then:
1. Denote by W& the underlying complex of sheaves of Wypoc [rs](%3) on leg ®F,. Then
p

IC; dd,
\I,geom ~ ‘%(J(‘/‘F,s) ~ { Hr,s no

2:S’ZO,s—s'ezzzo Icﬁn,s/,s, n even.
2. Letr # s. Then the action of the inertial subgroup I C T" on \I}Ml;;c is trivial so that \I/MII?C
P P

admits a structure as a Weil sheaf on FL,,. In addition, as Weil sheaves,
TS
Wy [rsl() = RI(Vr).
3. Letr =s=mwheren =2m. By (1)
peeom ~ > ICa, .\

m’>0,m—m’'€2Z>q
The action of the inertial subgroup I on Wypo. factors through I — Gal(F,/Qp) ~ Z/2.
In addition, the action of Z/2 on ICy _ , . is trivial if 4 | m —m’ and is through the
non-trivial character if 4+ m — m’. As Weil sheaves,

s
W) sy = Y T

m’'>0,m—m'€4Z>q
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where (¥ypioc VI denotes the inertial invariants of Wpioe .
p p

Proof. — Observe that ¥8°°™ ig an object in &,,. This follows from Proposition 7.1 (ii).
Observe that IC, | is a direct summand of W&°™. This follows from the fact that M}%‘; is
flat over O, with special fiber isomorphic to 4, ;.

The partially flag variety &, , is a Schubert variety in the affine Grassmanian of G,
over Ep, (see (A.2)). Therefore, H* (&, ) is a natural representation of GLy, X G, (the dual
group of Gg,), which is indeed just V;. ;. Since nearby cycles commute with proper push-
forward, we have

(7.3) Vo = HY(P,,, ) = HF(TE™),

Part (1) of the theorem would follow if we can show that this isomorphism is an isomorphism
of GO,, or GSp,,-modules. This is indeed the case, and can be shown using the constructions
in [24]. In fact, as a further application of the main results of this paper, we will prove the
corresponding Part (1) for all ramified groups in loc. cit. Here for the ramified unitary groups,
we give a more direct (and easier) argument, without showing that (7.3) is an isomorphism
of GO,, or GSp,,-modules. (However, we do need the existence of this natural isomorphism
as graded vector spaces.) In fact, we will deduce the theorem from the following description
of the restriction of V, s as a representation of (GL,, x Gm)!. Note that if n is odd, then
Vi, remains irreducible as a representation of GO,, = (GL,, x Gm)?, denoted by Wa, . If
n is even, the symplectic form induces a surjective map V,. s — V,.12 s_o and the kernel is the
irreducible representation of GSp,, = (GL,, X G,,)! of highest weight fi,. 5, denoted by W e
Finally, if (r, s) = (m, m), Vi, m canonically extends to a representation of (GL,, x G,,) x I
(e.g., see Corollary A.11).

LemMMA 7.3. — (i) 4s (GL,, x G,,)!-modules,

v { Wi, n odd,

23’20,875’62220 Wﬁn_s,ys, n even.
(ii) The representation Vy, m of (GLy, x Gy,) x I, when restricted to GSp,, xI = GSp,, xI,
decomposes as

(74) Vm,m = Z Wﬁ o @ Xmss

n—m’,m
m’'>0,m—m’'€2Z>q

where X is the trivial character of Gal(F,/Qy) if 4 | m —m/, and is the non-trivial character
ifdtm—m'.

Proof. — (i)is clear and we prove (ii). Clearly, there are some characters X, of Gal(F,/Q,)
such that the decomposition (7.4) holds. We need to identify these characters.

First, it is clear that x,, = 1. This is because the lowest weight space of V. is the same
as the lowest weight space of V;,, ,,,, which in turn is the same as HO(?M‘W) as I-modules.
But the action of I on HO(?umym) is trivial. This shows that y,,, = 1.

Now pick up g € I whose projection to Gal(F,/Q,) ~ Z/2 is non-trivial. To iden-
tify other x../, let us write the weight lattice of GL,, x G,, in a standard way to be
X® = P Ze; @ Ze and the set of simple roots to be {e; — g;41,1 < ¢ < n — 1}. Then

4¢ SERIE - TOME 48 — 2015 - N° 2



THE GEOMETRIC SATAKE CORRESPONDENCE FOR RAMIFIED GROUPS 441

the action of g on X*® will send ¢; to —¢,,11_; and e to € + &1 + - - - + &,,. The weight lattice
of GSp,, isX*/{e; + ent1-s =0,i=1,...,m}.

Let {vy,...,v,} be a standard basis of V' so that v; is a weight vector of GL,, of weight ¢;
as usual. Then a basis of V,,, ,,, is given by {v;, A---Av;, |1 <43 < -+ < iy, < n}. We
divide this set of basis into two subsets A and B. A base vector v;, A --- A v;, belongs to
the subset A if {i,n + 1 — 4} & {41,...,4m} forany 1 < i < m. All remaining base vectors
belong to B. It is clear that Span{v | v € A} C V,, .. and therefore, the action of g fixes
each v € A since x,, = 1. On the other hand, it is easy to see from the description of the
action of g on X*, that for v € B, gv will be a multiple of some w € B, w # v. From this, we
deduce that for any ¢ in the maximal torus of GSp,,,

(7.5) 62(gt, Vinm) = £(8) D e1 (1) -+ (6) ™.
On the other hand, according to (7.4), we have
tr(gt, Vin,m) = Z Xm' (8 )Ch(Wﬁn m’, m/)(t)a

m’'>0,m—m'€2Z>¢

where ch(Wj, ) denotes the character of Wy, as a GSp,-module, and x,,v(g) = +1
according to whether y,,, is trivial or not. Now it is easy to see that the above two identities
force x;m = 1if4 | m — m/ and .,y # 1if4 1 m — m/. Indeed, let T be an indeterminant
and write

c(+eT) (L+enD)(I+er'T) - (L+e,'T) = apTF,

then a,, i = am—; and ch(Wy, ) = as — as—2 = a, — ary2. Put T = v/—1, the left hand
side becomes (v/—1)™e(e1 +¢7 ') - -+ (em + €5,}), which is exactly (7.5), and the right hand
side is (v —1)"(am — 2am—2 + 2Gm—4 — - -+ ). The lemma is proved. O

Now we prove the theorem. We first assume that n is odd. As V. s remains irreducible as
a representation of GO,,. Therefore, RJ(V;.s) ~ ICj, . and we have

dimV,. , = dimH*(IC;, ,) < dim H*(¥#*°") = dimH* (%, ) = dim V. ;.

Hr,s
Therefore, W&*™ = 1Cy, . As ICy, , is irreducible, the inertial group I acts on Wypo. via
p
some character. Observe that the action of I on HO(\IlMllgc) ~ HO(@MS) ~ Qy is via the
P

same character, again due to the fact that nearby cycles commute with proper push-forward.

Therefore the action of I on Wy is trivial. Therefore, Uypoc [rs](%) >~ ICy, | ® £ for some
Kp Kp ’

rank one local system £ on SpeclF,,. By comparing the action of Frobenius on H*(%#,,, ) and
on H*(ICy, , ), we obtain the theorem in this case.

Now we assume that n is even. Recall that under the (ramified) geometric Satake
isomorphism, the cohomological grading corresponds to the grading by
2p : G, — GSp,, C GL,, x Gy,. Therefore, (7.3) is an isomorphism of the representa-
tions of 2p(G,,) C GSp,,. We claim that this already implies Part (1) of the theorem. Indeed,
for a representation V' of GSp,,, we denote V(i) to be the eigenspace of 2p of eigenvalue .
Let us write

P! m! 2

N S s s

m’'>0,m—m'€2Z<q

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



442 X. ZHU

we need to show that ¢,,,» = 1. First as in Lemma 2.6, ¢; = 1 by Proposition 7.1 (iii). Next,
we show that c;_o = 1. Observe that the gradings on H*(ICj, ) range from rs to —rs. From

dimH(s—2)(r+2) (\Ijgeom) = g5 + dimH(s_Q)(T+2)(ICﬁr,s)a

dim V. s((s — 2)(r + 2)) = 1 + dim(Wj, _ ((s — 2)(r + 2))),
we conclude that ¢,_2 = 1. Now by induction, ¢,,» = 1 forallm’ > 0,m —m’ € 2Z>. This
shows that

Ueom ~ RS(V,. ).
Next, we determine the action of the inertial group I on \IlMloc . First, assume that r # s. To
show that the action of I on \IlMloc is trivial, we again observe 'that I acts on each irreducible
direct summand of \IlMloc via a certain character. On the other hand, the group G, is split.
Therefore, the action of Ton H* (P,.,) is trivial, and therefore is trivial on \I/Mljc;; . Again,
comparing the action of the Frobenius, we conclude the result in this case.

Finally, let us assume that r = s = m, where n = 2m. Then E, = Q, and Gg, is
not split. In addition the action of I on H*(&,,,, .) is not trivial. Indeed, as &,,,, .. is de-
fined over Q,, according to the appendix, V. .. = H"(?,,, ,.) is a natural representation
of LGe*™ = (GL,, X Gy) Nactseom Gal(Q,/Q,), so that the natural action of Gal(Q,/Q,)
on H*(&,,. .) is given by the restriction of this representation to Gal(Q,/Q,). This semidi-
rect product (GLy, X G, ) X actseom Gal(Q, /Q,) is not the Langlands dual group LGalf of Gg, .
But if we form both semi-product using I C Gal(Q,/Q,), they become the same because the
cyclotomic character is trivial on I. On the other hand, since G is split over F), the action
of I factors through I — Gal(F,/Q,) ~ Z/2. We know that

peeom — Z ICu, v

m’>0,m—m’'€2Z>¢
As argued in the case r # s, the action of I on \IlMloc also factors through I — Gal(F,/Q,).
Assume that the action of I on ICa, i is through the character x/,,. We need to show
that x7,,, = Xm’, Where Xp,/ is as in Lemma 7.3. Since H* (¥ppoc ) ~ H (Prrm) = Vin,m as
(2p(G,,) x I)-modules, by taking the I-invariants, we obtain that
> B (Ch, )= D0 Wa
X,Tnlzl X! =1

Again, as argued before by considering the gradings, it is easy to see that this forces x/,, = xm’-

Finally, by comparing the action of Frobenius on H* (‘I/IIWOC ) and on H*(2,,,. . )!, we con-

clude the theorem. O

Combining Theorem 7.2 and Theorem 5.1, it is not hard to obtain the explicit formula of
the trace of Frobenius of \I/Mloc , which will be the input of the Langlands-Kottwitz method
of calculating the local Zeta functlon of the Shimura varieties. Instead of writing down the
explicit formula, let us characterize this function in terms of its trace on “unramified” repre-
sentations of G(F') (which clearly determines this function uniquely). The characterization
verifies a conjecture of Haines and Kottwitz in this case.
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PROPOSITION 7.4. — Let z, s be the function on G'(F) associated to \Ili/[loc under the
Kp

Grothendieck sheaf-function dictionary, and let V,. ¢ be the representation of LG%IE attached

to prs € Xo(T') as above (or in Corollary A.11). For m an “unramified” representation

of G'(F), with the Langlands parameter Sat(r) as defined in (6.4), we have
tr(n(21,4)) = tr(Sat(m)(®), V,L,).

The proof is a direct consequence of Theorem 7.2 and (6.4).

REMARK 7.5. — In the Langlands-Kottwitz methods of calculating the Zeta factors of
Shimura varieties, one needs some mysterious test functions z,, to be put into the trace for-
mula. Assuming the Local Langlands, Haines and Kottwitz give a conjectural characteriza-
tion of this test function z, in the general setting (i.e., arbitrary group and arbitrary level
structure). In the special case when the group is quasi-split and the level structure is special
parahoric, in which case the Langlands parameters is clear (as in Section 6), their character-
ization is reduced to the above proposition. Therefore, this proposition is the first example
of their conjecture in the case when the group is ramified at p. In [24], we will show that the
same characterization holds for arbitrary (tamely ramified) quasi-split groups with special
parahoric level structure.

Finally, let us make Theorem 7.2 more explicit for some special cases.

COROLLARY 7.6. — Let (r,s) = (n — 1,1). Then the inertial group acts on Wg,
trivially. In addition, as Weil sheaves, gy - Qg. In particular, for every x € Shp, (Fpn),
tr(Frob,, Vg, ) = 1.

Proof. — The first statement follows from Theorem 7.2 and the local model diagram. We
need to show that IC;, _, , ~ Q,[n—1](251). However, according to Theorem 5.1, we know
that IC;, _, , [1—n](+52) is a sheaf (for the standard ¢-structure) rather than a complex, with
each stalk isomorphic to Q,. AsICj, _, , [1-n](152) is indecomposable as object in D(F ),
this forces IC;, , ,[1 — n](52) ~ Q,. Now, since m*¥ g, =~ ¢*IC;, [l — n](52) and

7 has geometrically connected fibers, the corollary follows. O

REMARK 7.7. — Concerning the part of the Frobenius trace, this corollary has been
proven in [17, 23, 25]. Indeed, for the case n is odd, and the special parahoric is G, , this
is a main result of [17]. In this case, Shg, is not semi-stable. For the case n is odd and the
parahoric is G, , it is shown in [25] that Shg, is smooth. For the case n is even, it is shown
in [23] that Shg, is smooth.

Next, we consider the case (r,s) = (2,2). Recall that the local model diagram can be
written as a morphism
Shy, — [G, \ ME°],
where [G, \ MI;};] denotes the stack quotient. Therefore, the Schubert stratification
on MR ®F, induces a stratification on Shg, ® F,, called the Kottwitz-Rapoport (KR)

stratification. In the case (r,s) = (2,2), the stratification has two strata Shg, ; and Shg, ;.
The smaller one Shg, s is zero-dimensional. Similarly to the previous case, we have
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COROLLARY 7.8. — Let (r,s) = (2,2). Then Usp, = sy, +938,, - Theinertial action
on \Iléhkp is trivial and as Weil sheives, \Iléth =~ Q. The vanishing cycle ®sp, (Qe) = \Ilf(p.
When we forget the action of Gal(Q,/Qp), W&y =3 cqpn,. . 0z[—4], where b, is the delta
sheaf supported at x. In addition, the inertial action on 6, factors through a non-trivial quadratic
character. In particular, for every x € Shg, (Fyr), tr(Frob,, ¥, ) =1.

Appendix

Construction of the full Langlands dual group via the geometric Satake correspondence
by Timo Richarz & Xinwen Zhu

In the main body of the paper, we considered a reductive group G over F' = k((t))
(k algebraically closed), split over a tamely ramified extension, and recovered (HY)G2l(F*/F)
by the Tannakian formalism from a certain category of perverse sheaves associated to G,
where HV is the dual group of G, on which Gal(F*$/F) acts via pinned automorphisms. In
this appendix, we take a different point of view to recover the full Langlands dual group
LG = HY x Gal(F*/F) of G by the Tannakian formalism. The construction is easy but
we cannot find it in the literature. Most proofs will be omitted or rather sketched since they
are very simple.

Let us begin with a review of certain general nonsense of Tannakian formalism. A similar
discussion appearsin [14, Appendix 2]. Let (&, w) be a neutralized Tannakian category over a
field E of characteristic zero with fiber functor w. We define a monoidal category Aut® (€, w)
as follows: objects are pairs (o, ), where 0 : & — @ is a tensor automorphism and
a : w oo ~ wis a natural isomorphism of tensor functors; morphisms between (o, o) and
(¢/,a’) are natural tensor isomorphisms between o and ¢’ that are compatible with «, o’
in an obvious way. The monoidal structure is given by compositions. Since w is faithful,
Aut®(€,w) is (equivalent to) a set, and in fact is a group. For example, (0, @) = id means
that there is an isomorphism ¢ : o ~ id of tensor functors such that we = « (such ¢ will be
unique).

Let H = Autjw, the Tannakian group defined by (€,w). Let Aut(H) be the group of
automorphisms of H and Out(H) be the group of outer automorphisms of H.

LEMMA A.1. — There is a canonical action of Aut®(€,w) on H by automorphisms. In
addition, the map Aut® (€, w) — Aut(H) induces [Aut®(8)] — Out(H), where [Aut® ()]
is the group of isomorphism classes of tensor automorphisms of G.

The action of (o, @) on H is given as follows. Let R be an F-algebra and h : wg ~ wg be
an R-point of H. Then (o, a)h is the following composition

[ hoid «
WR < WROO0O — WROO — WR.

REMARK A.2. — Asis shown [14], Aut® (&, w) can be upgraded into a fppf sheaf on the
category of affine schemes over E, and as fppf sheaves Aut®(&,w) ~ Aut(H). We do not
need this fact.
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Let I be an abstract group. We define an action of I' on (&, w) to be a group homomor-
phism act : T — Aut®(&,w). Assume that I acts on (&, w). We can then define €*, the
category of I'-equivariant objects in & as follows: objects are (X, {c,},er), where X is an
objectin & and ¢, : act,(X) ~ X is an isomorphism, satisfying the natural cocycle condi-
tion, i.e., ¢y 0act,(cy) = c,r+; the morphisms between (X, {c, },er) and (X', {c] },er) are
morphisms between X and X', compatible with c,, ¢/, in an obvious way.

LEMMA A.3. — Let T be a group acting on (€,w). Then the category €' is a neutral
Tannakian category, with fiber functor w. In addition, if T is a finite group, regarded as an
algebraic E-group, then the Tannakian group Aut?rw is canonically isomorphic to H x T.

Proof. — The monoidal structure on &' is defined as

(X, {eybyer) ® (X', {c) byer) = (X7, {}yer),
where X" = X ® X' and cff : act, (X") — X" is the composition

c,y®cfy
act, (X ® X') ~ act,(X) ® act,(X') — X ® X'.

This gives &" the structure of a Tannakian category. Now assume that I is finite, and hence
H % T is an affine group scheme. By [7, Prop. 2.8], it is enough to show that,

Rep(H)' — Rep(H x T)

as tensor categories compatible with the forgetful functors. Let ((V, p), {cy }rer) € Rep(H)T.
Then we define (V, g) € Rep(H x T), for any k-algebra R (h,v) € (H xT')(R), by

(h,7) > p(h) o ag,r(V) owr o ey’ € GL(V ® R),
where ag r : wr © 04 ~ wg is induced by the action of I' as above. Using the cocycle

relation one checks that this is indeed a representation, and that the map defines the desired
equivalence. O

REMARK A.4. — If T is not finite, then the category (%", w) is still Tannakian, but
H = Aut%w is no longer H x I' since the latter cannot be regarded as an affine group
scheme (sometimes H is called the algebraic envelop of H x I'). However, there is always a
group homomorphism

H(E)xT — H(E).
Although this is not an isomorphism in general, we may still regard w(X) for X € ¢" asa
representation of H(E) x I,

Now, we assume that G is a connected reductive group over any field k. We switch the
notation to use G to denote the reductive group over E = Q, dual to G in the sense of
Langlands, i.e., the root datum of GV is dual to the root datum of Gys. Up to the choice of
a pinning (GV, BV, TV, XV) of GV, we have an action of 'y, = Gal(k®/k) on GV via
(A.1) Ty — Out(Ghs) ~ Out(GY) ~ Aut(GY,BY, TV, XV) C Aut(GY).

Then the Langlands dual group “G is defined to be GV xT';,. Our goal is to recover this group
via the above Tannakian formalism.
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Let L™ G be the jet group of G ® k[[t]] and LG be the loop group of G ® k((t)). Recall that
by definition, for every k-algebra R, LYG(R) = G(R|[t]]) and LG(R) = G(R((t))). Let

(A.2) Grg = LG/L*G

be the affine Grassmannian of G over k. Let Grg ® k° be its base change to the separable
closure of k. From [31, Lemma 3.3], formation of the affine Grassmannian commutes with
étale base change, we have Grg ® k° ~ Grg,. . Since Gy is split, we can consider the usual
Satake category Sat on Grg, ., i.e., the category of (LT G ® k*)-equivariant perverse sheaves
on Grg ® k°, which is equivalent to Rep(GéZ) via the geometric Satake correspondence of
[19]. Note that the Galois group I'y acts on Grg ® k°. For v € I, the pullback functor
~v* : D(Grg ® k*) — D(Grg ® k®) clearly restricts to a functor v* : Sat — Sat. In addition,
there is a canonical isomorphism «., : H*(v*¥) ~ H* (7).

LEMMA A.S5. — The assignment v — (v*, oy) defines an action of T'y, on (Sat, H").

According to Lemma A.1, there is a canonical action of I'y, on GV, denoted by act8o™,
And we can form

Lgeeom .— GV Xczeom [,
which we will call the geometric Langlands dual group.

Now, our goal is to understand the relation between £G&°™ and the usual Langlands
dual group “G. Recall that in Section 4, we explained that once we choose an ample line
bundle on Grg, the geometric Satake isomorphism provides GV with a canonical pinning
(GV,BY,TV,XV). Therefore, there is an action of T';, on GV via (A.1), denoted by act®e.
Then we can form the usual Langlands dual group by “G?!8 = GV x, s [x. It turns out
that the difference between act8°™ and act®'# can be described explicitly.

Let
cycl : Ty — Z)
be the cyclotomic character of T'y, defined by the action of Ty, on the £*°-roots of unity of k*.

Let GY, be the adjoint group of GV. Let p be the half sum of positive coroots of GV, which
gives rise to a one-parameter group p : G,, — GY,;. We define a map

X T ™ Z; 5 Gyu@y),
which gives a map Ad, : 'y — Aut(G") to the inner automorphism of GV.

PROPOSITION A.6. — Let (GY,BY,TV,XV) be the pinning defined by the geometric
Satake isomorphism as in §4. We have act8°™ = act?e oAd,.

Proof. — Observe that the action of T'y, preserves the cohomological grading. In addition,
I';, acts on XV through cycl since XV is the Chern class of the chosen ample line bundle
on Grg. Therefore, Ad, -1 o act&°™ preserves (G¥, BY,T", X"). But since Ad, -1 o act8°™
and act®'# act on the based root datum (X*(T'), A) by the same way, these two actions must
coincide. O
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REMARK A.7. — (i) An interesting corollary of the above proposition is that the act&°™
of T, on GV only depends on the quasi-split form of G, since the same is true for act®!#.

(ii) The existence of these two actions act8°™ and act®® is a geometric source of the two
natural normalizations for the Satake parameters. In addition, these two actions are also
parallel to the notions of C-algebraic and L-algebraic, as recently introduced by Buzzard
and Gee [5].

COROLLARY A.8. — We have LG*'8 = LG&eo™ giyen by
(9,7) = (Ady(y-1)(8),7)-

Following [3, 2.6], we define the notation of the algebraic representations of *G?!# as
follows. For every k' C k* finite over k such that G is split, one can form the “finite form”
of Langlands dual group GV X1 Gal(k’/k), which can be regarded as an algebraic group
over Q. Therefore, we may consider “G*'¢ = HmG" X ,c4me Gal(k'/k) as a pro-algebraic
group over Q,, Then it makes sense to talk about the category of algebraic representations
Rep(“G?8) of £G?!8, which is the inductive limit of Rep(GY X a1 Gal(k'/k)).

Now, we consider certain categories of perverse sheaves. First, according to the above
discussions, we call the action of I';, on Sat via v — (v*, a) as in Lemma A.5 the geometric
action. We can also define an algebraic action of T’y on Sat as v — (v*, x(7) "t ayx(7)).
Clearly, there is a canonical isomorphism between Sat'*€°™ and Sat'**€ sending
(7, {cy}ver,) to (F,{cy}yer,). The reason we distinguish them is due to the follow-
ing observation: since the algebraic action of I'y, on GV factors through Gal(k’/k) if Gy is
split, the algebraic action of 'y, on Sat also factors through Gal(k’/k), and therefore it makes
sense to talk about Sat S (¥ /*)218 \which is naturally a full category of Sat"™**¢. In addition,
according to Lemma A3, Sat%@(¥'/¥):218 is equivalent to Rep(GY X e Gal(k'/k)). Now,
let Sat"=318:f < SatT* 28 be the full subcategory, which is the union of all SatGal(k/k)ale
We obtain that

H* : Sat""&/ ~ Rep(LG8).
Our next goal then is to identify Sat™**#f as a subcategory of Sat

AsT is a topological group, a natural guess would be the full subcategory of Sat
consisting of objects on which Ty acts continuously. Equivalent, let #;+5(Grg) be the
category of perverse sheaves on Grg. Then the pullback functor to Grg ® k° induces
Pr+c(Grg) ~ Sat#8%°™t However, it is not the case that Sat* 8™t — Gatlsale.f

Ty ,geom

Ik ,geom,ct
b

DEerINITION A.1. — (i) Let X be a smooth variety over k, we define a constant sheaf to
be a direct sum of (Q,[1](5))® mX.

(ii) We define ¢£+ c(Grg) to be the full subcategory of ?1+5(Grg), consisting of those
sheaves &, such that there exists some k&’ D k& such that # ® k' is constant along each
(LTG ® k')-orbit.

REMARK A.9. — (i) The toy model is when G = {e} is the trivial group. Then P+ (Grg)
is the category I'y,-Mod of continuous representations of I'y, while 9’£+G(Grg) is the sub-
category I',-Mod” consisting of representations of finite quotients of I'y. In particular, if
k is a finite field, we can identify the latter as the category of semi-simple I'y-modules, pure
of weight zero.
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(i) Observe that every object in P +(Grg) is of the form &;IC; ® #;, where IC; is
an intersection cohomology sheaf on Grg, and #; is a representation of I'y. Therefore,
g e @£+G(Grg) ifand only if all #; € I'y-Mod”. In particular, if £ = [ is a finite field, the
category ¢£+G (Grg) is equivalent to the category of semi-simple LT G-equivariant perverse
sheaves on Grg, pure of weight zero.

PROPOSITION A.10. — Under the canonical isomorphism Sat™*8°°™ = Sat?*21& e have
the identification

¢£+G(Grc) = Sat' 28/

Therefore, we obtain an equivalence of tensor categories

H* : P (Grg) — Rep(*G2).

Proof. — Let k' D k such that Gy splits. We denote #1+¢  (Grg) the full subcat-

egory of @£+G(Grg) consisting of those & such that & ® k' is constant along each
(L*G ® k')-orbit. Then under

Pr+c(Crg) — Sat"oEeom ~ Sathele,

Pr+c .k (Grg) maps to Sat@2l(k'/k)2le T see this, one reduces to the case when G is split

over k and k¥’ = k. In this case #1+g (Grg) ~ Sat and this statement is clear. O

For every 7 € P4, ,(Gre), let us describe H*(T7) as a representation of £G®' more
explicitly. First, as an object in Sat'*°°™ it is a natural representation of “G2%°™  on which
GV acts via the usual geometric Satake isomorphism, and I'j, acts via the natural Galois
action. Then the action of “G?2 is via (A.8).

In particular, if Gr,, is a Schubert variety in Grg defined over & (i.e., the conjugacy class
of the one-parameter subgroup determined by p is defined over k), then ICGM is an object
in ¢£+G (Grg). Therefore, H* (ICq:,) is a representation of GV Xaere Gal(k' /k), where k' is
the splitting field of G. We thus obtain

COROLLARY A.11. — LetV, be arepresentation of G¥ of highest weight p. If the conjugacy
class of the one parameter subgroup i : G, — Gys is defined over k, then V,, can be extended
canonically to a representation of GV X 12 Gal(k' /k), where k' is the splitting field of G.

Now we specialize to the case that k = F is a finite field, so that G®k[[¢]] is a hyperspecial

group scheme for the unramified group Gy s). Note that © GZl(%t» = L@G2ls. We therefore

obtain the geometric Satake isomorphism for unramified groups.

THEOREM A.12. — Let ¢£+G(Grg) be the category of semi-simple, L™ G-equivariant per-
verse sheaves on Grg, pure of weight zero. Then we have an equivalence of tensor categories

H* : 2] . ,(Grg) ~ Rep(*G™®).
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Let o be the Frobenius element in I'y. Denote by # ¢ the Grothendieck ring of @2+G(Grg),
tensored with Q,, and by #. the algebra associated to Rep(*G?#). Theorem A.12 gives
an isomorphism of algebras

(A3) D : ﬂg - .%Lg.

Let He be the spherical Hecke algebra of compactly supported bi-G(F,[[¢]])-invariant
functions. Let R be the algebra of Q,-valued functions on (G x o), generated by the
characters of elements in Rep(?G?18). Here, (GV x o), is the set of semi-simple elements
in GV x o, as defined in [3, Section 6]. We have a surjective map of algebras Tr : # ¢ — Hg
(resp. Ch : R — Rurg) given by the trace of Frobenius (resp. by sending a representation
to its character).

LEmMMA A.13. — The isomorphism (A.3) induces a unique isomorphism
¢ : HG - RLG
such that Cho® = ¢ o Tr.

Proof. — Uniqueness is clear and we show the existence. For an object X in either cate-
gory, we denote by [X] its class in the Grothendieck ring. Then it is easy to see that the kernel
of the map Tr : o — Ri is the ideal generated by elements of the form [V @] —(o)[V],
where V € Rep(YG*¢) and ¢ : Ty — Q, is a character of Ty factoring through a finite
quotient. On the other hand, the kernel of the map Ch : % — Hg is the ideal generated
by elements of the form [ ® £] — tr(o, £)[V], where F € ?£+G(Grg), and £ is a rank
one local system on SpeclF,, pure of weight zero. But it is clear that these two ideals match
under ®. The lemma follows. O

Recall that by [3, 6.7] the classical Satake isomorphism also gives an isomorphism of alge-
bras ¢ : Hg ~ Reg. By tracking back the construction of geometric Satake correspondence
and the classical Satake isomorphism, one can show that ¢ = ¢. Indeed, if G = T'is a toruse,
this is clear. For general G, one observes that the fiber functor decomposes as a direct sum
of weight functors [19, §3]: @JZJr (Grg) — @{+T(GrT), and under the sheaf-function dic-
tionary this corresponds to the constant term map CT : Hg — Hy. Therefore, either ¢ or ¢
is uniquely determined by the following commutative diagram

HG B RLG

x| [

HT ;) RLT.

The general case follows.
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